Using the Regional Ocean Modelling System (ROMS) to improve the sea surface temperature predictions of the MERCATOR Ocean System

Authors

  • Pedro Costa MeteoGalicia, Consellería de Medio Ambiente, Territorio e Infraestruturas, Xunta de Galicia
  • Breogán Gómez MeteoGalicia, Consellería de Medio Ambiente, Territorio e Infraestruturas, Xunta de Galicia
  • Anabela Venâncio MeteoGalicia, Consellería de Medio Ambiente, Territorio e Infraestruturas, Xunta de Galicia
  • Eva Pérez MeteoGalicia, Consellería de Medio Ambiente, Territorio e Infraestruturas, Xunta de Galicia
  • Vicente Pérez-Muñuzuri MeteoGalicia, Consellería de Medio Ambiente, Territorio e Infraestruturas, Xunta de Galicia

DOI:

https://doi.org/10.3989/scimar.03614.19E

Keywords:

ROMS, WRF, MERCATOR, ocean modelling, Galician coast, sea surface temperature, freshwater

Abstract


Global models are generally capable of reproducing the observed trends in the globally averaged sea surface temperature (SST). However, the global models do not perform as well on regional scales. Here, we present an ocean forecast system based on the Regional Ocean Modelling System (ROMS), the boundary conditions come from the MERCATOR ocean system for the North Atlantic (1/6° horizontal resolution). The system covers the region of the northwestern Iberian Peninsula with a horizontal resolution of 1/36°, forced with the Weather Research and Forecasting Model (WRF) and the Soil Water Assessment Tool (SWAT). The ocean model results from the regional ocean model are validated using real-time SST and observations from the MeteoGalicia, INTECMAR and Puertos Del Estado real-time observational networks. The validation results reveal that over a one-year period the mean absolute error of the SST is less than 1°C, and several sources of measured data reveal that the errors decrease near the coast. This improvement is related to the inclusion of local forcing not present in the boundary condition model.

Downloads

Download data is not yet available.

References

Alvarez-Salgado X.A., Rosón G., Pérez F.F., Pazos Y. 1996. Nitrogen cycling in an estuarine upwelling system, the Ria de Arousa (NW Spain). Short-time-scale patterns of hydrodynamic and biogeochemical circulation. Mar. Ecol. Prog. Ser. 135: 259-273. http://dx.doi.org/10.3354/meps135259

Alvarez-Salgado X.A., Figueiras F.G., Pérez F.F., Groom S., Nogueira E., Borges A.V., Chou L., Castro G.C., Moncoiffé G., Rios A.F., Miller A.E.J., Frankignoulle M., Savidge G., Wollast R. 2003. The Portugal coast counter current off NW Spain: new insights on its biogeochemical variability. Prog. Oceanogr. 56: 281-321. http://dx.doi.org/10.1016/S0079-6611(03)00007-7

Arnold J.G., Srinivasan P., Muttiah R.S, Williams J.R. 1998. Large area hydrologic modeling and assessment. Part I. Model development. J. Am. Water Resour. As. 34: 73-89. http://dx.doi.org/10.1111/j.1752-1688.1998.tb05961.x

Balseiro C.F., Carracedo P., Gómez B., Leitão P.C., Montero P., Naranjo L., Penabad E., Pérez-Muñuzuri V. 2003. Tracking the Prestige oil spill: an operational experience in simulation at MeteoGalicia. Weather 58: 452-458.

Blayo E., Debreu L. 2005. Revisiting open boundary conditions from the point of view of characteristic variables. Ocean Model. 9: 234-252. http://dx.doi.org/10.1016/j.ocemod.2004.07.001

Bode A., Varela M. 1998. Primary production and phytoplankton in three Galicia Rias Altas (NW Spain): seasonal and spatial variability. Sci. Mar. 62: 319-330. http://dx.doi.org/10.3989/scimar.1998.62n4319

Canuto V.M., Howard A., Cheng Y., Dubovikov M.S. 2001. Ocean turbulence Part I: One-point closure model-momentum and heat vertical diffusivities. J. Phys. Oceanogr. 31: 1413-1426. http://dx.doi.org/10.1175/1520-0485(2001)031<1413:OTPIOP>2.0.CO;2

Carracedo P., Balseiro C.F., Penabad E., Gómez B., Pérez-Muñuzuri V. 2005. One year validation of wave forecasting at Galician coast. J. Atmos. Ocean Sci. 10: 407-419. http://dx.doi.org/10.1080/17417530601127746

Chapman D.C. 1985. Numerical treatment of cross-shelf open boundaries in a barotropic coastal ocean model. J. Phys. Oceanogr. 15: 1060-1075. http://dx.doi.org/10.1175/1520-0485(1985)015<1060:NTOCSO>2.0.CO;2

Ekman V.W. 1905. On the influence of the earth’s rotation on ocean currents. Arkiv Matematik. Astron. Fysik 11: 52 pp.

Egbert G.D., Erofeeva S.V. 2002. Efficient inverse modeling of barotropic ocean tides. J. Atmos. Ocean Technol. 19: 183-204. http://dx.doi.org/10.1175/1520-0426(2002)019<0183:EIMOBO>2.0.CO;2

Fairall C.W., Bradley E.F, Rogers D.P., Edson J.B., Young G.S. 1996. Bulk parameterization of air-sea fluxes for tropical ocean-global atmosphere Coupled Ocean Atmosphere Response Experiment. J. Geophys. Res. 101: 3747-3764. http://dx.doi.org/10.1029/95JC03205

Flather, R.A. 1976. A tidal model of the north-west European continental shelf. Mem. Soc. R. Sci. Liège 6: 141-164.

Haidvogel, D.B., Beckman A. 1999. Numerical Ocean Circulation Modeling. Imperial College Press, 318 pp.

Haynes R., Barton E.D., Pilling I. 1993. Development persistence and variability of upwelling filaments off the Atlantic Coast of the Iberian Peninsula. J. Geophys. Res. 98: 22681-22692. http://dx.doi.org/10.1029/93JC02016

Mason E., Colas F., Molemaker J., Shchepetkin A.F., Troupin C., McWilliams J.C., Sangrà P. 2011. Seasonal variability of the Canary Current: a numerical study. J. Geophys. Res. 116: C06001. http://dx.doi.org/10.1029/2010JC006665

Mellor G.L., Yamada T. 1982. Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys. 20: 851-875. http://dx.doi.org/10.1029/RG020i004p00851

Oliveira P.B., Nolasco R., Dubert J., Moita T., Peliz A.J. 2009. Surface temperature, chlorophyll and advection patterns during a summer upwelling event off central Portugal. Cont. Shelf Res. 29: 759-774. http://dx.doi.org/10.1016/j.csr.2008.08.004

Peliz A., Rosa T., Santos A.M.P., Pissara J. 2002. Jets, eddies, and counterflows in the western Iberian upwelling system. J. Mar. Syst. 35: 61-77. http://dx.doi.org/10.1016/S0924-7963(02)00076-3

Shapiro R. 1970. Smoothing, filtering, and boundary effects. Rev. Geophys. Space Phys. 8: 359-387. http://dx.doi.org/10.1029/RG008i002p00359

Shchepetkin A.F., McWilliams J.C. 2005. The Regional Ocean Modeling System: A split-explicit, free-surface, topography following coordinates ocean model. Ocean Model. 9: 347-404. http://dx.doi.org/10.1016/j.ocemod.2004.08.002

Song Y., Haidvogel D.B. 1994. A semi-implicit ocean circulation model using a generalized topography-following coordinate system. J. Comp. Phys. 115: 228-244. http://dx.doi.org/10.1006/jcph.1994.1189

Umlauf L., Burchard H. 2003. A generic length-scale equation for geophysical turbulence models. J. Mar. Res. 61: 235-265. http://dx.doi.org/10.1357/002224003322005087

Downloads

Published

2012-09-30

How to Cite

1.
Costa P, Gómez B, Venâncio A, Pérez E, Pérez-Muñuzuri V. Using the Regional Ocean Modelling System (ROMS) to improve the sea surface temperature predictions of the MERCATOR Ocean System. Sci. mar. [Internet]. 2012Sep.30 [cited 2024Mar.28];76(S1):165-7. Available from: https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1382

Issue

Section

Articles