The effect of coral polyp sizes and coral exudates on picoeukaryote dynamics in a controlled environment
DOI:
https://doi.org/10.3989/scimar.03405.02AKeywords:
scleractinian corals, Stylophora pistillata, Montipora stellata, picoeukaryotes, grazing, coral exudatesAbstract
We examined the ability of scleractinian corals with different polyp sizes to remove picoeukaryotes by predation and the effect of coral exudates on picoeukaryote growth. Experiments were conducted by adding picoeukaryotes to Stylophora pistillata (SP) and Montipora stellata (MS). Within six hours the picoeukaryote concentration in the SP and MS tanks was significantly lower than the control without corals. SP showed higher overall activity than MS, and the particle removal activity of MS decreased in light conditions. Picoeukaryotes exposed to SP exudates grew significantly denser than those exposed to MS exudates or those in water without coral exudates. Dissolved organic carbon concentrations in the SP tanks were also significantly higher. We concluded that the picoeukaryote removal rates were higher in S. pistillata than in M. stellata, and coral exudates can reciprocally enhance picoeukaryote growth.
Downloads
References
Ayukai T. 1995. Retention of phytoplankton and planktonic microbes on coral reef within the Great Barrier Reef, Australia. Coral Reefs 14: 141-147. http://dx.doi.org/10.1007/BF00367231
Biggs D.C. 1977. Respiration and ammonium excretion by open ocean gelatinous zooplankton. Limnol. Oceanogr. 22: 108-117. http://dx.doi.org/10.4319/lo.1977.22.1.0108
Blanchot J., Rodier M. 1996. Picophytoplankton abundance and biomass in the eastern tropical Pacific Ocean during the 1992 El Niño year: results from flow cytometry. Deep-Sea Res. 6: 877-895.
Brown B.E., Bythell J.C. 2005. Perspectives on mucus secretion on coral reef. Mar. Ecol. Prog. Ser. 296: 291-309. http://dx.doi.org/10.3354/meps296291
Chang-Chou Y.Y. 2010. The effects of upwelling on picoplankton, phytoplankton and nutrients in Nanwan Bay. Masters thesis. National Dong Hwa University, Taiwan.
Coma R., Gili J.M., Zabala M. and Riera T. 1994. Feeding and prey capture cycles in the aposymbiotic gorgonian Paramuricea clavata. Mar. Ecol. Prog. Ser. 115: 257-270. http://dx.doi.org/10.3354/meps115257
Crossland C.J. 1987. In situ release of mucus and DOC-lipid from the coral Acropora variabilis and Stylophora pistillata. Coral reefs 6: 35-42. http://dx.doi.org/10.1007/BF00302210
Fabricius K., Benayahu Y., Genin A. 1995. Herbivory in asymbiotic soft corals. Science 268: 90-92. http://dx.doi.org/10.1126/science.268.5207.90 PMid:17755234
Ferrier-Pagès C., Gattuso J.P. 1998. Biomass, production and grazing rates of pico and nanoplankton in coral reef waters (Miyako Island, Japan). Microb. Ecol. 35: 48-57.
Ferrier-Pagès C., Allemand D., Gattuso J.P., Jaubert J., Rassoulzadegan R. 1998. Microheterotrophy in the zooxanthellate coral Stylophora pistillata: effects of light and ciliate density. Limnol. Oceanogr. 43: 1639-1648. http://dx.doi.org/10.4319/lo.1998.43.7.1639
Ferrier-Pagès C., Leclercq N., Jaubert J., Pelegri S.P. 2000. Enhancement of pico- and nanoplankton growth by coral exudates. Aquat. Microb. Ecol. 21: 203-209. http://dx.doi.org/10.3354/ame021203
Ferrier-Pagès C., Witting J., Tambuttè E., Sebens K.P. 2003. Effect of natural zooplankton feeding on the tissue and skeletal growth of the scleractinian coral Stylophora pistillata. Coral Reefs 22: 229-240. http://dx.doi.org/10.1007/s00338-003-0312-7
Gast G.J., Wiegman S., Wieringa E., van Duyl F.C., Bak R.P.M. 1998. Bacteria in coral reef water types: removal of cells, stimulation of growth and mineralization. Mar. Ecol. Prog. Ser. 167: 37-45. http://dx.doi.org/10.3354/meps167037
Goldberg W.M. 2002. Feeding behavior, epidermal structure and mucus cytochemistry of the scleractinian Mycetophyllia reesi, a coral without tentacles. Tissue Cell 34: 246-261. http://dx.doi.org/10.1016/S0040-8166(02)00008-3
Gundersen K., Heldal M., Norland S., Purdie D.A., Knap A.H. 2002. Elemental C, N and P cell content of individual bacteria collected at the Bermuda Atlantic Time-series Study (BATS) site. Limnol. Oceanogr. 47: 1525-1530. http://dx.doi.org/10.4319/lo.2002.47.5.1525
Heldal M., Scanlan D.J., Norland S., Thingstad F., Mann N.H. 2003. Elemental composition of single cells of various strains of marine Prochlorococcus and Synechococcus using X-ray microanalysis. Limnol. Oceanogr. 48: 1732-1743. http://dx.doi.org/10.4319/lo.2003.48.5.1732
Hernández-León S., Fraga C., Ikeda T. 2008. A global estimation of mesozooplankton ammonium excretion in the open ocean. J. Plankton Res. 30: 577-585. http://dx.doi.org/10.1093/plankt/fbn021
Houlbrèque F., Tambutté E., Richard C., Ferrier-Pagès C. 2004a. Importance of the micro-diet for scleractinian corals. Mar. Ecol. Prog. Ser. 282: 151-160. http://dx.doi.org/10.3354/meps282151
Houlbrèque F., Tambutté E., Allemand D., Ferrier-Pagès C. 2004b. Interactions between zooplankton feeding, photosynthesis and skeletal growth in the scleractinian coral Stylophora pistillata. J. Exp. Mar. Biol. Ecol. 207: 1461-1469.
Houlbrèque F., Delesalle B., Blanchot J., Montel Y., Ferrier-Pagès C. 2006. Picoplankton removal by the coral reef community of La Prévoyante, Mayotte Island. Aquat. Microb. Ecol. 44: 59-70.
Houlbrèque F., Ferrier-Pagès C. 2009. Heterotrophy in tropical scleractinian corals. Biol. Rev. Camb. Philos. Soc. 84: 1-17. http://dx.doi.org/10.1111/j.1469-185X.2008.00058.x PMid:19046402
Kach D.J., Ward J.E. 2008. The role of marine aggregates in the ingestion of picoplankton-size particles by suspension-feeding mollusks. Mar. Biol. 153: 797-805. http://dx.doi.org/10.1007/s00227-007-0852-4
Klumpp D.W., Bayne B.L., Hawkins A.J.S. 1992. Nutrition of the giant clam Tridacna gigas. 1. Contribution of filter feeding and photosynthates to respiration and growth. J. Exp. Mar. Biol. Ecol. 155: 105-122. http://dx.doi.org/10.1016/0022-0981(92)90030-E
Li W.K.W, Subba Rao D.V., Harrison W.G., Smith J.C., Cullen J.J., Irwin B., Platt T. 1983. Autotrophic picoplankton in the tropical ocean. Science 219: 292-295. http://dx.doi.org/10.1126/science.219.4582.292 PMid:17798278
Marañón E., Holligan P.M., Barciela R.M., Gonzalez N., Mourino B., Pazo M.J., Varela M. 2001. Patterns of phytoplankton size structure and productivity in contrasting open-ocean environments. Mar. Ecol. Prog. Ser. 216: 43-56. http://dx.doi.org/10.3354/meps216043
Moriarty D.J.W. 1979. Biomass of suspended bacteria over coral reefs. Mar. Biol. 92: 457-464.
Moriarty D.J.W., Pollard P.C., Hunt W.G. 1985. Temporal and spatial variation in bacterial production in the water column over a coral reef. Mar. Biol. 85: 285-292. http://dx.doi.org/10.1007/BF00393249
Muscatine L., Porter J.W., Kaplan I.R. 1989. Resource partitioning by reef corals as determined from stable isotope composition. Mar. Biol. 100: 185-193. http://dx.doi.org/10.1007/BF00391957
Naumann M.S., Richter C., el-Zibdah M., Wild C. 2009. Coral mucus as an efficient trap for picoplanktonic cyanobacteria: implications for pelagic–benthic coupling in the reef ecosystem. Mar. Ecol. Prog. Ser. 385: 65-76. http://dx.doi.org/10.3354/meps08073
Palardy J.E., Grottoli A.G., Matthews K.A. 2005. Effects of upwelling, depth, morphology and polyp size on feeding in three species of Panamanian corals. Mar. Ecol. Prog. Ser. 300: 79-89. http://dx.doi.org/10.3354/meps300079
Picciano M., Ferrier-Pagès C. 2007. Ingestion of pico- and nanoplankton by the Mediterranean red coral Corallium rubrum. Mar. Biol. 150: 773-782. http://dx.doi.org/10.1007/s00227-006-0415-0
Porter J.W. 1976. Autotrophy, heterotrophy, and resource partitioning in Caribbean reef-building corals. Am. Nat. 110: 731-742. http://dx.doi.org/10.1086/283100
Ribes M., Coma R., Gili J.M. 1999. Heterogeneous feeding in benthic suspension feeders: the natural diet and grazing rate of the temperate gorgonian Paramuricea clavata (Cnidaria: Octocorallia) over a year cycle. Mar. Ecol. Prog. Ser. 183: 125-137. http://dx.doi.org/10.3354/meps183125
Ribes M., Coma R., Atkinson M.J., Kinzie R.A. 2003. Particle removal by coral reef communities: picoplankton is a major source of nitrogen. Mar. Ecol. Prog. Ser. 257: 13-23. http://dx.doi.org/10.3354/meps257013
Ribes M., Coma R., Atkinson M.J., Kinzie R.A. 2005. Sponges and ascidians control removal of particulate organic nitrogen from coral reef water. Limnol. Oceanogr. 50: 1480-1489. http://dx.doi.org/10.4319/lo.2005.50.5.1480
Richter C., Wunsch M., Rasheed M., Kötter I., Badran M.I. 2001. Endoscopic exploration of Red Sea coral reefs reveals dense populations of cavity-dwelling sponges. Nature 413: 726-730. http://dx.doi.org/10.1038/35099547 PMid:11607030
Sebens, K.P. 1987. Coelenterata. In: F.J. Vernberg and T.J. Pandian (eds.), Animal energetics Vol. 1, pp. 55-120. Academic Press, New York.
Sebens K.P., Vandersall K.S., Savina L.A., Graham K.R. 1996. Zooplankton capture by two scleractinian corals, Madracis mirabilis and Montastraea cavernosa, in a field enclosure. Mar. Biol. 127: 303-317. http://dx.doi.org/10.1007/BF00942116
Sorokin Y.I. 1973. Trophical role of bacteria in the ecosystems of the coral reef. Nature 242: 415-417. http://dx.doi.org/10.1038/242415a0
SPSS. 1997. SigmaStat statistical software. SPSS Marketing Department, Chicago, IL.
Stimson J., Kinzie R.A. 1991. The temporal pattern and rate of release of zooxanthellae from the reef coral Pocillopora damicornis (Linnaeus) under nitrogen-enrichment and control conditions. J. Exp. Mar. Biol. Ecol. 153: 63-74. http://dx.doi.org/10.1016/S0022-0981(05)80006-1
Tremblay J.E., Legendre L. 1994. A model for the size-fractioned biomass and production of marine phytoplankton. Limnol. Oceanogr. 39: 2004-2014. http://dx.doi.org/10.4319/lo.1994.39.8.2004
Verity P.G., Robertson C.Y., Tronzo C.R., Andrews M.G., Nelson J.R., Sieracki M.E. 1992. Relationship between cell volume and the carbon and nitrogen content of marine photosynthetic nanoplankton. Limnol. Oceanogr. 37: 1434-1446. http://dx.doi.org/10.4319/lo.1992.37.7.1434
Vaulot D., Courties C., Partensky F. 1989. A simple method to preserve oceanic phytoplankton for flow cytometric analyses. Cytometry 10: 629-635. http://dx.doi.org/10.1002/cyto.990100519 PMid:2505987
Wang Y.P. 2009. Interactions between picoeukaryote and scleractinian corals. Masters thesis. National Dong Hwa University, Taiwan.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2012 Consejo Superior de Investigaciones Científicas (CSIC)

This work is licensed under a Creative Commons Attribution 4.0 International License.
© CSIC. Manuscripts published in both the print and online versions of this journal are the property of the Consejo Superior de Investigaciones Científicas, and quoting this source is a requirement for any partial or full reproduction.
All contents of this electronic edition, except where otherwise noted, are distributed under a Creative Commons Attribution 4.0 International (CC BY 4.0) licence. You may read here the basic information and the legal text of the licence. The indication of the CC BY 4.0 licence must be expressly stated in this way when necessary.
Self-archiving in repositories, personal webpages or similar, of any version other than the final version of the work produced by the publisher, is not allowed.