The effect of coral polyp sizes and coral exudates on picoeukaryote dynamics in a controlled environment

Authors

  • Ying-Pin Wang Institute of Marine Biodiversity and Evolutionary Biology, National Dong Hwa University
  • Kwee Siong Tew Institute of Marine Biodiversity and Evolutionary Biology, National Dong Hwa University - National Museum of Marine Biology and Aquarium
  • Jimmy Kuo National Museum of Marine Biology and Aquarium - Institute of Marine Biotechnology, National Dong Hwa University
  • Fung-Chi Ko Institute of Marine Biodiversity and Evolutionary Biology, National Dong Hwa University - National Museum of Marine Biology and Aquarium
  • Pei-Jie Meng Institute of Marine Biodiversity and Evolutionary Biology, National Dong Hwa University - National Museum of Marine Biology and Aquarium

DOI:

https://doi.org/10.3989/scimar.03405.02A

Keywords:

scleractinian corals, Stylophora pistillata, Montipora stellata, picoeukaryotes, grazing, coral exudates

Abstract


We examined the ability of scleractinian corals with different polyp sizes to remove picoeukaryotes by predation and the effect of coral exudates on picoeukaryote growth. Experiments were conducted by adding picoeukaryotes to Stylophora pistillata (SP) and Montipora stellata (MS). Within six hours the picoeukaryote concentration in the SP and MS tanks was significantly lower than the control without corals. SP showed higher overall activity than MS, and the particle removal activity of MS decreased in light conditions. Picoeukaryotes exposed to SP exudates grew significantly denser than those exposed to MS exudates or those in water without coral exudates. Dissolved organic carbon concentrations in the SP tanks were also significantly higher. We concluded that the picoeukaryote removal rates were higher in S. pistillata than in M. stellata, and coral exudates can reciprocally enhance picoeukaryote growth.

Downloads

Download data is not yet available.

References

Ayukai T. 1995. Retention of phytoplankton and planktonic microbes on coral reef within the Great Barrier Reef, Australia. Coral Reefs 14: 141-147. http://dx.doi.org/10.1007/BF00367231

Biggs D.C. 1977. Respiration and ammonium excretion by open ocean gelatinous zooplankton. Limnol. Oceanogr. 22: 108-117. http://dx.doi.org/10.4319/lo.1977.22.1.0108

Blanchot J., Rodier M. 1996. Picophytoplankton abundance and biomass in the eastern tropical Pacific Ocean during the 1992 El Niño year: results from flow cytometry. Deep-Sea Res. 6: 877-895.

Brown B.E., Bythell J.C. 2005. Perspectives on mucus secretion on coral reef. Mar. Ecol. Prog. Ser. 296: 291-309. http://dx.doi.org/10.3354/meps296291

Chang-Chou Y.Y. 2010. The effects of upwelling on picoplankton, phytoplankton and nutrients in Nanwan Bay. Masters thesis. National Dong Hwa University, Taiwan.

Coma R., Gili J.M., Zabala M. and Riera T. 1994. Feeding and prey capture cycles in the aposymbiotic gorgonian Paramuricea clavata. Mar. Ecol. Prog. Ser. 115: 257-270. http://dx.doi.org/10.3354/meps115257

Crossland C.J. 1987. In situ release of mucus and DOC-lipid from the coral Acropora variabilis and Stylophora pistillata. Coral reefs 6: 35-42. http://dx.doi.org/10.1007/BF00302210

Fabricius K., Benayahu Y., Genin A. 1995. Herbivory in asymbiotic soft corals. Science 268: 90-92. http://dx.doi.org/10.1126/science.268.5207.90 PMid:17755234

Ferrier-Pagès C., Gattuso J.P. 1998. Biomass, production and grazing rates of pico and nanoplankton in coral reef waters (Miyako Island, Japan). Microb. Ecol. 35: 48-57.

Ferrier-Pagès C., Allemand D., Gattuso J.P., Jaubert J., Rassoulzadegan R. 1998. Microheterotrophy in the zooxanthellate coral Stylophora pistillata: effects of light and ciliate density. Limnol. Oceanogr. 43: 1639-1648. http://dx.doi.org/10.4319/lo.1998.43.7.1639

Ferrier-Pagès C., Leclercq N., Jaubert J., Pelegri S.P. 2000. Enhancement of pico- and nanoplankton growth by coral exudates. Aquat. Microb. Ecol. 21: 203-209. http://dx.doi.org/10.3354/ame021203

Ferrier-Pagès C., Witting J., Tambuttè E., Sebens K.P. 2003. Effect of natural zooplankton feeding on the tissue and skeletal growth of the scleractinian coral Stylophora pistillata. Coral Reefs 22: 229-240. http://dx.doi.org/10.1007/s00338-003-0312-7

Gast G.J., Wiegman S., Wieringa E., van Duyl F.C., Bak R.P.M. 1998. Bacteria in coral reef water types: removal of cells, stimulation of growth and mineralization. Mar. Ecol. Prog. Ser. 167: 37-45. http://dx.doi.org/10.3354/meps167037

Goldberg W.M. 2002. Feeding behavior, epidermal structure and mucus cytochemistry of the scleractinian Mycetophyllia reesi, a coral without tentacles. Tissue Cell 34: 246-261. http://dx.doi.org/10.1016/S0040-8166(02)00008-3

Gundersen K., Heldal M., Norland S., Purdie D.A., Knap A.H. 2002. Elemental C, N and P cell content of individual bacteria collected at the Bermuda Atlantic Time-series Study (BATS) site. Limnol. Oceanogr. 47: 1525-1530. http://dx.doi.org/10.4319/lo.2002.47.5.1525

Heldal M., Scanlan D.J., Norland S., Thingstad F., Mann N.H. 2003. Elemental composition of single cells of various strains of marine Prochlorococcus and Synechococcus using X-ray microanalysis. Limnol. Oceanogr. 48: 1732-1743. http://dx.doi.org/10.4319/lo.2003.48.5.1732

Hernández-León S., Fraga C., Ikeda T. 2008. A global estimation of mesozooplankton ammonium excretion in the open ocean. J. Plankton Res. 30: 577-585. http://dx.doi.org/10.1093/plankt/fbn021

Houlbrèque F., Tambutté E., Richard C., Ferrier-Pagès C. 2004a. Importance of the micro-diet for scleractinian corals. Mar. Ecol. Prog. Ser. 282: 151-160. http://dx.doi.org/10.3354/meps282151

Houlbrèque F., Tambutté E., Allemand D., Ferrier-Pagès C. 2004b. Interactions between zooplankton feeding, photosynthesis and skeletal growth in the scleractinian coral Stylophora pistillata. J. Exp. Mar. Biol. Ecol. 207: 1461-1469.

Houlbrèque F., Delesalle B., Blanchot J., Montel Y., Ferrier-Pagès C. 2006. Picoplankton removal by the coral reef community of La Prévoyante, Mayotte Island. Aquat. Microb. Ecol. 44: 59-70.

Houlbrèque F., Ferrier-Pagès C. 2009. Heterotrophy in tropical scleractinian corals. Biol. Rev. Camb. Philos. Soc. 84: 1-17. http://dx.doi.org/10.1111/j.1469-185X.2008.00058.x PMid:19046402

Kach D.J., Ward J.E. 2008. The role of marine aggregates in the ingestion of picoplankton-size particles by suspension-feeding mollusks. Mar. Biol. 153: 797-805. http://dx.doi.org/10.1007/s00227-007-0852-4

Klumpp D.W., Bayne B.L., Hawkins A.J.S. 1992. Nutrition of the giant clam Tridacna gigas. 1. Contribution of filter feeding and photosynthates to respiration and growth. J. Exp. Mar. Biol. Ecol. 155: 105-122. http://dx.doi.org/10.1016/0022-0981(92)90030-E

Li W.K.W, Subba Rao D.V., Harrison W.G., Smith J.C., Cullen J.J., Irwin B., Platt T. 1983. Autotrophic picoplankton in the tropical ocean. Science 219: 292-295. http://dx.doi.org/10.1126/science.219.4582.292 PMid:17798278

Marañón E., Holligan P.M., Barciela R.M., Gonzalez N., Mourino B., Pazo M.J., Varela M. 2001. Patterns of phytoplankton size structure and productivity in contrasting open-ocean environments. Mar. Ecol. Prog. Ser. 216: 43-56. http://dx.doi.org/10.3354/meps216043

Moriarty D.J.W. 1979. Biomass of suspended bacteria over coral reefs. Mar. Biol. 92: 457-464.

Moriarty D.J.W., Pollard P.C., Hunt W.G. 1985. Temporal and spatial variation in bacterial production in the water column over a coral reef. Mar. Biol. 85: 285-292. http://dx.doi.org/10.1007/BF00393249

Muscatine L., Porter J.W., Kaplan I.R. 1989. Resource partitioning by reef corals as determined from stable isotope composition. Mar. Biol. 100: 185-193. http://dx.doi.org/10.1007/BF00391957

Naumann M.S., Richter C., el-Zibdah M., Wild C. 2009. Coral mucus as an efficient trap for picoplanktonic cyanobacteria: implications for pelagic–benthic coupling in the reef ecosystem. Mar. Ecol. Prog. Ser. 385: 65-76. http://dx.doi.org/10.3354/meps08073

Palardy J.E., Grottoli A.G., Matthews K.A. 2005. Effects of upwelling, depth, morphology and polyp size on feeding in three species of Panamanian corals. Mar. Ecol. Prog. Ser. 300: 79-89. http://dx.doi.org/10.3354/meps300079

Picciano M., Ferrier-Pagès C. 2007. Ingestion of pico- and nanoplankton by the Mediterranean red coral Corallium rubrum. Mar. Biol. 150: 773-782. http://dx.doi.org/10.1007/s00227-006-0415-0

Porter J.W. 1976. Autotrophy, heterotrophy, and resource partitioning in Caribbean reef-building corals. Am. Nat. 110: 731-742. http://dx.doi.org/10.1086/283100

Ribes M., Coma R., Gili J.M. 1999. Heterogeneous feeding in benthic suspension feeders: the natural diet and grazing rate of the temperate gorgonian Paramuricea clavata (Cnidaria: Octocorallia) over a year cycle. Mar. Ecol. Prog. Ser. 183: 125-137. http://dx.doi.org/10.3354/meps183125

Ribes M., Coma R., Atkinson M.J., Kinzie R.A. 2003. Particle removal by coral reef communities: picoplankton is a major source of nitrogen. Mar. Ecol. Prog. Ser. 257: 13-23. http://dx.doi.org/10.3354/meps257013

Ribes M., Coma R., Atkinson M.J., Kinzie R.A. 2005. Sponges and ascidians control removal of particulate organic nitrogen from coral reef water. Limnol. Oceanogr. 50: 1480-1489. http://dx.doi.org/10.4319/lo.2005.50.5.1480

Richter C., Wunsch M., Rasheed M., Kötter I., Badran M.I. 2001. Endoscopic exploration of Red Sea coral reefs reveals dense populations of cavity-dwelling sponges. Nature 413: 726-730. http://dx.doi.org/10.1038/35099547 PMid:11607030

Sebens, K.P. 1987. Coelenterata. In: F.J. Vernberg and T.J. Pandian (eds.), Animal energetics Vol. 1, pp. 55-120. Academic Press, New York.

Sebens K.P., Vandersall K.S., Savina L.A., Graham K.R. 1996. Zooplankton capture by two scleractinian corals, Madracis mirabilis and Montastraea cavernosa, in a field enclosure. Mar. Biol. 127: 303-317. http://dx.doi.org/10.1007/BF00942116

Sorokin Y.I. 1973. Trophical role of bacteria in the ecosystems of the coral reef. Nature 242: 415-417. http://dx.doi.org/10.1038/242415a0

SPSS. 1997. SigmaStat statistical software. SPSS Marketing Department, Chicago, IL.

Stimson J., Kinzie R.A. 1991. The temporal pattern and rate of release of zooxanthellae from the reef coral Pocillopora damicornis (Linnaeus) under nitrogen-enrichment and control conditions. J. Exp. Mar. Biol. Ecol. 153: 63-74. http://dx.doi.org/10.1016/S0022-0981(05)80006-1

Tremblay J.E., Legendre L. 1994. A model for the size-fractioned biomass and production of marine phytoplankton. Limnol. Oceanogr. 39: 2004-2014. http://dx.doi.org/10.4319/lo.1994.39.8.2004

Verity P.G., Robertson C.Y., Tronzo C.R., Andrews M.G., Nelson J.R., Sieracki M.E. 1992. Relationship between cell volume and the carbon and nitrogen content of marine photosynthetic nanoplankton. Limnol. Oceanogr. 37: 1434-1446. http://dx.doi.org/10.4319/lo.1992.37.7.1434

Vaulot D., Courties C., Partensky F. 1989. A simple method to preserve oceanic phytoplankton for flow cytometric analyses. Cytometry 10: 629-635. http://dx.doi.org/10.1002/cyto.990100519 PMid:2505987

Wang Y.P. 2009. Interactions between picoeukaryote and scleractinian corals. Masters thesis. National Dong Hwa University, Taiwan.

Downloads

Published

2012-09-30

How to Cite

1.
Wang Y-P, Siong Tew K, Kuo J, Ko F-C, Meng P-J. The effect of coral polyp sizes and coral exudates on picoeukaryote dynamics in a controlled environment. Sci. mar. [Internet]. 2012Sep.30 [cited 2024Mar.29];76(3):455-61. Available from: https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1360

Issue

Section

Articles