A field experiment on the reproductive success of the invasive clam Mya arenaria (Bivalvia) in the Tagus estuary: coexistence with the native clam Scrobicularia plana
DOI:
https://doi.org/10.3989/scimar.2011.75n2301Keywords:
Mya arenaria, reproductive success, intertidal distribution, Scrobicularia plana, Tagus estuaryAbstract
A three month field experiment with tidal level (upper, middle, lower) and treatment (excavated and not excavated plots) as categorical experimental factors showed that the invasive clam Mya arenaria has reached a more advanced stage in the invasion process in the Tagus estuary. As we observed the smallest recruited juveniles of Mya arenaria (2 mm) throughout the study period, we concluded that the clam is capable of reproducing in the new habitat. Juveniles of both Mya arenaria and the bivalve Scrobicularia plana were found to avoid excavated experimental plots, showing a significantly higher abundance in the control plots. These data, strongly suggest that the recruited bivalves actively avoid unsuitable substrata. Juvenile specimens of Mya arenaria were more abundant in the mid-intertidal zone. However, juvenile specimens of Scrobicularia plana were mainly distributed in the upper intertidal level, which suggests that they have a different settlement behaviour from that observed for the juveniles of the invasive clam. Despite the divergent distribution between the juveniles of the two species in the study site, the possible interaction between these two species is considered and discussed.
Downloads
References
Armonies, W. – 1996. Changes in distribution patterns of 0-group bivalves in the Wadden Sea: byssus-drifting releases juveniles from the constraints of hydrography. J. Sea Res., 35: 323-334. doi:10.1016/S1385-1101(96)90759-5
Bocher, P., T. Piersma, A. Dekinga, C. Kraan, M.G. Yates, T. Guyot, E.O. Folmer and G. Radenac. – 2007. Site and species-specific distribution patterns of molluscs at five intertidal soft-sediment areas in northwest Europe during a single winter. Mar. Biol., 151: 577-594. doi:10.1007/s00227-006-0500-4
Calvário, J. – 2001. Characterization of the Tagus estuary macrobenthic communities. Bol. Mus. Mun. Funchal, 6: 313-330.
Colautti, R.I., I.A. Grigorovich and H.J. MacIsaac. – 2006. Propagule pressure: a null model for biological invasions. Biol. Invasions, 8: 1023-1037. doi:10.1007/s10530-005-3735-y
Colautti, R.I. and H.J. MacIsaac. – 2004. A neutral terminology to define ‘invasive’ species. Diversity Distrib., 10: 135-141. doi:10.1111/j.1366-9516.2004.00061.x
Conde, A., J. Novais and J. Domínguez. – 2010. Southern limit of distribution of the soft-shell clam Mya arenaria on the Atlantic East Coast. Biol. Invasions, 12: 429-432. doi:10.1007/s10530-009-9460-1
Crawley, M.J. – 2007. The R book. Wiley.
Dias, M.P., F. Peste, J.P. Granadeiro and J.M. Palmeirim. – 2008. Does traditional shellfishing affect foraging by waders? The case of the Tagus estuary (Portugal). Acta Oecol., 33: 188-196. doi:10.1016/j.actao.2007.10.005
Emerson, C.W. and J. Grant. – 1991. The control of soft-shell clam Mya arenaria recruitment on intertidal sandflats by bedload sediment transport. Limnol. Oceanogr., 36: 1288-1300. doi:10.4319/lo.1991.36.7.1288
França, S., C. Vinagre, M.A. Pardal and H.N. Cabral. – 2009. Spatial and temporal patterns of benthic invertebrates in the Tagus estuary, Portugal: comparison between subtidal and an intertidal mudflat. Sci. Mar., 73: 307-318. doi:10.3989/scimar.2009.73n2307
Glockzin, M. and M.L. Zettler. – 2008. Spatial macrozoobenthic distribution patterns in relation to major environmental factors - a case study from the Pomeranian Bay (southern Baltic Sea). J. Sea Res., 59: 144-161. doi:10.1016/j.seares.2008.01.002
Gomoiu, M.T. and A. Petran. – 1973. Dynamics of the settlement of the bivalve Mya arenaria L. on the Romanian Shore of the Black Sea. Cercetari Mar., 5-6: 263-289.
Gomoiu, M.T. – 1981. Distribution of Mya arenaria populations in the western part of the Black Sea. Cercetari Mar., 14: 145-158.
Günther, C.P. – 1992. Settlement and recruitment of Mya arenaria L. in the Wadden Sea. J. Exp. Mar. Biol. Ecol., 159: 203-215. doi:10.1016/0022-0981(92)90037-B
Hiddink, J.G. – 2003. Modelling the adaptive value of intertidal migration and nursery use in the bivalve Macoma balthica. Mar. Ecol. Prog. Ser., 252: 173-185. doi:10.3354/meps252173
Hunt, H.L. and L.S. Mullineaux. – 2002. The roles of predation and postlarval transport in recruitment of the soft shell clam Mya arenaria. Limnol. Oceanogr., 47: 151-164. doi:10.4319/lo.2002.47.1.0151
Huxham, M. and M. Richards. – 2003. Can postlarval bivalves select sediment type during settlement? A field test with Macoma balthica (L.) and Cerastoderma edule (L.). J. Exp. Mar. Biol. Ecol., 288: 279-293. doi:10.1016/S0022-0981(03)00023-6
Jennings, L.B. and H.L. Hunt. – 2009. Distances of dispersal of juvenile bivalves (Mya arenaria (Linnaeus), Mercenaria mercenaria (Linnaeus), Gemma gemma (Totten)). J. Exp. Mar. Biol. Ecol., 376: 76-84. doi:10.1016/j.jembe.2009.06.009
Lockwood, J.L., P. Cassey and T. Blackburn. – 2005. The role of propagule pressure in explaining species invasions. Trends Ecol. Evol., 20: 223-228. doi:10.1016/j.tree.2005.02.004
Maximovich, N.V. and A.V. Guerassimova. – 2003. Life-history characteristics of the clam Mya arenaria in the White Sea. Helgol. Mar. Res., 57: 91-99. doi:10.1007/s10152-003-0137-3
McCullagh, P. and J.A. Nelder. – 1989. Generalised Linear Models. Chapman and Hall.
Möller, P. – 1986. Physical and biological interactions regulating infauna in shallow boreal areas. Mar. Ecol. Prog. Ser., 30: 33-47. doi:10.3354/meps030033
Petersen, K.S., K.L. Rasmussen, J. Heinemeier and N. Rud. – 1992. Clams before Columbus? Nature, 359: 679. doi:10.1038/359679a0
Pfitzenmeyer, H.T. – 1962. Periods of spawning and setting of the soft-shelled clam, Mya arenaria, at Solomons, Maryland. Chesap. Sci., 3: 114-120. doi:10.2307/1351223
R Development Core Team. – 2007. R: a language and environment for statistical computing. R Foundation for Statistical Computing.
Reise, K., S. Gollasch and W.J. Wolff. – 1999. Introduced marine species of the North Sea coasts. Helgol. Meeresunters., 52: 219-234. doi:10.1007/BF02908898
Rodrigues, A.M., S. Meireles, T. Pereira, A. Gama and V. Quintino.– 2006. Spatial Patterns of Benthic Macroinvertebrates in Intertidal Areas of a Southern European Estuary: The Tagus, Portugal. Hydrobiologia, 555: 99-113. doi:10.1007/s10750-005-1109-1
Roseberry, L., B. Vincent and C. Lemaire. – 1991. Croissance et reproduction de Mya arenaria dans la zone intertidale de l’estuaire du Saint-Laurent. Can. J. Zool., 69: 724-732. doi:10.1139/z91-104
Silva, G., J.L. Costa, P. Raposo de Almeida and M.J. Costa. – 2006. Structure and dynamics of a benthic invertebrate community in an intertidal area of the Tagus estuary, Western Portugal: a six year data series. Hydrobiologia, 555: 115-128. doi:10.1007/s10750-005-1110-8
Sola, J.C. – 1997. Reproduction, population dynamics, growth and production of Scrobicularia plana da Costa (Pelecypoda) in the Bidasoa estuary, Spain. Neth. J. Aquatic Ecol., 30: 283-289. doi:10.1007/BF02085872
Strasser, M., M. Walensky and K. Reise. – 1999. Juvenile-adult distribution of the bivalve Mya arenaria on intertidal flats in the Wadden Sea: why are there so few year classes? Helgol. Mar. Res., 53: 45-55. doi:10.1007/PL00012137
Strasser, M. and C.P. Gu.nther. – 2001. Larval supply of predator and prey: temporal mismatch between crabs and bivalves after a severe winter in the Wadden Sea. J. Sea Res., 46: 57-67. doi:10.1016/S1385-1101(01)00063-6
van der Veer, H.W., R.J. Feller, A. Weber and J.I.J. Witte. – 1998. Importance of predation by crustaceans upon bivalve spat in the intertidal zone of the Dutch Wadden Sea as revealed by immunological assays of gut content. J. Exp. Mar. Biol. Ecol., 231: 139-157. doi:10.1016/S0022-0981(98)00090-2
Von Holle, B. and D. Simberloff. – 2005. Ecological resistance to biological invasion overwhelmed by propagule pressure. Ecology, 86: 3213-3218.
Ysebaert, T., P. Meire, J. Coosen and K. Essink. – 1998. Zonation of intertidal macrobenthos in the estuaries of Schelde and Ems. Aquat. Ecol., 32: 53-71. doi:10.1023/A:1009912103505
Zwarts, L. and J. Wanink. – 1989. Siphon size and burying depth in deposit- and suspension-feeding benthic bivalves. Mar. Biol., 100: 227-240. doi:10.1007/BF00391963
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2011 Consejo Superior de Investigaciones Científicas (CSIC)

This work is licensed under a Creative Commons Attribution 4.0 International License.
© CSIC. Manuscripts published in both the printed and online versions of this Journal are the property of Consejo Superior de Investigaciones Científicas, and quoting this source is a requirement for any partial or full reproduction.All contents of this electronic edition, except where otherwise noted, are distributed under a “Creative Commons Attribution 4.0 International” (CC BY 4.0) License. You may read here the basic information and the legal text of the license. The indication of the CC BY 4.0 License must be expressly stated in this way when necessary.
Self-archiving in repositories, personal webpages or similar, of any version other than the published by the Editor, is not allowed.