The dominance of cyanobacteria in Mediterranean hypereutrophic lagoons: a case study of Cabras Lagoon (Sardinia, Italy)


  • Silvia Pulina Department of Botanical, Ecological and Geological Sciences, University of Sassari
  • Bachisio Mario Padedda Department of Botanical, Ecological and Geological Sciences, University of Sassari
  • Nicola Sechi Department of Botanical, Ecological and Geological Sciences, University of Sassari
  • Antonella Lugliè Department of Botanical, Ecological and Geological Sciences, University of Sassari



cyanobacteria, phytoplankton, coastal lagoons, eutrophication, Sardinia, Mediterranean Sea


An intense proliferation of cyanobacteria in Cabras Lagoon was investigated over a period of two years (July 2007 to June 2009). The influence of environmental and meteorological parameters in the lagoon on temporal variations in cyanobacteria orders was assessed. For 17 months, Chroococcales was the only cyanobacterial order observed in the lagoon. Cyanobium-type cells (Reynolds functional group Z) were the most abundant phytoplankton taxon during this period. In the following months, drastic changes in the cyanobacteria assemblages occurred simultaneously with constant, intense rainfall that led to a sudden drop in the lagoon’s salinity. The succession of autumn–winter Oscillatoriales (Planktothrix sp. and Pseudanabaena catenata; Reynolds functional group S1) and late spring growth of Nostocales (Aphanizomenon gracile, Aphanizomenon aphanizomenoides, and Anabaenopsis circularis; Reynolds functional group H1) was monitored. Canonical Correspondence Analysis was carried out to quantify the influence of environmental variables, and indicated strong relationships between Chroococcales and salinity, Oscillatoriales and higher values of SRP and the DIN/SRP ratio, and Nostocales and lower nutrient concentrations, the DIN/SRP ratio and salinity.


Download data is not yet available.


Andreoli, C., N. Rascio, F. Dalla Vecchia and L. Talarico. – 1989. An ultrastructural research on natural populations of picoplankton from two brackish water environments in Italy. J. Plankton Res., 11: 1067-1074. doi:10.1093/plankt/11.5.1067

Bachelet, G., X. de Montaudouin, I. Auby and P.J. Labourg. – 2000. Seasonal changes in macrophyte and macrozoobenthos assemblages in three coastal lagoons under varying degrees of eutrophication. ICES J. Mar. Sci., 57: 1495-1506. doi:10.1006/jmsc.2000.0902

Carrick, H.J. and C.L. Schelske. – 1997. Have we overlooked the importance of small phytoplankton in productive waters? Limnol. Oceanogr., 42(7): 1613-1621. doi:10.4319/lo.1997.42.7.1613

Castel, J., P. Caumette and R. Herbert. – 1996. Eutrophication gradients in coastal lagoons as exemplified by the Bassin d’Arcachon and the Étang du Prèvost. Hydrobiology, 329: ix-xxviii. doi:10.1007/BF00034542

Chomérat, N., R. Garnier, C. Bertrand and A. Cazaubon. – 2007. Seasonal succession of cyanoprokaryotes in a hyperetrophic oligo-mesohaline lagoon from the South of France. Estuar. Coast. Shelf Sci., 72: 591-602. doi:10.1016/j.ecss.2006.11.008

Crosbie, N.D., M. Pöckl and T. Weisse. – 2003. Dispersal and Phylogenetic Diversity of Nonmarine Picocyanobacteria, inferred from 16S rRNA Gene and cpcBA-Intergenic Spacer Sequence Analyses. Appl. Environ. Microbiol., 69: 5716-5721. doi:10.1128/AEM.69.9.5716-5721.2003 PMid:12957969    PMCid:194977

Del Negro, P., A. Paoli, M. Celussi, E. Crevatin, A. Valeri, C. Larato and S. Fonda Umani. – 2007. Picoplanktonic cyanobacteria in different Adriatic brackish environmrnts. Transit. Waters Bull., 3: 13-16.

Findenegg, I. – 1974. Expressions of populations. In: R.A. Vollenweider (ed.), A Manual on Methods for Measuring Primary Production in Aquatic Environments, pp. 16-48. Blackwell Scientific Publications, Oxford.

Gasiūnaitė, Z.R., A.C. Cardoso, A.S. Heiskanen, P. Henriksen, P. Kauppila, I. Olenina, R. Pilkaitytė, I. Purina, A. Razinkovas, S. Sagert, H. Schubert and N. Wasmund. – 2005. Seasonality of coastal phytoplankton in the Baltic Sea: influence of salinity and eutrophication. Estuar. Coast. Shelf Sci., 65: 239-252. doi:10.1016/j.ecss.2005.05.018

Glibert, P.M., C.E. Wazniak, M.R. Hall and B. Sturgis. – 2007. Seasonal and interannual trends in nitrogen and brown tide in Maryland’s coastal bays. Ecol. Appl., 17(5): S79-S87.

Hindák, F. – 2000. Morfological variation of four planktic nostocalean cyanophytes-memnbers of the genus Aphanizomenon or Anabaena? Hydrobiologia, 438: 107-116. doi:10.1023/A:1004118213936

Huszar, V.L.M., L.H.S. Silva, M. Marinho, P. Domingos and C.L. Sant’Anna. – 2000. Cyanoprokaryote assemblages in eight productive tropical Brazilian waters. Hydrobiologia, 424: 67-77. doi:10.1023/A:1003996710416

Kanoschina, I., U. Lips and J.M. Leppänen. – 2003. The influence of weather conditions (temperature and wind) on cyanobacterial bloom development in the Gulf of Finland (Baltic Sea). Harmful Algae, 2: 29-41. doi:10.1016/S1568-9883(02)00085-9

Komárek, J. – 2005. Phenotype diversity of the heterocytous cyanoprokaryotic genus Anabaenopsis. Czech Phycol., Olomouc, 5: 1-35.

Komárek, J. and K. Anagnostidis. – 1998. Cyanoprokariota, 1 teil: Chroococcales. In: H. Ettl, G. Gärtner, H. Heynig and D. Mollenhauer (eds.), Sübwasserflora von Mitteleuropa, pp. 548. Band 19/1. Gustav Fisher, Berlin.

Komárek, J. and K. Anagnostidis. – 2005. Cyanoprokariota, 2 teil: Oscillatoriales. In: B. Bu.del, L. Krienitz, G. Gärtner and M. Schagerl (eds.), Sübwasserflora von Mitteleuropa, pp. 759. Band 19/2. Elsevier, Munich.

Komárek, J. and J. Komárková-Legnerová. – 2002. Contribution to the knowledge of planktic cyanoprokaryotes from central Mexico. Preslia, 74: 207-233.

Komárek, J. and L. Kováčik. – 1989. Trichome structure of four Aphanizomenon taxa (Cyanophyceae) from Czechoslovakia, with notes on the taxonomy and delimitation of the genus. Plant Syst. Evol., 164: 47-64. doi:10.1007/BF00940429

Morán, X.A.G. – 2007. Annual cycle of picophytoplankton photosynthesis and growth rates in a temperate coastal ecosystem: a mayor contribution to carbon fluxes. Aquat. Micro. Ecol., 49: 267-279. doi:10.3354/ame01151

Padedda, B.M., A. Lugliè, G. Ceccherelli, F. Trebini and N. Sechi. – 2010. Nutrient-flux evaluation by the LOICZ Biogeochemical Model in Mediterranean lagoons: the case of Cabras Lagoon (Central-Western Sardinia). Chem. Ecol., 26(2): 147-162. doi:10.1080/02757541003627670

Padisák, J., L.O. Crossetti and L. Naselli-Flores. – 2009. Use and misuse in the application of the phytoplankton functional classification: a critical review with updates. Hydrobiologia, 621: 1-19. doi:10.1007/s10750-008-9645-0

Paoli, A., M. Celussi, A.Valeri, C. Larato, A. Bussani, S.F. Umani, M.R. Vadrucci, C. Mazziotti and P. Del Negro. – 2007. Picocyanobacteria in Adriatic transitional environments. Estuar. Coast. Shelf Sci., 75: 13-20. doi:10.1016/j.ecss.2007.02.026

Pérez, M.C. and A. Carrillo. – 2005. Picocyanobacteria distribution in the Ebro Estuary (Spain). Acta Bot. Croat., 64(2): 237-246.

Reynolds, C.S., V. Huszar, C. Kruk, L. Naselli-Flores and S. Melo. – 2002. Towards a functional classification of the freshwater phytoplankton. J. Plankton Res., 24(5): 417-428. doi:10.1093/plankt/24.5.417

Romo, S. and M.R. Miracle. – 1993. Long term periodicity of Planktothrix agardhii, Pseudanabaena galeata and Geitlerinema sp. in a shallow hypertrophic lagoon, the Albufera of Valencia (Spain). Arch. Hydrobiol., 126: 469-486.

Scheffer, M., S. Rinaldi, A. Gragnani, L.R. Mur and E.H. van Nes. – 1997. On the dominance of filamentous cyanobacteria in shallow, turbid lakes. Ecology, 78(1): 272-282. doi:10.1890/0012-9658(1997)078[0272:OTDOFC]2.0.CO;2

Scheffer, M., S. Carpenter, J.A. Foley, C. Folke and B. Walker. – 2001. Catastrophic shifts in ecosystems. Nature, 413: 591-596. doi:10.1038/35098000 PMid:11595939

SCOR-UNESCO. – 1966. Determination of photosynthetic pigments in sea water. UNESCO Monographs on Oceanographic Methodology. UNESCO, Paris.

Sechi, N. – 1982. Lo stato trofico di alcuni stagni salmastri costieri della Sardegna. Boll. Soc. Sarda Sci. Nat., 21: 285-295.

Sechi, N., B.M. Padedda and A. Lugliè. – 2006. Gestione ecologica e territoriale di ambienti di transizione: lo Stagno di Cabras. In: G. Maciocco and P. Pittaluga (eds.), Il progetto ambientale in aree di bordo, pp. 206-237. Franco Angeli Editore, Milano.

Sorokin, YüI., P.Yu. Sorokin and A. Gnes. – 1996. Structure and functioning of antropogenically transformed Comacchio lagoon ecosystem (Ferrara, Italy). Mar. Ecol. Prog. Ser., 133: 57-71.

Stal, L.J. and J.P. Zehr. – 2008. Cyanobacterial Nitrogen Fixation in the Oceans: Diversity, Regulation and Ecology. In: A. Herrero and E. Flores (eds.), The Cyanobacteria: Molecular Biology, Genetics and Evolution, pp. 423-441. Caister Academic Press, Norfolk, UK.

Strickland, J.D.H. and T.R. Parsons. – 1972. A pratical handbook of seawater analysis. Bull. Fish. Res. Board Can., pp. 167.

Ter Braak, C.J.F. – 1986. Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology, 67: 1167-1179. doi:10.2307/1938672

Utermöhl, H. – 1931. Neue Wege in der quantitativen Erfassung des Planktons. Verh. Internat. Verein. Limnol., 5: 567-596.

Viaroli, P., P. Lasserre and P. Campostrini. – 2007. Lagoons and coastal wetlands. Hydrobiologia, 577: 1-3. doi:10.1007/s10750-006-0412-9




How to Cite

Pulina S, Padedda BM, Sechi N, Lugliè A. The dominance of cyanobacteria in Mediterranean hypereutrophic lagoons: a case study of Cabras Lagoon (Sardinia, Italy). scimar [Internet]. 2011Mar.30 [cited 2022Dec.10];75(1):111-20. Available from:




Most read articles by the same author(s)