Comparación del perfil de ácidos grasos en los lípidos neutrales y en los fosfolípidos de los músculos de la lamprea marina anádroma (Petromyzon marinus L.) (Agnatha) de la cuenca hidrográfica de tres ríos portugueses

Autores/as

  • Sara Pinela Center of Oceanography, Faculty of Sciences of the University of Lisbon
  • Bernardo Ruivo Quintella Center of Oceanography, Faculty of Sciences of the University of Lisbon
  • Pedro Raposo de Almeida Center of Oceanography, Faculty of Sciences of the University of Lisbon - Department of Biology, School of Sciences and Technology, University of Évora
  • Maria João Lança Department of Animal Sciences, School of Sciences and Technology, University of Évora - Institute of Mediterranean Agrarian Sciences, University of Évora

DOI:

https://doi.org/10.3989/scimar.2009.73n4785

Palabras clave:

Petromyzon marinus, ácidos grasos, migración reproductora, Miño, Tajo, Guadiana, Portugal

Resumen


Se ha analizado la composición del perfil de ácidos grasos de los lípidos neutrales (NL ) y fosfolípidos (PL) en el músculo de la lamprea marina que entra en los ríos Miño, Tajo y Guadiana durante su migración reproductora, no-trófica. El perfil de ácidos grasos presentaba diferencias en los porcentajes entre NL y PL y entre las distintas cuencas. Se encontraron semejanzas en el perfil de ácidos grasos de los NL . Los ácidos grasos monoinsaturados (MU FA) fueron los más representativos seguidos por los ácidos grasos saturados (SFA) y, finalmente, por los ácidos grasos poliinsaturados (PUFA). Los monoenoicos 16:1 y 18:1ω9 representaban un porcentaje considerable del total de ácidos grasos, seguidos por los SFA 14:0 y 16:0. EPA y DHA fueron los ácidos grasos PUFA dominantes. A nivel de NL , el ácido graso que permitió la discriminación entre las cuencas de los tres ríos fue el 18:1ω7. Los individuos de la cuenca del río Miño, en comparación con las lampreas de las cuencas de los ríos Tajo y Guadiana, presentaban un perfil de ácidos grasos distinto a nivel de los PL, que se caracterizaba por un bajo porcentaje de PUFA. La fracción PL del músculo mostró que los dos monoenoicos 16:1 y 18:1ω9 eran los que aparecían en mayor porcentaje, seguidos por los 16:0 y 14:0 (SFA). Entre los PUFA, los DHA fueron los más representativos. Los ácidos grasos que marcaban la separación entre las tres cuencas hidrográficas fueron los 16:0, 18:4ω3 y 24:1ω9. Aunque los resultados indican posibles diferencias en la composición de ácidos grasos de las fracciones NL y PL en el músculo de los individuos entre las tres cuencas hidrográficas, son necesarios posteriores estudios en tejidos en los que la composición de ácidos grasos sea menos sensible a factores ambientales y a la dieta, para confirmar esta hipótesis.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Ackman, R.G. – 1980. Fish lipids, Part I. In: J. J. Connell (ed.), Advances in Fish Science and Technology, pp. 86-103. Fishing News Books, Farnham Surrey, U.K.

Ackman, R.G. – 1982. Fatty acid composition of fish oils. In: S. M. Barlow and M. E. Stansby (eds.), Nutritional Evaluation of Long-Chain Fatty Acids in Fish Oil, pp. 25-88. Academic Press, London.

Ackman, R.G. – 2002. The gas chromatograph in practical analysis of common and uncommon fatty acids for the 21st century. Anal. Chim. Acta, 465: 175-192. doi:10.1016/S0003-2670(02)00098-3

Ackman, R.G., C.A. Eaton, E.G. Bligh and A.W. Lantz. – 1967. Freshwater fish oils: yields and composition of oils from reduction of sheepshead, tullibee, maria and alewife. J. Fish Res. Board Can., 24: 1219-1227.

Almeida, P.R. and B.R. Quintella. – 2002. Larval habitat of the sea lamprey (Petromyzon marinus L.) in the River Mondego (Portugal). In: M. J. Collares-Pereira, M. M. Coelho, and I. G. Cowx (eds.), Freshwater fish conservation: options for the future, pp. 121-130. Oxford, Blackwell Science, UK.

Almeida, P.R., H. Silva and B.R. Quintella. – 2000. The migratory behavior of the sea lamprey Petromyzon marinus L., observed by acoustic telemetry in the River Mondego (Portugal). In: A. Moore and I. Russell (eds.), Advances in Fish Telemetry, pp. 99-108. Lowestoft: CEFAS, Lowestoft Laboratory, UK.

Ballantyne, J.S., H.C. Glemet, M.E. Chamberlin and T.D. Stinger.– 1993. Plasma nonesterified fatty acids of marine teleosts and elasmobranch fishes. Mar. Biol., 116: 47-52. doi:10.1007/BF00350730

Ballantyne, J.S., F. Mercure, M.F. Gerrits, G. Van Der Kraak, S. McKinley, D.W. Martens, S.G. Hinch, and R.E. Diewert. – 1996. Plasma nonesterified fatty acid profiles in male and female sockeye salmon Oncorhynchus nerka, during the spawning migration. Can. J. Fish. Aquat. Sci, 53: 1418-1426. doi:10.1139/cjfas-53-6-1418

Beamish, F.W.H. – 1980. Biology of the North American anadromous sea lamprey. Can. J. Fish. Aquat. Sci., 37: 1924-1943. doi:10.1139/f80-233

Beamish, F.W.H., I.C. Potter and E. Thomas. – 1979. Proximate composition of the adult anadromous sea lamprey, Petromyzon marinus, in relation to feeding, migration and reproduction. J. Anim. Ecology, 48: 1-19. doi:10.2307/4096

Bernatchez, L. and J.J. Dodson. – 1987. Relationship between bioenergetics and behavior in anadromous fish migrations. Can. J. Fish. Aquat. Sci., 44: 399-407. doi:10.1139/f87-049

Bird, D.J. and I.C. Potter. – 1983. Changes in the fatty acid composition of triacylglycerols and phospholipids during the life cycle of the lamprey Geotria australis Gray. Comp. Biochem. Physiol., 75B: 31-41.

Bird, D.J., D.J. Ellis, and I.C. Potter. – 1993. Comparisons between the fatty acid composition of the muscle and ovary of the nonparasitic lamprey Lampetra planeri (Bloch) and their counterparts in the anadromous and parasitic Lampetra fluviatilis (L.). Comp. Biochem. Physiol., 105B: 327-332.

Buda, C., I. Dey, N. Balogh, I. Horvath, K. Maderspach, M. Juhasz, Y. K. Yeo, and T. Farkas. – 1994. Structural order of membranes and composition of phospholipids in fish brain cells during thermal acclimatization. Proc. Nat. Acad. Sci. U.S.A., Biochemistry, 91: 8234-8238.

Cejas, J.R., E. Almansa, S. Jérez, A. Bolaños, M. Samper, and A. Lorenzo. – 2004. Lipid and fatty acid composition of muscle and liver from wild and captive mature female broodstocks of white seabream, Diplodus sargus. Comp. Biochem. Physiol., 138B: 91-102.

Cordier, M., G. Brichon, J.M. Weber and G. Zwingelstein. – 2002. Changes in the fatty acid composition of phospholipids in tissues of farmed sea bass (Dicentrarchus labrax) during annual cycle. Roles of environmental temperature and salinity. Comp. Biochem. Physiol., 133B: 281-288.

Davidson, B. and G. Cliff. – 2002. The liver lipid fatty acid profiles of seven Indian Ocean shark species. Fish Physiol. Biochem., 26: 171-175. doi:10.1023/A:1025447718625

Dey, I., C. Buda, T. Wiik, J.E. Halver and T. Farkas. – 1993. Molecular and structural composition of phospholipids membranes in livers of marine and freshwater fish in relation to temperature. Proc. Nat. Acad. Sci. U. S. A., Biochemistry, 90: 7498-7502.

Dodson, J.J. – 1997. Fish migration: an evolutionary perspective. In: J.J. Godin (ed.), Behavioural ecology of teleosts fishes, pp. 10-36. Oxford, University Press, UK.

Farmer, G.J. -1980. Biology and physiology of feeding in adult lampreys. Can. J. Fish. Aquat. Sci., 37: 1751-1761. doi:10.1139/f80-220

Fellows, F.C.I. and R. McLean. – 1982. A study of the plasma lipoproteins and the tissue lipids of the migrating lamprey, Mordacia mordax. Lipids, 17: 741-747. doi:10.1007/BF02534661

Gamper, N. and M.V. Savina. – 2000. Reversible metabolic depression in hepatocytes of lamprey (Lampetra fluviatilis) during pre-spawning: regulation by substrate availability. Comp. Biochem. Physiol., 127B: 147-154.

Gross, M.R. – 1987. Evolution of diadromy in fishes. Am. Fish Soc. Symp., 1: 14-25.

Gruger, E.H., R.W. Nelson and M.E. Stansby. – 1964. Fatty acid composition of oils from 21 species of marine fish, freshwater fish and shellfish. J. Am. Oil Chem. Soc., 41: 662-667. doi:10.1007/BF02661403

Hair, J.F., R. E. Anderson, R.L. Tatham, and W.C. Black. – 1998. Multivariate Data Analysis. 5th ed., Upper Saddle River, Prentice Hall, USA.

Halliday, R.G. -1991. Marine distribution of the sea lamprey (Petromyzon marinus) in the Northwest Atlantic. Can. J. Fish. Aquat. Sci., 48: 832-842. doi:10.1139/f91-099

Hardisty, M.W. and I.C. Potter. – 1971a. The behavior, ecology and growth of larval lampreys. In: M. W. Hardisty and I.C. Potter (eds.), The biology of lampreys, Vol 1, pp. 85-125. Academic Press, London.

Hardisty, M.W. and I.C. Potter. – 1971b. The general biology of adult lampreys. In: M. W. Hardisty and I.C. Potter (eds.), The biology of lampreys, Vol. 1, pp. 127-247. Academic Press, London.

Hazel, J.R – 1984. Effects of temperature on the structure and metabolism of cell membranes in fish. Am. J. Physiol., 246: R460-R470.

Hazel, J.R. and E.E. Williams. – 1990. The role of alterations of membrane lipid composition in enabling physiological adaption of organisms to their physical environment. Prog. Lipid Res., 29: 167-227. doi:10.1016/0163-7827(90)90002-3

Henderson, R.J. and D.R. Tocher. – 1987. The lipid composition and biochemistry of freshwater fish. Prog. Lipid Res., 26: 281-347. doi:10.1016/0163-7827(87)90002-6

Hoch, F.L. – 1988. Lipids and thyroid hormones. Prog. Lipid Res., 27: 199-270. doi:10.1016/0163-7827(88)90013-6

Huynh, M.D. – 2007. Comparison of fatty acid profiles of spawning and non-spawning Pacific herring, Clupea harengus pallasi. Comp. Biochem. Physiol., 146B: 504-511.

Joensen, H., P. Steingrund, I. Fjallstein and O. Grahl-Nielsen. – 2000. Discrimination between two reared stocks of cod (Gadus morhua) from the Faroe Islands by chemometry of the fatty acid composition in the heart tissue. Mar. Biol., 136: 573-580. doi:10.1007/s002270050717

Kao, Y.H., J.H. Youson, B. Vick and M.A. Sheridan. – 2002. Differences in the fatty acid composition of larvae and metamorphosing sea lampreys, Petromyzon marinus. Comp. Biochem. Physiol., 131B: 153-169.

Kozlova, T.A. and S.V. Khotimchenko. – 2000. Lipids and fatty acids of two pelagic cottoid fishes (Comephorus spp) endemic to Lake Baikal. Comp. Biochem. Physiol., 126B: 477–485.

Larsen, L.O. – 1980. Physiology of adult lampreys, with special regard to natural starvation, reproduction, and death after spawning. Can. J. Fish. Aquat. Sci., 37: 1762-1777. doi:10.1139/f80-221

LeBlanc, P.J., T.E. Gillis, M.F. Gerrits and J.S. Ballantyne. – 1995. Metabolic organization of liver and somatic muscle of landlocked sea lamprey, Petromyzon marinus, during spawning migration. Can. J. Zool., 73: 916-923. doi:10.1139/z95-107

Linko, R.R., M. Rajasilta and R. Hiltunen. – 1992. Comparison of lipid and fatty acid composition in vendace (Coregonus albuba L.) and available plankton feed. Comp. Biochem. Physiol., 103A: 205-212. doi:10.1016/0300-9629(92)90264-Q

Lowe, D.R., F.W.H. Beamish and I.C. Potter. – 1973. Changes in the proximate body composition of the landlocked sea lamprey Petromyzon marinus (L.) during larval life and metamorphosis. J. Fish Biol., 5: 673-682. doi:10.1111/j.1095-8649.1973.tb04503.x

Marmer, W. and R. Maxwell. – 1981. Dry column method for the quantitative extraction and simultaneous class separation of lipid from muscle tissue. Lipids, 16: 365-370. doi:10.1007/BF02534964

Morrison, W.R. and L.M. Smith. – 1964. Preparation of fatty acid methyl esters and dimethylacetals from lipids with boron fluoride-methanol. J. Lipid Res., 5: 600-608.

Peng, J., Y. Larondelle, D. Pham, R.G. Ackman and X. Rollin.– 2003. Polyunsaturated fatty acid profiles of whole body phospholipids and triacylglycerols in anadromous and landlocked Atlantic salmon (Salmo salar L.) fry. Comp. Biochem. Physiol., 134B: 335-348.

Phleger, C.F., P.D. Nichols and P. Virtue. – 1997. The lipid, fatty acid and fatty alcohol composition of the myctophid Electrona Antarctica. High level of wax esters and food-chain implications. Antarct. Sci., 9: 258-265. doi:10.1017/S0954102097000345

Phleger, C.F., M.M. Nelson, B.D. Mooney and P.D. Nichols.– 1999a. Wax esters versus triacylglycerols in myctophid fishes from the Southern Ocean. Antarct. Sci., 11: 436-444. doi:10.1017/S0954102099000565

Phleger, C.F., P.D. Nichols, E. Erb and R. Williams. – 1999b. Lipids of the notothenioid fishes Trematomus spp. and Pagothenia borchgrevinki from East Antartica. Polar Biol., 22: 241-247. doi:10.1007/s003000050416

Plisetskaya, E. -1980. Fatty acid levels in blood of cyclostomes and fish. Environ. Biol. Fish, 5: 273-290. doi:10.1007/BF00005363

Potter, I.C. – 1980. Ecology of larval and metamorphosing lampreys. Can. J. Fish. Aquat. Sci., 37: 1641-1656. doi:10.1139/f80-212

Quintella, B.R., N. Andrade and P.R. Almeida. – 2003. Distribution, larval stage duration and growth of the sea lamprey ammocoetes in a highly modified river basin. Ecol. Freshw. Fish, 12: 1-8. doi:10.1046/j.1600-0633.2002.00030.x

Quintella. B.R., N.O. Andrade, A. Koed and P.R. Almeida. – 2004. Behavioral patterns of sea lampreys’ spawning migration through difficult passage areas, studied by electromyogram telemetry. J. Fish Biol., 65: 961-972.

Roff, D.A. – 1988. The evolution of migration and some life story parameters in marine fishes. Environ. Biol. Fish, 22: 133-146. doi:10.1007/BF00001543

Rogado, L. (coord.), P. Alexandrino, P.R. Almeida, J. Alves, J. Bochechas, R. Cortes, I. Domingos, F. Filipe, J. Madeira and F. Magalhães. – 2005. Peixes In: M.J. Cabral et al., Livro Vermelho dos Vertebrados de Portugal. Instituto de Conservação da Natureza, Lisboa.

Sargent, J.R., R.J. Henderson and D.R. Tocher - 1989. The lipids. In: J. E. Halver (ed.), Fish Nutrition 2nd ed., pp. 153-217. San Diego, California: Academic Press, Inc, USA.

Sargent, J.R., J.G. Bell, M.V. Bell, R.J. Henderson and D.R. Tocher.– 1995. Requirement criteria for essential fatty acids. J. Appl. Ichthyol.,11: 183-198. doi:10.1111/j.1439-0426.1995.tb00018.x

Sheridan, M.A. – 1988. Lipid dynamics in fish: aspects of absorption, transportation, deposition and mobilization. Comp. Biochem. Physiol., 90B: 679-690.

Sheridan, M.A., W.V. Allen and T.H. Kerstetter. – 1985. Seasonal variations in the lipid composition of steelhead trout, Salmo gairdnerii Richardson, associated with parr-smolt transformation. J. Fish Biol., 23: 125-134. doi:10.1111/j.1095-8649.1983.tb02887.x

Stoknes, I.S., H.M.W. Økland, E. Falch and M. Synnes. – 2004. Fatty acid and lipid class composition in eyes and brain from teleosts and elasmobranches. Comp. Biochem. Physiol., 138B: 183-191.

Takama, K., T. Suzuki, K. Yoshida, H. Arai and T. Mitsui. – 1999. Phosphatidylcholine levels and their fatty acid compositions in teleosts tissues and squid muscle. Comp. Biochem. Physiol., 124B: 109-116.

Varljen, J., S. Šulic, J. Brmalj, L. Balticic, V. Obersnel and M. Kapovic´. – 2003. Lipid classes and fatty acid composition of Diplodus vulgaris and Conger conger originating from the Adriatic Sea. Food Tech. Biotechnol., 41: 149-156.

Viga, A. and O. Grahl-Nielsen. – 1990. Genotypic and phenotypic fatty acid composition in the tissues of salmon, Salmo salar. Comp. Biochem. Physiol., 96B: 721-727.

Vlieg, P., T. Murray and D.R. Body. – 1993. Nutritional data on six oceanic pelagic fish species from New Zealand. J. Food Compos. Anal., 6: 45-54. doi:10.1006/jfca.1993.1006

Descargas

Publicado

2009-12-30

Cómo citar

1.
Pinela S, Ruivo Quintella B, Raposo de Almeida P, Lança MJ. Comparación del perfil de ácidos grasos en los lípidos neutrales y en los fosfolípidos de los músculos de la lamprea marina anádroma (Petromyzon marinus L.) (Agnatha) de la cuenca hidrográfica de tres ríos portugueses. Sci. mar. [Internet]. 30 de diciembre de 2009 [citado 1 de mayo de 2025];73(4):785-9. Disponible en: https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1103

Número

Sección

Artículos

Artículos más leídos del mismo autor/a