Epiphyte load on the seagrass Posidonia oceanica (L.) Delile does not indicate anthropogenic nutrient loading in Cabrera Archipelago National Park (Balearic Islands, Western Mediterranean)


  • Jorge Terrados Instituto Mediterráneo de Estudios Avanzados (CSIC-UIB), Mallorca
  • Francisco Javier Medina Pons Instituto Mediterráneo de Estudios Avanzados (CSIC-UIB), Mallorca




seagrass, epiphytes, nutrient loading, Posidonia oceanica, Western Mediterranean


The epiphyte load on the leaves of the seagrass Posidonia oceanica (L.) Delile was estimated at the end of summer in three sites and two depths (7 m and 17 m) of the Cabrera Archipelago National Park (Balearic Islands, Western Mediterranean) from 2004 to 2006 to evaluate if epiphyte load could be used as an indicator of anthropogenic nutrient loading in the shallow marine ecosystems of the park. Asymmetrical ANOVA was used to divide data variability into two components: the contrast between the site receiving direct anthropogenic inputs of nutrients and organic matter (Es Port) and the two control sites (Cala Santa María, Es Burri); and the variability between the control sites. The nitrogen concentration in P. oceanica leaves was higher in Es Port than in Cala Santa María and Es Burri but only at 7 m depth. There was no difference between the epiphyte load on P. oceanica shoots in Es Port and the sites without inputs at both 7 m and 17 m. However, the epiphyte load in Es Burri was higher than that in Cala Santa María at both depths. The results show that the epiphyte load on P. oceanica shoots was not a sensitive indicator of anthropogenic nutrient and organic matter loading in Cabrera Archipelago National Park.


Download data is not yet available.


Alcoverro, T., C.M. Duarte and J. Romero. – 1997. The influence of herbivores on Posidonia oceanica epiphytes. Aquat. Bot., 56: 93-104. doi:10.1016/S0304-3770(96)01098-4

Ballesteros, E. – 1987. Estructura i dinamica del poblament algal de les fulles de Posidonia oceanica (L.) Delile als herbeis de Tossa de Mar (Girona). Bullt. Inst. Cat. Hist. Nat., 54: 13-30.

Ballesteros, E., M. Zabala, M. J. Uriz, A. García Rubies and X. Turón. – 1993. El Bentos: les comunitats. In: J.A. Alcover, E. Ballesteros and J.J. Fornós (eds.), Història Natural de l’Arxipèlag de Cabrera, pp. 687-730. CSIC-Editorial Moll, Palma de Mallorca.

Ballesteros, E. – 2006. Mediterranean coralligenous assemblages: a synthesis of present knowledge. Oceanog. Mar. Biol., 44: 123-195.

Ballesteros, E., E. Cebrián and T. Alcoverro. – 2007. Mortality of shoots of Posidonia oceanica following meadow invasion by the red alga Lophocladia lallemandii. Bot. Mar., 50: 8-13. doi:10.1515/BOT.2007.002

Borowitzka, M.A. and R.C. Lethbridge. – 1989. Seagrass epiphytes. In: A. W. D. Larkum, A. J. McComb and S.A. Shepherd (eds.), Biology of seagrasses, pp. 458-499. Elsevier, Amsterdam.

Borowitzka, M.A., P.S. Lavery and M. Van Keulen. – 2006. Epiphytes of Seagrasses. In: A.W.D. Larkum, R.J. Orth and C.M. Duarte (eds.), Seagrasses: Biology, Ecology and Conservation, pp. 463-501. Springer, Dordrecht.

Borum, J. – 1985. Development of epiphytic communities on eelgrass (Zostera marina) along a nutrient gradient in a Danish estuary. Mar. Biol., 87: 211-218. doi:10.1007/BF00539431

Boudouresque, C.F. and M. Verlaque. – 2002. Biological pollution in the Mediterranean Sea: invasive versus introduced macrophytes. Mar. Pollut. Bull., 44: 32-38. doi:10.1016/S0025-326X(01)00150-3 PMid:11883681

Frankovich, T.A. and J.W. Fourqurean. – 1997. Seagrass epiphyte loads along a nutrient availability gradient, Florida Bay, USA. Mar. Ecol. Prog. Ser., 159: 37-50. doi:10.3354/meps159037

Frontera, M., A. Font, V. Forteza and P. Tomàs. – 1993. Home i Natura: els usos tradicionals del sòl i la pesca. In: J.A. Alcover, E. Ballesteros and J.J. Fornós (eds.), Història Natural de l’Arxipèlag de Cabrera, pp. 749-762. CSIC-Editorial Moll, Palma de Mallorca.

Heck, K.L., J.R. Pennock, J.F. Valentine, L.D. Coen and S.A. Sklenar. – 2000. Effects of nutrient enrichment and small predator density on seagrass ecosystems: an experimental assessment. Limnol. Oceanogr., 45: 1041-1057.

Holmer, M., C.M. Duarte and N. Marbà. – 2003. Sulfur cycling and seagrass (Posidonia oceanica) status in carbonate sediments. Biogeochemistry, 66: 223-239. doi:10.1023/B:BIOG.0000005326.35071.51

Lapointe, B.E., P.J. Barile and W.R. Matzie. – 2004. Anthropogenic nutrient enrichment of seagrass and coral reef communities in the Lower Florida Keys: discrimination of local versus regional nitrogen sources. J. Exp. Mar. Biol. Ecol., 308: 23-58. doi:10.1016/j.jembe.2004.01.019

Leoni, V., V. Pasqualini, C. Pergent-Martini, A. Vela and G. Pergent. – 2006. Morphological responses of Posidonia oceanica to experimental nutrient enrichment of the canopy water. J. Exp. Mar. Biol. Ecol., 339: 1-14. doi:10.1016/j.jembe.2006.05.017

Lepoint, G., J. Jacquemart, J.M. Bouquegneau, V. Demoulin and S. Gobert. – 2007. Field measurements of inorganic nitrogen uptake by epiflora components of the seagrass Posidonia oceanica (Monocotyledons, Posidoniaceae). J. Phycol., 43: 208-218. doi:10.1111/j.1529-8817.2007.00322.x

Lepoint, G., B. Frédérich, S. Gobert and E. Parmentier. – 2008. Isotopic ratios and elemental contents as indicators of seagrass C processing and sewage influence in a tropical macrotidal ecosystem (Madagascar, Mozambique Channel). Sci. Mar., 72: 109-117.

Marbà, N., C.M. Duarte, M. Holmer, R. Martínez, G. Bastarretxea, A. Orfila, A. Jordi and J. Tintoré. – 2002. Effectiveness of protection of seagrass (Posidonia oceanica) populations in Cabrera National Park (Spain). Environ. Conserv., 29: 509-518. doi:10.1017/S037689290200036X

Mazzella, L., M.B. Scipione and M.C. Buia. – 1989. Spatio-temporal distribution of algal and animal communities in a Posidonia oceanica meadow. Mar. Ecol. Evol. Persp., 10: 107-129.

McClelland, J.W. and I. Valiela. – 1998. Linking nitrogen in estuarine producers to land-derived sources. Limnol. Oceanog., 43: 577-585.

Neckles, H.A., R.L. Wetzel and R. J. Orth. – 1993. Relative effects of nutrient enrichment and grazing on epiphyte- macrophyte (Zostera marina L.) dynamics. Oecologia, 93: 285-295. doi:10.1007/BF00317683

Patzner, R.A. – 1998. The invasion of Lophocladia (Rhodomelaceae Lophotalieae) at the northern coast of Ibiza (western Mediterranean Sea). Boll. Soc. Hist. Nat. Balears, 41: 75-80.

Piazzi, L., D. Balata, F. Cinelli and L. Benedetti-Cechi. – 2004. Patterns of spatial variability in epiphytes of Posidonia oceanica Differences between a disturbed and two reference locations. Aquat. Bot., 79:345-356. doi:10.1016/j.aquabot.2004.05.006

Prado, P. – 2006. Magnitude of herbivory in Posidonia oceanica (L.) Delile and factors responsible for spatial variation. Ph. D. thesis, Univ. Barcelona.

Ralph, P.J., D.A. Tomasko, K.A. Moore, S. Seddon and C.M.O. Macinnis-Ng. – 2006. Human Impacts on Seagrasses: Eutrophication, Sedimentation and Contamination. In: A.W. D. Larkum, R.J. Orth and C.M. Duarte (eds.), Seagrasses: Biology, Ecology and Conservation, pp. 567-593. Springer, Dordrecht.

Romero, J. – 1988. Epífitos de las hojas de Posidonia oceanica: variaciones estacionales y batimétricas de biomasa en la pradera de las islas Medes (Girona). Oecol. Aquat., 9: 19-25.

Ruiz, J.M. and J. Romero. – 2001. Effects of in situ experimental shading on the Mediterranean seagrass Posidonia oceanica. Mar. Ecol. Prog. Ser., 215: 107-120. doi:10.3354/meps215107

Ruiz, J.M., M. Pérez and J. Romero. – 2001. Effects of fish farm loadings on seagrass (Posidonia oceanica) distribution, growth and photosynthesis. Mar. Pollut. Bull., 42: 749-760. doi:10.1016/S0025-326X(00)00215-0 PMid:11585068

Servera, J. – 1993. Generalitats fisiogràfiques. In: J.A. Alcover, E. Ballesteros and J.J. Fornós (eds.), Història Natural de l’Arxipèlag de Cabrera, pp. 25-32. CSIC-Editorial Moll, Palma de Mallorca.

StatSoft, Inc. – 2005. STATISTICA (data analysis software system), version 7.1. www.statsoft.com.

Tomás, F., X. Turón and J. Romero. – 2005. Effects of herbivores on a Posidonia oceanica seagrass meadow: importance of epiphytes. Mar. Ecol. Prog. Ser., 287: 115-125. doi:10.3354/meps287115

Tomasko, D. A. and B. E. Lapointe. – 1991. Productivity and biomass of Thalassia testudinum as related to water column nutrient availability and epiphyte levels: field observations and experimental studies. Mar. Ecol. Prog. Ser., 75: 9-17.

Tomasko, D.A., C.J. Dawes and M.O. Hall. – 1996. The effects of anthropogenic nutrient enrichment on turtle grass (Thalassia testudinum) in Sarasota Bay, Florida. Estuaries, 19: 448-456. doi:10.2307/1352462

Underwood, A.J. – 1997. Experiments in Ecology. Their logical design and interpretation using analysis of variance. Cambridge University Press, Cambridge.

Wear, D.J., M.J. Sullivan, A.D. Moore and D.F. Millie. – 1999. Effects of water-column enrichment on the production dynamics of three seagrass species and their epiphytic algae. Mar. Ecol. Prog. Ser., 179: 201-213. doi:10.3354/meps179201

Williams, S.L. and M.H. Ruckelshaus. – 1993. Effects of nitrogen availability and herbivory on eelgrass (Zostera marina) and epiphytes. Ecology, 74: 904-918. doi:10.2307/1940815

Young, E.B., P.S. Lavery, B. van Elven, M.J. Dring and J.A. Berges. – 2005. Nitrate reductase activity in macroalgae and its vertical distribution in macroalgal epiphytes of seagrasses. Mar. Ecol. Prog. Ser., 288: 103-114. doi:10.3354/meps288103




How to Cite

Terrados J, Medina Pons FJ. Epiphyte load on the seagrass Posidonia oceanica (L.) Delile does not indicate anthropogenic nutrient loading in Cabrera Archipelago National Park (Balearic Islands, Western Mediterranean). Sci. mar. [Internet]. 2008Sep.30 [cited 2024May26];72(3):503-10. Available from: https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1007