Transfer of seston lipids during a flagellate bloom from the surface to the benthic community in the Weddell Sea

Authors

  • Sergio Rossi Environmental Science and Technology Institute, Autonomous University of Barcelona
  • Enrique Isla Institut de Ciències del Mar (CSIC)
  • Alfredo Martínez-García Geologisches Institut NO G 55
  • Núria Moraleda Environmental Science and Technology Institute, Autonomous University of Barcelona
  • Josep María Gili Institut de Ciències del Mar (CSIC)
  • Antoni Rosell-Melé Environmental Science and Technology Institute, Autonomous University of Barcelona - Institució Catalana de Recerca i Estudis Avançats (ICREA)
  • Wolf E. Arntz Alfred Wegener Institute for Polar and Marine Research
  • Dieter Gerdes Alfred Wegener Institute for Polar and Marine Research

DOI:

https://doi.org/10.3989/scimar.03835.30A

Keywords:

Antarctica, seston, lipids, fatty acids, benthic-pelagic coupling, available food

Abstract


Total lipid and fatty acid concentrations were studied in a late spring-early summer flagellate-dominated bloom in the Weddell Sea. These indicators were considered a good tool for assessing the quality of organic matter settling from surface to deep-water layers (epibenthic water layers). The results showed different patterns between the early (11-15 December 2003) and the late sampling period (18-27 December 2003) at all studied depths (5 m, 50 m and near-bottom water layers). Low phytoplankton biomass (mainly flagellates) in the first half of the study corresponded to low total lipid and fatty acid concentrations. In the second sampling period a spring bloom (mainly flagellates and diatoms) was detected, increasing the total lipid and fatty acid concentrations in the water column. The amount of settling organic matter from surface waters to the near-bottom water layers was high, especially in the late sampling period. Trophic markers showed evidence of a sink of available organic matter rich in quality and quantity, especially in terms of polyunsaturated fatty acids, for benthic organisms from surface layers to bottom layers in only a few days. The importance of studying short-time cycles in order to detect organic matter availability for benthic biota in view of the pulse-like dynamics of primary production in Antarctic waters is discussed.

Downloads

Download data is not yet available.

References

Arrigo K.R., Worthen D., Schnell A., Lizotte M.P. 1998. Primary production in Southern Ocean waters. J. Geophys. Res. 103: 15587-15600. http://dx.doi.org/10.1029/98JC00930

Asper V.L., Smith W.O. 2003. Abundance, distribution and sinking rates of aggregates in the Ross Sea, Antarctica. Deep-Sea Res. Part I 50: 131-150. http://dx.doi.org/10.1016/S0967-0637(02)00146-2

Barnes H., Blackstock J. 1973. Estimation of lipids in marine animal tissues: detailed investigation of the sulphophosphovanillin method for "total" lipids. J. Exp. Mar. Biol. Ecol. 12: 103-118. http://dx.doi.org/10.1016/0022-0981(73)90040-3

Bathmann U., Fischer G., Mu.ller P.J., Gerdes D. 1991. Short-term variations in particulate matter sedimentation off Kapp Norvegia, Weddell Sea, Antarctica: relation to water mass advection, ice cover, plankton biomass and feeding activity. Polar Biol. 11: 185-195. http://dx.doi.org/10.1007/BF00240207

Caron D.A., Dennett M.R., Lonsdale D.J., Moran D.M., Shalapyonok L. 2000. Microzooplankton herbivory in the Ross Sea, Antarctica. Deep-Sea Res. Part II 47: 3249- 3272. http://dx.doi.org/10.1016/S0967-0645(00)00067-9

Chavez F.P., Buck K.R., Bidigare R.R., Karl D.M., Hebel D., Latasa M., Campbell L., Newton J. 1995. On the chlorophyll a retention properties of Glass-Fiber GF/F filters. Limn. Oceanogr. 40: 428- 433. http://dx.doi.org/10.4319/lo.1995.40.2.0428

Cripps G.C., Clarke A. 1998. Seasonal variation in the biochemical composition of particulate material collected by sediment traps at Signy Island, Antarctica. Polar Biol. 20: 414-423. http://dx.doi.org/10.1007/s003000050323

Dalsgaard J., St John M., Kattner G., Müller-Navarra D., Hagen W. 2003. Fatty acid trophic markers in the pelagic marine environment. Adv. Mar. Biol. 46: 225- 340. http://dx.doi.org/10.1016/S0065-2881(03)46005-7

Fahl K., Kattner G. 1993. Lipid content and fatty acid composition of algal communities in sea-ice and water from the Weddell Sea (Antarctica). Polar Biol. 13: 405- 409. http://dx.doi.org/10.1007/BF01681982

Fileman T.W., Pond D.W., Barlow R.G., Mantoura R.F.C. 1998. Vertical profiles of pigments, fatty acids and amino acids: evidence for undegraded diatomaceous material sedimenting to the deep ocean in the Bellinghausen Sea, Antarctica. Deep-Sea Res. Part I 45: 333-346. http://dx.doi.org/10.1016/S0967-0637(97)00824-8

Folch J., Lees M., Sloane-Stanley G.H. 1957. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 226: 497-509. PMid:13428781

Fraser A.J., Sargent J.R., Gamble J.C., Seaton D.D. 1989. Formation and transfer of fatty acids in an enclosed marine food chain comprising phytoplankton, zooplankton and herring (Clupea harengus L.) larvae. Mar. Chem. 27: 1-18. http://dx.doi.org/10.1016/0304-4203(89)90024-8

Gerdes D., Isla E., Knust R., Mintenbeck K., Rossi S. 2008. Response of benthic communities to disturbance: the artificial disturbance experiment BENDEX on the eastern Weddell Sea Shelf, Antarctica. Polar Biol. 31: 1469-1480. http://dx.doi.org/10.1007/s00300-008-0488-y

Gili J.M., Coma R., Orejas C., López-González P.J., Zabala M. 2001. Are Antarctic suspension-feeding communities different from those elsewhere in the world? Polar Biol. 24: 473-485. http://dx.doi.org/10.1007/s003000100257

Gili J.M., Arntz W.E., Palanques A., Orejas C., Clarke A., Dayton P.K., Isla E., Teixidó N., Rossi S., López-González P.J. 2006a. A unique assemblage of epibenthic sessile suspension feeders with archaic features in the high-Antarctic. Deep-Sea Res. Part II 53 : 1029-1052. http://dx.doi.org/10.1016/j.dsr2.2005.10.021

Gili J.M., Rossi S., Pagès F., Orejas C., Teixidó N., López-González P.J., Arntz W.E. 2006b. A new link between the pelagic and benthic systems in the Antarctic shelfs. Mar. Ecol. Prog. Ser. 322: 43-49. http://dx.doi.org/10.3354/meps322043

Gili J.M., Orejas C., Isla E., Rossi S., Arntz W.E. 2009. Seasonality on the high Antarctic benthic shelf communities? In: J. Turner, P. Convey, G. di Prisco, P. Mayewski, D. Hodgson, E. Fahrbach, B. Bindschadler, eds. Antarctic Climate Change and the Environment. ACCE Report, Cambridge University Press, Cambridge, pp. 276-278.

Gómez-Brandón A., Lores M., Domínguez J. 2008. Comparison of extraction and derivatization methods for fatty acid analysis in solid environmental matrixes. Anal. Bioanal. Chem. 392: 505-514. http://dx.doi.org/10.1007/s00216-008-2274-7 PMid:18651136

Goutx M., Saliot A. 1980. Relationship between dissolved and particulate fatty acids and hydrocarbons, chlorophyll a and zooplankton biomass in Villefranche Bay, Mediterranean Sea. Mar. Chem. 8: 299-318. http://dx.doi.org/10.1016/0304-4203(80)90019-5

Grémare A., Medernach L., De Bovée F., Amoroux J.M., Vétion G., Albert P. 2002. Relationships between sedimentary organics and benthic meiofauna on the continental shelf and the upper slope of the Gulf of Lions (NW Mediterranean). Mar. Ecol. Prog. Ser. 234: 85-94. http://dx.doi.org/10.3354/meps234085

Grossman S., Lochte K., Scharek R. 1996. Algal and bacterial processes in platelet ice during late austral summer. Pol. Biol. 16: 623-633. http://dx.doi.org/10.1007/BF02329060

Gutt J. 2000. Some "driving forces" structuring communities of the sublittoral Antarctic macrobenthos. Ant. Sci. 12: 297-313. http://dx.doi.org/10.1017/S0954102000000365

Gutt J., Starmans A. 1998. Structure and biodiversity of megabenthos in the Weddell and Lazarev Seas (Antarctica): ecological role of physical parameters and biological interactions. Pol. Biol. 20: 229-247. http://dx.doi.org/10.1007/s003000050300

Gutt J., Starmans A., Dieckmann G. 1998. Phytodetritus deposited on the Antarctic shelf and upper slope: its relevance for the benthic system. J. Mar. Syst. 17: 435-444. http://dx.doi.org/10.1016/S0924-7963(98)00054-2

Hayakawa K., Handa N., Wong C.S. 1996. Changes in the composition of fatty acids in sinking matter during a diatom bloom in a controlled experimental ecosystem. J. Exp. Mar. Biol. Ecol. 208: 29-43. http://dx.doi.org/10.1016/0022-0981(95)00158-1

Hopkins C.C.E., Sargent J.R., Nilssen E.M. 1993. Total lipid content, and lipid and fatty acid composition of the deep-water prawn Pandalus borealis from Balsfjord, northern Norway: growth and feeding relationships. Mar. Ecol. Prog. Ser. 96: 217-228. http://dx.doi.org/10.3354/meps096217

Howell K.L., Pond D.W., Billett D.S., Tyler M. 2003. Feeding ecology of deep-sea seastars (Echinodermata: Asteroidea): a fattyacid biomarker approach. Mar. Ecol. Prog. Ser. 255: 193-206. http://dx.doi.org/10.3354/meps255193

Hudson I.R., Pond D.W., Billet D.S., Tyler P.A., Lampitt R.S., Wolff G.A. 2004. Temporal variations in fatty acid composition of deep-sea holoturians: evidence of bentho-pelagic coupling. Mar. Ecol. Prog. Ser. 281: 109-120. http://dx.doi.org/10.3354/meps281109

Isla E., Rossi S., Palanques A., Gili J.M., Gerdes D., Arntz W. 2006a. Organic matter in marine sediment from the eastern Weddell Sea (Antarctica): high nutritive value in a high benthic-biomass environment. J. Mar. Sys. 60: 255-267. http://dx.doi.org/10.1016/j.jmarsys.2006.01.006

Isla E., Gerdes D., Palanques A., Gili J.M., Arntz W. 2006b. Particle fluxes and tides near the continental ice edge on the eastern Weddell Sea shelf. Deep-Sea Res. Part II 53: 866-874. http://dx.doi.org/10.1016/j.dsr2.2006.02.010

Isla E., Gerdes D., Palanques A., Gili J.M., Arntz W.E., König-Langlo G. 2009. Downward particle fluxes, wind and a phytoplankton bloom over a polar continental shelf: A stormy impulse for the biological pump. Mar. Geol. 259: 59-72. http://dx.doi.org/10.1016/j.margeo.2008.12.011

Isla E., Homs P., Sa-é E., Escribano R., Claramunt G., Teixidó N. 2010. Biochemical composition of seston in two upwelling sites within the Humboldt Current System (21°S to 23°S): Summer conditions. J. Mar. Sys. 82: 61-71. http://dx.doi.org/10.1016/j.jmarsys.2010.03.004

Isla E., Gerdes D., Rossi S., Fiorillo I., Sa-e E., Gili J.M., Arntz W.E. 2011. Biochemical characteristics of surface sediments on the eastern Weddell Sea continental shelf, Antarctica: is there any evidence of seasonal patterns? Pol. Biol. 34:1125-1133 http://dx.doi.org/10.1007/s00300-011-0973-6

Kornilova O., Rosell-Melé A. 2003. Application of microwaveassisted extraction to the analysis of biomarker climate proxies in marine sediments. Org. Geochem. 34: 1517-1523. http://dx.doi.org/10.1016/S0146-6380(03)00155-4

Kuwata A., Hama T., Takahashi M., 1993. Ecophysiological characterization of two life forms, resting spores and resting cells, of a marine planktonic diatom, Chaetoceros pseudocurvisetus, formed under nutrient depletion. Mar. Ecol. Prog. Ser. 102: 245-255. http://dx.doi.org/10.3354/meps102245

Lampitt R.S. 1985. Evidence for the seasonal deposition of detritus to the deep-sea floor and its subsequent resuspension. Deep-Sea Res. Part I 32: 885-897. http://dx.doi.org/10.1016/0198-0149(85)90034-2

Lee C., Fuhrman J.A. 1987. Relationship between biovolume and biomass of naturally derived marine bacterioplankton. Appl. Environm. Microb. 53: 1298-1568. PMid:16347362 PMCid:PMC203858

Meyer B., Auerswald L., Siegel V., Sparic S., Pape C., Fach B.A., Teschke M., Lopata A., Fuentes V. 2010. Seasonal variation in body composition, metabolic activity, feeding, and growth of adult krill Euphausia superba in the Lazarev Sea. Mar. Ecol. Prog. Ser. 398: 1-18. http://dx.doi.org/10.3354/meps08371

Michels J., Schnack-Schiel S.B., Pasternak A., Mizdalski E., Isla E., Gerdes D. 2012. Abundance, population structure and vertical distribution of dominant calanoid copepods on the eastern Weddell Sea shelf during a spring phytoplankton bloom. Pol. Biol. 35: 369-386 http://dx.doi.org/10.1007/s00300-011-1083-1

Mincks S.L., Smith C.R., DeMaster D.J. 2005. Persistence of labile organic matter and microbial biomass in Antarctic shelf sediments: evidence of a sediment "food bank". Mar. Ecol. Prog. Ser. 300: 3-19. http://dx.doi.org/10.3354/meps300003

Mincks S.L., Smith C.R., Jeffreys R.M., Sumida P.Y.G. 2008. Trophic structure on the West Antarctic Peninsula shelf: Detritivory and benthic inertia revealed by delta C-13 and delta N-15 analysis. Deep Sea Res. Part II 55: 2502-2514. http://dx.doi.org/10.1016/j.dsr2.2008.06.009

Orejas C., Gili J.M., López-González P.J., Arntz W.E. 2001. Feeding strategies and diet composition of four Antarctic cnidarian species. Pol. Biol. 24: 620-627. http://dx.doi.org/10.1007/s003000100272

Orejas C., Gili J.M., Arntz W.E. 2003. The role of small-plankton communities in the diet of two Antarctic octocorals (Primnoisis antarctica and Primnoella sp.). Mar. Ecol. Prog. Ser. 250: 105-116. http://dx.doi.org/10.3354/meps250105

Parrish C.C. 1988. Dissolved and particulate marine lipid classes: a review. Mar. Chem. 23: 17-40. http://dx.doi.org/10.1016/0304-4203(88)90020-5

Parrish C.C., Thompson R.J., Deibel D. 2005. Lipid classes and fatty acids in plankton and settling matter during the spring bloom in a cold ocean coastal environment. Mar. Ecol. Prog. Ser. 286: 57-68. http://dx.doi.org/10.3354/meps286057

Pasternak A., Hagen W., Kattner G., Michels J., Graeve M., Schnack-Schiel S.B. 2009. Lipid dynamics and feeding of dominant Antarctic calanoid copepods in the eastern Weddell Sea in December. Pol. Biol. 32:1597-1606. http://dx.doi.org/10.1007/s00300-009-0658-6

Prahl F.G., Eglinton G., Corner E.D.S., O'Hara S.C.M., Forsberg T.E.V. 1984. Changes in plant lipids during passage through the gut of Calanus. J. Mar. Biol. Ass. UK 64: 317-334. http://dx.doi.org/10.1017/S0025315400030022

Qiang H., Sommerfeld M., Jarvis E., Ghirardi M., Posewitz M., Seibert M., Darzins A. 2008. Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J. 54:621-639. http://dx.doi.org/10.1111/j.1365-313X.2008.03492.x PMid:18476868

Reuss N., Poulsen L.K. 2002. Evaluation of fatty acids as biomarkers for a natural plankton community. A field study of a spring bloom and a post-bloom period off West Greenland. Mar. Biol. 141: 423-434. http://dx.doi.org/10.1007/s00227-002-0841-6

Rossi S., Fiorillo I. 2010. Biochemical characteristics of Protoceratium reticulatum red tide progress in Chipana Bay (Northern Chile) in summer conditions. Sci. Mar. 74(4): 633-642. http://dx.doi.org/10.3989/scimar.2010.74n4633

Rossi S., Grémare A., Gili J.M., Amouroux J.M., Jordana E., Vétion G. 2003. Biochemical characteristics of settling particulate organic matter at two north-western Mediterranean sites: a seasonal comparison. Est. Coast. Shelf Sci. 58: 423-434. http://dx.doi.org/10.1016/S0272-7714(03)00108-2

Rossi S., Sabatés A., Latasa M., Reyes E. 2006. Lipid biomarkers and trophic linkages between phytoplankton, zooplankton and anchovy (Engraulis encrasicolus) larvae in the NW Mediterranean. J. Plank. Res. 28: 551-562. http://dx.doi.org/10.1093/plankt/fbi140

Rossi S., Youngbluth M., Jacoby C., Pagès F., Garrofé X. 2008. Fatty acid composition and trophic links among seston, crustacean zooplankton and the siphonophore Nanomia cara in Georges Basin and Oceanographer Canyon (NW Atlantic). Sci. Mar. 72(2): 403-416.

Rossi S., Isla E., Fietz S., Martínez-García A., Sa-é E., Teixidò N. 2012. Temporal variation of seston biomarkers within the Humboldt Current System off northern Chile (21°S): first simultaneous records on fatty acids, n-alkanes and GDGTs. Adv. Oceanog. Limnol. 3: 17-40. http://dx.doi.org/10.1080/19475721.2012.676068

Ruiz J., Antequera T., Andres A.I., Petron M.J., Muriel E. 2004. Improvement of a solid phase extraction method for analysis of lipid fractions in muscle foods. Anal. Chem. Acta 520: 201-205. http://dx.doi.org/10.1016/j.aca.2004.04.059

Skerrat J.H., Nichols P.D., McMeekin T., Burton H. 1995. Seasonal and inter-annual changes in planktonic biomass and community structure in eastern Antarctica using signature lipids. Mar. Chem. 51: 93-113. http://dx.doi.org/10.1016/0304-4203(95)00047-U

Smith C.R., Mincks S., DeMaster D.J. 2006. A synthesis of benthopelagic coupling on the Antarctic shelf: Food banks, ecosystem inertia and global climate change. Deep-Sea Res. Part II 53: 875-894. http://dx.doi.org/10.1016/j.dsr2.2006.02.001

Suhr S.B., Pond D.W., Gooday A.J., Smith C.R. 2003. Selective feeding by benthic foraminifera on phytodetritus on the western Antarctic Peninsula shelf: evidence from fatty acid biomarker analysis. Mar. Ecol. Prog. Ser. 262: 153-162. http://dx.doi.org/10.3354/meps262153

Teixidó N., Garrabou J., Arntz W.E. 2002. Spatial pattern quantification of Antarctic benthic communities using landscape indices. Mar. Ecol. Prog. Ser. 242: 1-14. http://dx.doi.org/10.3354/meps242001

Thomas D.N., Kennedy H., Kattner G., Gerdes D., Gough P., Dieckmann G.S. 2001. Biogeochemistry of platelet ice: its influence on particle flux under fast ice in the Weddell Sea, Antarctica. Pol. Biol. 24: 486-496. http://dx.doi.org/10.1007/s003000100243

Underwood G.J.C., Fietz S., Papadimitriou S., Thomas D.N., Dieckmann G.S. 2010. Distribution and composition of dissolved extracellular polymeric substances (EPS) in Antarctic sea ice. Mar. Ecol. Prog. Ser. 404: 1-19. http://dx.doi.org/10.3354/meps08557

von Bodungen B., Nöting E.M., Sui Q. 1988. New production of phytoplankton and sedimentation during summer 1985 in the South Eastern Weddell Sea. Comp. Biochem. Physiol. 90B: 475-487.

Downloads

Published

2013-09-30

How to Cite

1.
Rossi S, Isla E, Martínez-García A, Moraleda N, Gili JM, Rosell-Melé A, Arntz WE, Gerdes D. Transfer of seston lipids during a flagellate bloom from the surface to the benthic community in the Weddell Sea. Sci. mar. [Internet]. 2013Sep.30 [cited 2024Nov.26];77(3):397-40. Available from: https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1470

Issue

Section

Featured Article

Most read articles by the same author(s)

1 2 3 > >>