
INTRODUCTION

The classical methods used to obtain abundance
estimates in demersal fish populations include bot-
tom trawl surveys using standard trawling gears and
specific sampling strategies, e.g. they are methods
based on sampling theory. The sampling points (trawl
hauls) can be randomly positioned over the sampling
area, yielding an unbiased estimate of abundance and

its corresponding precision index (Cochran, 1977).
When the random sampling (or variations thereof) is
carried at the appropriate spatial scale, it effectively
obliterates any underlying spatial structure. However,
the scale of spatial distribution of the target species is
usually unknown and this factor may introduce bias
in the computation of abundance estimates. In exper-
imental trawl surveys, when the average distance
between hauls is smaller than the zone of spatial
influence of the underlying spatial phenomenon, the
abundance of organisms at one point can be partially
predicted from neighbouring points.
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The existence of spatial structure in the distrib-
ution of organisms (or any other ecological vari-
able) originates spatial autocorrelation between
pairs of samples. Spatial autocorrelation can be
defined as the departure from randomness in the
spatial distribution of organisms or ecological vari-
ables, and it is analogous to a covariance coeffi-
cient. The concept of spatial autocorrelation can
also be seen as the non-null probability of predict-
ing the value of a sample from neighbouring sam-
ples. The spatial autocorrelation present in a given
data set can be analyzed, modeled mathematically
and incorporated into spatially-explicit models
which can be used to produce unbiased abundance
estimates of demersal resources.

Spatial statistical methods were developed inde-
pendently by two major lines of research: Human
geography (and ecology) and mining geology. In
the 1950’s and 1960’s autocorrelation models were
first produced in human geography (Moran, 1950;
Geary, 1954; Berry and Marble, 1968) and later
adopted in ecology by the influential work of Cliff
and Ord (1973). During the 1970’s and 1980’s,
these models were widely applied in ecology and in
the 1990’s they have become mainstream statistical
methods, although their use in marine ecology is
still limited (Jumars et al., 1977; Jumars, 1978;
Mackas, 1984; Legendre and Troussellier, 1988).
Excellent reviews of this methodology in ecology
can be found in Sokal and Oden (1978), Legendre
and Fortin (1989) and Legendre (1993).

In mining geology, spatial statistical methods
were first developed in the 1960’s in the context of
ore-reserve estimation. These methods were termed
geostatistics. The theoretical basis of geostatistics
was laid out by Matheron (1962, 1963, 1969 and
1971). Later influential reviews and developments
include the work of Matheron (1973, 1976),
Journel and Huijbregts (1978), Isaaks and
Srivastava (1989), and more recently, Cressie
(1991). Geostatistics expanded from mining geolo-
gy to other domains of the earth sciences in the
1980’s (e.g. Burrough, 1983), and particularly to
fisheries science (Conan, 1985; Conan et al., 1988).
Since the late 1980’s and in the 1990’s, geostatistics
has been widely used for the estimation of abun-
dance of demersal resources. To the pioneering
applications of G.Y. Conan cited earlier, we can
add: Conan et al. (1992); Conan et al. (1994);
Freire et al. (1992); González Gurriarán et al.
(1993), Maynou et al. (1996); Maynou et al.
(1998); Pelletier and Parma (1994); Petitgas and

Poulard (1989); Simard et al. (1992); Sullivan
(1991). They have also been applied to pelagic fish
and acoustic survey data (Anonymous, 1990, 1991;
Petitgas, 1993) and ecology (Rossi et al., 1992).

In the geostatistical literature, an autocorrelated
variable is termed a regionalized variable. The
example of regionalized variable which will be
used in this article is the density of N. norvegicus
over the fishing grounds off Barcelona (NE Spain).
The covariance function describing the spatial
autocorrelation is called structure function. An
example of structure function used in this article is
the variogram. Other examples of structure func-
tions are the autocorrelation functions used in spa-
tial ecology, such as Moran’s correlogram or
Geary’s correlogram.

In this review, the use of geostatistical tools for
assessing the spatial structure, mapping and estima-
tion of demersal resources is highlighted. These
methods are illustrated with the case study of N.
norvegicus and the underlying spatial phenomena
that originate the spatial structure in this species are
discussed.

METHODS

Sampling design

Two surveys (GEOESC-I and GEOESC-II)
were specifically designed for the mapping and
assessment of the harvestable resource of Norway
lobster on the fishing grounds off Barcelona. For
the purposes of this review, only the results for
GEOESC-I will be presented. The survey site was
chosen over muddy bottoms with gentle slope and
depth contours parallel to the coast, limited by two
submarine canyons (Fig. 1). A regular grid 1 by 2
nautical miles was set parallel to the coast and a
start location for each tow was randomly selected
within each cell. The total area covered by the
sampling design was 790 km2, comprising 115
cells, although due to logistical and practical con-
straints only 59 locations could be sampled during
the first cruise. The depth of the sampling loca-
tions varied from 141 to 730 m, encompassing the
whole depth range of Norway lobster in the area
of study.

The experimental sampling gear was a specially
designed otter trawl drawn by a single warp
(‘Maireta System Trawl’, Sardà et al., 1994). The
codend stretched mesh was 12 mm in order to
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retain small individuals not normally available to
the commercial fishing gear. The actual opening of
the trawl was measured using an acoustic system
(SCANMAR) and stabilized at 14.0 m width by 2.0
m height. During the survey, tows were made par-
allel to the depth contours. The duration of each
tow was set to exactly 15 min (time of effective
trawling). The towing speed varied between 2.3 and
2.6 knots (mean 2.5 knots). Start and end locations
for each tow were taken by GPS. The actual surface
covered by each tow was computed from the GPS
and the SCANMAR readings. Effective time of the
survey was from 7:30 to 20:00 h each day. The sur-
vey was completed between 27 April and 5 May
1991.

The total catch of N. norvegicus was counted,
weighed and measured. The density of Norway lob-
ster was computed (number of individuals · km -2)
from the total surface covered by each tow.

Statistical methods

The fundamentals of geostatistics, with empha-
sis on the methods employed here, are laid out in
the Appendix in a rather mathematical way. What
follows is an elementary summary of linear geosta-
tistics and disjunctive kriging that should suffice in
order to understand the methodological basis of our
analysis and results from a fisheries perspective.

We consider the density of Norway lobster as
the variable Z(xi): Number of individuals · km-2 at
location xi, whose properties are relatively constant
over the area at the spatial and temporal scales of
study. For instance, it can be reasonably accepted
that the abundance of Norway lobster does neither
vary abruptly from one location to a neighbouring
location nor shows a clear spatial trend, based on
what is known from the biology of the species.
These assumptions can be verified in practice by an
exploratory data analysis previous to geostatistical
analysis.

Under these conditions, the structure of spatial
variability of Norway lobster abundance can be
studied by computing an appropriate structure
function, for instance a variogram. The computa-
tion of the variogram is summarized in Fig. 2, see
also eq. (1) of the Appendix. A vector of distance
classes or lags (h) is first specified, together with an
angular tolerance. Then, from each sampling point
xi, the distance to each other location is computed
and arranged according to the specified distance
classes. The squared difference of density values
for each pair of samples pertaining to a given lag is
then computed. Finally the estimated variogram
value for a given lag is obtained, dividing the sum
of squared differences by the number of pairs of
sampling points pertaining to this lag. This process
is illustrated in Fig. 2 considering the first 6 sam-
pling points in our data set.
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FIG. 1. – Sampling area of the experimental survey GEOESC-I. Crosses indicate mid
position of trawl hauls. Main commercial fishing grounds for Norway lobster are shown.



The shape of the variogram gives clues to the
spatial structure of the variable under study. In
ecology, the structure functions known as autocor-
relograms (analogous to the variogram) are often
the object of the study. They can also be tested sta-
tistically, and for this reason are often preferred, in
ecological work, in order to make inferences on the
spatial structure of ecological variables (Legendre
and Fortin, 1989). In this review, we will assume
that the variogram suffices to reveal the spatial
structure of N. norvegicus. Then, by analogy with
Sokal and Oden’s (1978) simulations employing
correlograms, we will attempt to establish the spa-
tial characteristics of Norway lobster in the study
area with the aid of the variogram.

Another aspect of geostatistics is the possibility
of estimating the density of our variable at points
not sampled or over areas where a global estimate
is needed. This aspect is known as kriging and can
be regarded as spatial prediction or estimation. In
order to proceed with kriging, the experimental var-
iogram has to be fitted to a theoretical variogram
model (some models are given in the Appendix,
section 2.2). When the experimental variogram has
been computed correctly and there exists a clear
underlying spatial structure, it is often easy to
choose and fit a theoretical model. When there is no

obvious pattern in our variogram, it is always pos-
sible to contemplate other geostatistical models or
assume that there is no spatial structure in our vari-
able at the scale of study.

The behaviour of the variogram near the origin
requires a detailed study. A variogram may show a
discontinuity near the origin, called the nugget
effect in geostatistics. The nugget effect can be
attributed to measurement error, micro-scale vari-
ability or small-scale spatial structure. For instance,
below ~ 1 km little can be said from our data set, as
this is the average tow length in our study. A nugget
component is usually included in most theoretical
variogram models.

The variogram fitted can be used to predict the
abundance of our variable at locations not sampled
(point estimation by kriging) or over a user-defined
region (block estimation by kriging). The estimate
at a point or block is obtained from linear or non-
linear weighting of the observed values. A structure
function (for instance the variogram fitted) is used
to optimally compute the kriging weights (linear
estimation) or to estimate the kriging function
(non-linear estimation). Kriging has the important
property that for each estimate, an associated esti-
mation variance can be computed.

The point estimation process is useful to pro-
duce an accurate map of the resource. For instance,
by setting a grid of cells over the study area we can
estimate the density of Norway lobster at each node
(or cell) and colour-code the abundance values to
obtain a map of the resource. In this sense, point
kriging is an interpolation method with the advan-
tage that it yields a precision index for each esti-
mate on the map. The non-linear method of dis-
junctive kriging (Yates et al., 1986; Appendix sec-
tion 3.2) is employed here as a means to illustrate
the use of kriging in mapping and in estimating the
probability that Norway lobster density is above a
certain profit threshold.

RESULTS

Exploratory Data Analysis

Before building the geostatistical model, it is
advised to start with an exploratory data analysis.
This preliminary analysis should help check for
inconsistencies of the assumptions of the geostatis-
tical model with the data or to suggest a specific
geostatistical model to apply, i.e. linear or non-lin-
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ear geostatistics, models with drift. A simple way to
perform the exploratory data analysis is illustrated
in Fig. 3, with the aid of scatterplots of Norway lob-
ster density vs. some ancillary variables. More
refined methods can be found in Cressie (1991, pp.
30-51).

The dispersion plot of Norway lobster density
vs. depth did not evidence any depth-related trend
(Fig. 3a). Nephrops density was related neither to
time of the day (Fig. 3b) nor to a given geographi-
cal direction, such as easting or northing (Fig. 3c
and 3d). Hence, a geostatistical model with no spa-
tial drift can be applied to the variable density of
Norway lobster. The spatial predictor to choose can
be based on a linear predictor (Ordinary Kriging,
Table A.1 of the Appendix) or a non-linear predic-
tor (Disjunctive Kriging, Table A.1 of the
Appendix).

Variogram computation

The variogram computation starts by choosing a
vector h of distance classes, including a tolerance
range for unequally spaced samples, as is our case.
The choice of h is based on the maximum distance
in the field of study divided by 10 or 20, in order to
ensure a sufficient number of distance classes and

reveal a meaningful variogram. In the GEOESC-I
survey the maximum distance in an E-W direction
is ~ 43 km and ~ 25 km in a N-S direction. The
maximum distance in the field of study is ~ 50 km,
so our first choice of h is to set a distance class at
each 2 km, from 0 to 48 km, yielding a total of 25
distance classes. The tolerance specified is ± 1 km.
In Fig. 2 the variogram computation is illustrated,
see also Appendix, eq. (1).

The variogram computed in this manner is
shown in Fig. 4, bottom. The figure shows the esti-
mate of γ(h) at each distance class hj, together with
the number of pairs used to compute this estimate.
The number of pairs used to compute each ^γ is use-
ful in order to know the quality of the estimate. The
weighted least squares method of fitting the vari-
ogram is an automated procedure for giving more
weight to those distance classes with a higher num-
ber of pairs.

A way to obtain a well-defined experimental
variogram, easier to fit, is to create a vector of dis-
tance classes with unequal spacing. For instance,
h= {0.5 ± 0.5, 1.5 ± 0.5, 2.5 ± 0.5, 3.5 ± 0.5, 5.0 ±
1.0, 7.0 ± 1.0, 9.0 ± 1.0, 12.5 ± 2.5, ..., 42.5 ± 2.5}
yields a variogram (Fig. 4, top) which is easier to fit
to the spherical model (Appendix, section 2.2.1.a,
Fig. A.1) and with higher resolution at the small

APPLICATION OF GEOSTATISTICS IN N. NORVEGICUS IN THE MEDITERRANEAN  121
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distance classes, thus making it easier to estimate
the nugget parameter (c0 in Appendix, section
2.2.1.a). The manual and weighted least squares
(w.l.s.) fits to the variogram in Fig. 4 (top) are given
in Fig. 5. Note that in variogram fitting, only those
distance classes |h|<h(max)/2 were used, as justi-
fied in Journal and Huijbregts (1978, p. 194).

As the experimental variogram showed a clear-
ly defined pattern, the two fitting procedures
employed yielded essentially the same results, i.e. a
spherical model with nugget 4.23 x 105, sill 1.70 x
106 and range 6.46 km. The fraction of the variance
not explained by our model is the ratio nugget to
sill, which is 25% in the w.l.s. fit. This variance is
attributed to the behaviour of the variable over
short ranges, since ~ 2 km is the minimum resolv-
able distance in our data set. Although a model with
zero nugget could also fit the experimental vari-
ogram, we consider that the small-scale variability
of this highly territorial species (Chapman, 1980)
justifies the nugget fitted.

The variogram model could be further refined
by studying the existence of anisotropy.

Experimental variograms in an east (0º), north-east
(45º), north (90º) and north-west (135º) directions
were produced and they did not show any evidence
of anisotropy (Maynou, 1995). The east and north-
east variograms (along the field of study) showed
essentially the same pattern as the omnidirectional
variogram, and the north and north-west vari-
ograms (across the depth contours) contained few
number of pairs and were not well defined.

The results of the variogram analysis for other
categories of Norway lobster (juveniles, males,
females) and for the second trawl survey
(GEOESC-II, autumn 1991) showed essentially the
same pattern illustrated here. The ranges of the
spherical variograms fitted were between 6 and 10
km, with a mean of ~ 7 km. By analogy with Sokal
and Oden’s (1978) simulations with correlograms,
the spatial structure of Nephrops populations in the
north-western Mediterranean can be regarded as
high-density patches of around 7 km, in the absence
of anisotropy. A more detailed study of these data is
given in Conan et al. (1992) and Maynou et al.
(1998).
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FIG. 4. – Experimental variogram of Norway lobster density using two different lag vectors. Bottom: an equally-spaced vector does not
resolve accurately the small distance classes. Top: an unequally-spaced vector allows to better resolve the small distance classes and is 

easier to fit to a theoretical model. See text for vector specification.



Kriging

To produce a precise map of the density of the
resource in the study area, we set first a regular grid
of 90 x 60 cells and estimated the density of
Nephrops at each cell by disjunctive kriging
(Appendix, section 3.2). Each cell had a surface of
0.25 km2. The cells falling outside an irregular
polygon bounding the data set were not computed.

Disjunctive kriging requires approximating the
non-linear predictor by a Hermite polynomial. We
chose K=10 to truncate the Hermite polynomial.
The map in Figure 6 (top left) was produced using
the algorithm of Yates et al. (1986). The map pro-
duced by the disjunctive kriging technique does not
differ from a map produced by ordinary kriging,
which was presented in Maynou et al. (1998).
Patches of high density of Nephrops can be
observed over the fishing grounds known as Can
Pere Negre and Serola, with densities over 3600 ind
· km-2 at some cells. The kriging variance obtained
when solving the kriging system can be used as a
precision index to evaluate the quality of the esti-
mate at each cell. The kriging standard deviation
for each cell is shown in Fig. 6 (top, right).

To illustrate the use of disjunctive kriging in
computing densities above a user-specified thresh-
old, we tried two levels of economic profit in the

variable Nephrops density. The first cut-off corre-
sponded to the usual Norway lobster catch of
Barcelona fishermen (for the purpose of this exer-
cise, 15 kg/day). Using the appropriate conversion
factors from our experimental trawl and fishing
strategy and simulating the commercial fisherman’s
strategy we arrive at ‘usual’ catch of 1528 ind · km-2

or 31 kg · km-2 (Maynou, 1995). In the same way,
we specified a ‘high’ catch cut-off value (25
kg/day), corresponding to 2,546 ind/km2 or 51
kg/km2 (Maynou, 1995). The first cut-off level (Fig.
6, bottom, left) revealed areas with probability
p>0.6 where fishing was economically profitable.
These areas were the Serola, Can Pere Negre and
Merenguera fishing grounds. The second cut-off
level (Fig. 6, bottom, right) indicated that only in
Serola could a ‘high’ catch be expected, with prob-
ability p > 0.6. This agrees with the fact that most
(over 90%) Norway lobster landed at the Barcelona
fish market is caught in the Serola fishing grounds
(Sardà and Lleonart 1993).

DISCUSSION

In our geostatistical study of N. norvegicus, we
uncovered a spatial pattern of high-density areas
(patches), alternating with low-density areas. This
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FIG. 5. – Comparison of a manual fit and an automated fit (weighted linear squares) to the experimental variogram in Fig. 4 (top). The
variogram model is a spherical variogram (Appendix, section 2.2.1.a). The parameters of the manual fit are: Nugget= 4.50 x 105, sill=

1.75 x 106, range= 7.0 km. The parameters of the automated fit are: Nugget= 4.23 x 105, sill= 1.70 x 106, range= 6.46 km.



patchy distribution is relatively stable throughout
the year and across biological categories, as shown
by Maynou et al. (1998) studying the variograms of
juveniles, adults, males and females in two differ-
ent seasons of the year (spring and autumn). The
range of the variograms fitted varied from 6 to 10
km, with a mean of ~ 7 km. Our results can be con-
trasted with the results of Conan et al. (1988, 1996)
in studies of the spatial distribution of the snow
crab (Chionoecetes opilio). These authors showed
that considerable sexual and size spatial segrega-

tion exists in snow crab due to its complex spatial
behaviour.

Our results are not directly comparable to the
results of Fariña et al. (1994) who studied the dis-
tribution of Norway lobster in Galician waters (NW
Spain, Atlantic Ocean). They found a range of ~100
km in the spatial distribution of this species, but
their minimum distance among stations was of the
order of the range obtained in our study. Thus, their
results showed rather a large-scale areal distribu-
tion of Nephrops.
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FIG. 6. – Results of disjunctive kriging. Top left: Map of N. norvegicus density in the study area, scale units are ind · km-2. Top right:
Precision index (standard estimation of the point estimate) of the previous map. Bottom left: Probability levels for the first cut-off level: 

1,528 ind · km-2 or 15 kg · day-1. Bottom right: Probability levels for the first cut-off level: 2,546 ind · km-2 or 25 kg · day-1.



High-resolution mapping by kriging has been
used by fisheries biologists as a tool to forecast accu-
rately the location and the spatial characteristics of
an exploited resource. In this sense, several applica-
tions illustrate the potential of ordinary kriging to
mapping and estimation of resource abundance, such
as the contributions of Conan et al. (1988, 1992,
1994, 1996), Sullivan (1991), Simard et al. (1992)
and others cited in the reference list. Disjunctive
kriging has not previously been used in a fisheries
context to our knowledge. It has the advantage of
providing a probability level of commercial profit,
allowing the identification of commercially viable
areas in new or undeveloped resources.

Our knowledge on the behaviour of N. norvegi-
cus indicates that this is a species of very low mobil-
ity at the spatio-temporal scales considered here
(Chapman, 1980). Thus, due to its low mobility and
benthic habits, N. norvegicus can be considered an
ideal case for the application of geostatistics. Other
sessile crustaceans and molluscs have been the
object of geostatistical studies (Armstrong et al.,
1992; Freire et al., 1992; González Gurriarán et al.,
1993; Maynou et al., 1996; Simard et al., 1992) from
an ecological or fisheries perspective.

The underlying processes that generate the
observed spatial structure have been discussed else-
where by Maynou and Sardà (1997). In a statistical
analysis of Norway lobster populations off the Ebro
delta (located ~ 100 km south of the present study
area), these authors found that substrate characteris-
tics could be linked with certain population parame-
ters of Norway lobster. The geostatistical analysis in
that area revealed the same pattern of spatial struc-
ture shown here: High-density patches of ~ 7 km, no
sex or size segregation (unpublished results). From
the analysis of sediment variables, such as grain size
and redox potential (indicative of organic matter
content), the spatial structure of some environmental
factors could be related to the patchy distribution of
Norway lobster. Chapman and Howard (1988) and
Tully and Hillis (1995) reported similar findings for
Irish sea Norway lobster. However, other authors
suggest that the patchy distribution of this species in
the Irish Sea is attributable to larval dispersal deter-
mined by hydrological factors (White et al., 1988;
Hill and White, 1990).

We conclude that geostatistics can make a signif-
icant contribution to fisheries science in those
aspects regarding the study of temporal and spatial
distribution patterns of abundance in commercially
exploited populations.
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APPENDIX – SPATIAL STATISTICS

1. DEFINITIONS

1.1. Regionalized variables and random 
functions

The object of study of geostatistics (or surface
pattern analysis) are continuously varying phe-
nomena, i.e. phenomena which take a value at
each point of space. These phenomena are termed
regionalized variables in geostatistics.

A regionalized variable can be defined as a
function taking a value z(x) at each point of the
space Rn, where z(x) only depends on x (the geo-
graphical location). In this article, n=2; i.e., we
consider only two dimensions of space. The den-
sity of N. norvegicus (Number of individuals/unit
area) is then a regionalized variable z(x). The bot-
tom trawl sampling used to obtain the density of
N. norvegicus over the study area (A) can be
regarded as a realization of the regionalized vari-
able, and the observed densities at the sampling
points xi are noted Z(xi).

The set of realizations of z(x) is called a ran-
dom function, {Z(x), x ∈ A} (Journel and
Huijgbregts, 1978), which is defined by its distri-
bution function:

Fx1
...xn

(z1 ... zn) = P {Z(x1) ≤z1 ... Z(xn) ≤zn}.

It is not possible to make statistical inference
with a single realization of the random function,
because its distribution function cannot, in gener-
al, be known. Thus some assumptions on the sta-
tistical behaviour of the random function have to
be made in order to proceed with the statistical
analysis. Geostatistical models can become
increasingly elaborate by increasing the number
of assumptions, but it is preferable to keep the
assumptions to a minimum in order to describe in
a realistic manner the phenomenon being ana-
lyzed.

Most assumptions consider that the regional-
ized variable repeats itself in space and the sam-
pling is representative of the regionalized vari-
able, i.e. if we were to repeat the sampling over
the same study area A we would obtain the same
results (statistically). In linear geostatistics (the
simpler and more widely used geostatistical meth-
ods in fisheries science), the assumptions taken
are of stationarity and isotropy.

1.2. Stationarity

The stationarity assumptions are taken on the
first and second order moments of the distribution
function (Journal and Huijbregts, 1978; Myers,
1989).

The first order moment does not depend on
location:

E [Z(x)] = m, ∀ x.

The second order moments (centered) are:

E [(Z(x) - m(x))2] = Var[Z(x)], variance;
E [(Z(x1) - m(x1)) (Z(x2) - m(x2))] = 
E [Z(x1) Z(x2)] - m

2, ∀ x;
E [(Z(x1) -Z(x2))

2]-E2 [Z(x1)-Z(x2)] = 
E [(Z(x1)-Z(x2))

2], ∀ x.

Letting x1=x and x2=x+h (where h is a vector of
distance) the last two expressions become:

E [Z(x) Z(x+h)] - m2 = C(h),
covariogram function (E1);
E [(Z(x)-Z(x+h))2]/2 = γ (h),
variogram function (E2).

Under the second-order stationarity hypothesis,
the following identities are useful:

Var [Z(x)] = C(0),
γ (h) = C(0) - C(h).

Both, γ(h) and C(h) can be used to characterize
the structure of spatial variability of Z(x) by means
of their estimators (see below). Variations of these
functions are also employed in the geostatistical lit-
erature, such as correlogram, relative variogram,
madogram, etc. (Cressie, 1991; Maynou et al.,
1996).

γ (h) is more general than C(h) because it
assumes only that the variance of the increments is
finite. The concept of finite variance of the incre-
ments in the variogram is called the intrinsic
hypothesis (Matheron, 1971). This hypothesis is
weaker than the second-order stationarity hypothe-
sis and includes it.

Second-order stationarity hypothesis and the
intrinsic hypothesis require an unlimited domain,
but in practice the analysis is limited to a finite
field. Within the specific spatio-temporal scale of
the problem to be addressed it is recommended to
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check that our data do not depart to a great extend
from these hypotheses. Preliminary exploratory
data analysis can be used to verify the adequacy of
the data to the assumptions being taken (Cressie,
1991; Maynou et al., 1998).

1.3. Anisotropy

If the regionalized variable under study shows
the same spatial structure on every direction (α)
then the phenomenon is isotropic. When there
exists anisotropy, then γ (h) and C(h) are functions
of a also: γ (h,α) and C(h,α). There exist two types
of anisotropy (David, 1977; Isaaks and Srivastava,
1989). In the case of geometric anisotropy the spa-
tial continuity in one of the directions is different
but of the same nature than in other directions. The
problem can be reduced to isotropy by correcting
the units of the anisotropic axis (affine transforma-
tion of the Euclidean space by an anisotropy coef-
ficient, Cressie, 1991).

In the case of zonal anisotropy the nature of the
spatial variability is different in one of the direc-
tions (Isaaks and Srivastava, 1989). This can be

illustrated by considering a water column (R3): the
spatial continuity over the plane x1, x2 is of the same
nature, while in x3 (vertical axis) it is fundamental-
ly different and depends on the gravity (Margalef,
1991, pp. 136-139). In order to incorporate zonal
anisotropy in the spatial modeling of Z(x) it is nec-
essary to obtain independent or external informa-
tion.

2. STRUCTURE FUNCTIONS

2.1. Experimental variogram and covariogram:

The underlying autocorrelation function of a
random function Z (x) is often unknown but under
the stationarity conditions detailed above, it can be
estimated from the observations Z (xi). Expe-
rimental variograms ^γ (h), or covariograms
^

C (h), are computed first and later fitted to a theoret-
ical variogram function. The spatial autocorrelation
descriptors are computed as follows (estimators
obtained by the method of moments, Matheron,
1962):
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1
^γ (h) = ––––––– ∑

N(H)
(Z(xi)-Z(xj))

2,          (1)
2N(h)

where h is a vector of distance, including a user-
specified tolerance in irregular samplings, and
N(h)={(xi, xj): xi-xj=h; i,j=1...n,} is the number of
pairs used in computing the experimental vari-
ogram for each distance class. The experimental
covariogram is (Matheron, 1962):

1^
C(h) = ––––––– ∑

N(H)
(Z(xi)-Z

–
) (Z(xj)-Z

–
), (2)

N(h)

1  n

where: Z
– 

= ––∑Z(xi).n  i=1

The vector h can be computed for specified
directions α yielding directional variograms or
covariograms.

2.2. Variogram models

Given that γ (h) is of more general use than C(h)
or other related functions, the remaining of this
review is illustrated with the variogram function
and the experimental variogram. An advantage of
using γ (h) is that the variogram is defined for
intrinsically stationary processes, which is a class
including second order stationary processes. Also,  ^γ
(h) (Matheron, 1962) is an unbiased estimator of γ
(h), while  

^
C(h) is biased of order O(1/n) when esti-

mating C(h) (Cressie, 1991, p.71); however, an
unbiased estimator of  

^
C(h) has been proposed by

Isaaks and Srivastava (1989).
To proceed with the geostatistical modeling the

experimental variogram needs to be fitted to a the-
oretical variogram function. The latter has to com-
ply with certain mathematical conditions
(Matheron, 1971; Cressie, 1991). Some valid mod-
els defining variogram functions are shown in Fig.
A (Journel and Huijbregts, 1978; Cressie, 1991).
The models depicted include a constant c0, which is
known as the nugget effect (see below). The for-
mulae used to compute the variogram function are
as follows:

2.2.1. Transition models: γ(h) grows continu-
ously up to a certain range α where it stabilizes
around the sill C(0)= c0 + c’. The range α is the dis-
tance beyond which there is no spatial correlation

among samples. γ(h) reaches the sill only asymp-
totically in the exponential model and oscillates
around the sill in the wave (or hole-effect) model.

3 h  1 h3

c0 + c’ ( – – - – – ) h < a
a. Spherical model: γ (h) = { 2 a   2 a3 ,

c0 + c’ h ≥ a

when h=a, γ (h) = C(0).

h
b. Exponential model: γ (h) = c0 + c’ { 1 - e - –

a },

when h=3a, γ (h) = 0.95 C(0).

h
a sin ( – )a

c. Wave model: γ (h) = c0 + c’ { 1 - ––––––––– },
h

reaches the sill periodically, for h=π a and multi-
ples.

h
2

d. Gaussian model: γ (h) = c0 + c’ { 1 - e - –– },a2

for h= , γ(h) = 0.95 C(0).

2.2.2. Non-transition models: Their general
equation is γ (h)=c0 + p hb. When b=1, the equation
yields the linear model; when 0<b<2, the equation
yields the power (or fractal) model. When the
growth of the variogram is of order two or higher,
the intrinsic hypothesis is violated. In such cases,
there exists a drift or trend in the regionalized vari-
able. The drift has to be separated from z(x) and
modeled independently (Sullivan, 1991).

A combination of the models given in 2.2.1 and
2.2.2 can be used to model nested structures.
Nested structures are useful to characterise spatial
phenomena that present different variogram models
at different distance ranges.

There exist a number of methods for fitting the
experimental variogram to a theoretical variogram
model. The most common method consists in
graphically fitting the two or three parameters that
define the theoretical model. This simple method is
very useful for well-defined experimental vari-
ograms, which easily suggest the variogram func-
tion to choose. Some mathematical methods for
variogram fitting are reviewed by Cressie (1991,

3a
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pp. 90-104) and include maximum likelihood
methods, least squares methods or cross-valida-
tion. However, a very accurate fitting of the vari-
ogram model is not essential when using the fitted
model in spatial interpolation, as our own
(Maynou, 1995) or Sheshinski’s (1979) simulation
results show.

2.2.3 Some problems encountered when using
Matheron’s estimator: 1) This estimator is not
robust to outliers in the data set. A robust estimator
has been proposed by Cressie and Hawkins (1980).
2) The fitting of the experimental variogram
reduces the spatial variability of the original data
set. This implies that the estimation variance com-
puted by kriging (see below) underestimates the
real variance. An approach to this problem was
investigated by Bárdossy et al. (1988, 1990) using
fuzzy set theory.

2.3. Nugget effect

Although strictly γ(0)=0, the function γ(h) often
shows a discontinuity at the origin due to small-
scale spatial phenomena. It is termed the nugget
effect and is simbolized as c0 in the equations. It
originates from the fact that at a scale smaller than
the minimum distance between samples, γ(h) can-
not be studied from the experimental data set. It can
be interpreted in a number of ways, depending on
the phenomenon under study: as white noise
(Matheron, 1962), measurement error, or existence
of spatial structure at distances smaller than min
||xi-xj|| (Cressie, 1991). When the nugget effect is
observed over the entire range of h (flat variogram),
the absence of spatial structure at the scale of study
can be assumed.

To ascertain the contribution of a measure-
ment-error nugget effect to the overall variance of
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TABLE A.1. Types of kriging classified according to assumptions on the data and on the predictor. m(x)=E[Z(x)]
is the mean of the regionalized variable, which can be constant (m) or not (m(x)) over the field of study. Z(x)
and Y(x) are random functions. See review in Cressie (1991).

Assumptions Linear predictor Non-linear predictor

m and γ (h) known Simple Kriging (Matheron, 
1962)

m stationary, γ (h) estimated Ordinary Kriging Disjunctive Kriging 
from Z(xi) (Matheron, 1962) (Matheron, 1976)

Indicator Kriging (Journel,
1983)
Isofactorial Models 
(Armstrong and Matheron, 
1986a,b)

Z(x)=m(x)+Y(x), m(x) Universal Kriging 
deterministic, Y(x) (Matheron, 1969)
stationary and γ(h) 
unknown

Z(x)=m(x)+Y(x), filtering of Intrinsic Random 
m(x), general covariance of Functions of order k (IRF-
Y(x) computed from Y(xi). k) (Matheron, 1973)

Z(x)=m(x)+Y(x), m(x) Markov Random Fields 
known, distribution of Y(x) (MRF) (Besag, 1974)
multinormal, covariance 
function known.

Normalization of data: Trans-Gaussian Kriging 
Z(x)=φ(G(x)), where G(x) is (Cressie, 1991)
multinormal

Logarithmic transformation Lognormal Kriging 
of data (Rendu, 1979; Journel, 

1980)



the phenomenon it is necessary to sample with
replicates. When the nugget effect is thought to
originate from a small-scale spatial phenomenon,
it is advised to sample with different spatial inten-
sities, with areas of increased sampling effort at
small distances. The contribution of c0 to the
overall estimation variance is important and spe-
cial attention has to be given to correctly model
this parameter (Brooker, 1986).

3. SPATIAL PREDICTION

One of the most important aspects of spatial
modeling regards the possibility of making statis-
tical inference of a spatially autocorrelated vari-
able. Here we will focus on the aspects of spatial
prediction (estimation) of the value of Z(x) at
points not sampled (interpolation) or over areas
where a mean or global estimate has to be
obtained. The process of estimating the value of
Z(x) at unknown locations is termed kriging
(Matheron, 1963). Kriging over a grid of points is
very useful to obtain an accurate cartography of a
resource and in this regard can be seen as an
interpolation or mapping method (point kriging).
Estimating the value of Z(x) over a bounded area
is known as block kriging and can be used as a
direct method of biomass assessment in fisheries.

The predictor (estimator) of Z(x) at x0 is noted
Z*(x0) and its estimation error Z(x0) - Z*(x0). The
theoretical estimation variance is: E(Z(x0) -
Z*(x0))

2. Theoretical considerations (Cressie,
1991, p. 109) indicate that it is possible to obtain
two general classes of unbiased predictors: linear
predictors and non-linear predictors. Combining
the several assumptions and the two classes of
predictors, different types of kriging are obtained.
They are summarized in Table A.1, with the most
significant reference citations added. Here we
will illustrate in detail the linear geostatistical
method of ordinary kriging and the non-linear
method of disjunctive kriging. The former is the
general method employed in most geostatistical
fisheries papers (Conan et al., 1988; Maynou et
al., 1996, 1998; Simard et al., 1992). The latter
has a specific interest in fisheries as it allows esti-
mating the probability that Z*(x0) be above a cut-
off value. It can be seen that the simpler kriging
methods require less assumptions and less para-
meters to be estimated and they are probably
more realistic.

3.1. Ordinary kriging

3.1.1. Point kriging: If Z(x) is a stationary ran-
dom function, the difference R(x)=Z(x0) - Z*(x0) is
also a random function, where Z(x0) is the real value
of Z(x) at x0 and Z*(x0) is its estimator. As Z(x0) is
unknown, R(x) is also unknown but under the sta-
tionary hypotheses specified in section 1.2 of the
Appendix, the computation of its two first moments
becomes possible:

mE = E [R(x)] and σE
2 = 

Var [R(x)], called the estimation variance

With these two moments, we can specify the
quality of the estimation:

mE= 0, unbiased and σE
2 small.

Matheron (1963) proposed a linear unbiased
estimator Z*(x0) of Z(x0) from the observed values
Z(xi). This estimator and its variance can be com-
puted analytically and minimized under certain
conditions (Matheron, 1971; Journel and
Huijbregts, 1978). The linear estimator of Z(x0) is:

Z*(x0) = Σi wiZ (xi), (3)

where wi are the kriging weights attributed to each
Z(xi), subject to Σ

i
= 1 in order to guarantee unbi-

asedness. The vector of weights to be given to each
observed value is obtained by solving a linear krig-
ing system of equations. Kriging is then an opti-
mized weighting of the samples using their auto-
correlation structure (Matheron, 1971). The system
of equations is (Matheron, 1971):

-Σ
n

j=1 
wj γ (xi, xj) - µ + γ (x0, xi) = 0,   i = 1...n{ (4)

Σ
n

j=1 
wi = 1

where µ is a Lagrange parameter and γ(a,b) is the
value of the fitted variogram function from point a
to b. The kriging (or estimation) variance is
(Matheron, 1971):

n

σ2

k 
(x0) = Σ wi γ (x0,xi) + µ (5)

j=1
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The kriging variance can be used to give a pre-
cision index to the point estimates Z*(x0) or to con-
struct confidence intervals for the estimate, e.g. a
confidence interval for Z*(x0) at the 0.05 p-level is
Z*(x0)± 1.96 σk(x0), under the assumption of nor-
mality of the data Z(xi) (Cressie, 1991).

The kriging variance is affected by several
factors, such as the type of kriging or the sampling
design. In order to minimize the variance and to
obtain precise estimates it is useful to bear in mind
that:

- The difference between the real underlying
variogram function and the fitted model from the
experimental variogram may be important. When
solving the kriging system of equations (4), the fit-
ted model is considered correct and the kriging
variance does not include the difference between
the underlying variogram function and the fitted
model. An approach to this problem has been inves-
tigated by Bárdossy et al. (1988, 1990) using fuzzy
set theory.

- The actual sampling design (equally or
unequally spaced samples, preferential sampling)
influences the kriging variance.

- The data itself Z(xi) can have high or low vari-
ance. Specially, the ratio c0 to c’ is very important.
High c0/c’ ratios contribute to a high estimation
variance. It is essential to give special attention to
the modeling of the first distance classes of the
experimental variogram to accurately assess the
nugget value (Brooker, 1986; Cressie, 1991).

3.1.2. Global kriging and change of support:
The mean density of the resource, Z(B), over the
estimation area B is (Matheron, 1971):

1
Z(B) = –––– ∫B Z(x)dx , (6)

|B|
where |B| is the area (or volume): |B| = ∫B dx. The
global abundance of the resource is ZG(B)=Z(B) .

|B|.
The estimation of Z(B) from the data Z(xi) is

complicated by the problem of change of support
(Matheron, 1971; Journel and Huijbregts, 1978).
The samples are defined over a support b, while
Z(B) is defined over a block |B|. Additional vari-
ance terms (Journel and Huijbregts, 1978, pp. 77-
123, including computer programs) are added to
the kriging equations given above to include the
error made when estimating Z(B) from the Z(xi).

These variance terms can only be computed ana-
lytically when working over simple geometric
shapes, and they have to be solved by numerical
approximations in cases where global estimates
have to be produced over irregular contours or in
places of complex topography (Conan et al.,
1994).

The problem of change of support is encoun-
tered when trying to estimate the global fish abun-
dance over a large area (in our case study ~ 100
km2) from trawl hauls which can be considered
point samples (~ 0.01 km2).

Other types of kriging, e.g. universal kriging or
kriging with intrinsic random functions of order k
can be more suitable to specific applications, espe-
cially when the data have a clear spatial trend,
which can be modeled and included in these more
advanced types of kriging (Matheron, 1969; 1973;
Besag, 1974; Rendu, 1979; Journel, 1980; Cressie,
1991). For a fisheries application, see Sullivan
(1991), who modeled the spatial trend stemming
from the dependence of fish abundance with depth.

3.2. Non-linear geostatistics and disjunctive
kriging

Non-linear geostatistics are of interest in fish-
eries science as it allows computing the probabili-
ty that an estimated level of abundance is higher
than a user-defined cut-off value. This cut-off
value can be chosen, for instance, as a value
beyond which the resource becomes economically
exploitable. In mathematical terms, the problem is
to find an approximation to the conditional expec-
tation P{Z(x0)≥z0 | Z(x)}, from the data values only.
One such approximation is illustrated by disjunc-
tive kriging (Matheron, 1976). Other non-linear
methods are indicator kriging (Journel, 1983) or
isofactorial kriging models (Armstrong and
Matheron, 1986a; 1986b).

An essential step in disjunctive kriging is to
find a transformation φ of the original data,
Z(x)=φ(Y(x)) such as to guarantee marginal nor-
mality in the bivariate distribution F1,2(z1, z2). Then
F1,2 is expressed in terms of F1 and F2 (the margin-
al distribution functions). The non-linear estima-
tor is:

n

Z*(x0) = Σ fi (Z(xi)), 
i=1

which cannot generally be solved analytically.

132 F. MAYNOU



The fi are approximated by expansions of
Hermite polynomials of order K, as follows:

K

hi (y) = fi(φ (y)) = Σaikηk (y),   i = 1...n,
k=0

K

φ (y) = Σbkηk (y),
k=0

where ηk are Hermite polynomials of order K and
the coefficients aik are n x K unknowns. The k=1...K
system of equations is:

n            k                     k

Σaikρi,j = bk ρ0,j ,   j = 1...n,
i=1

where ρi,j=1-γY (h)/C(0), Rendu (1980). These aik are
employed in the computation of approximate esti-
mator:

n      K

Z*(x0) ≅Σ Σaikηk (φ-1(Z(xi))).
i=1   k=0

Its estimation variance is given by:

K                   K         n

σ2
dk (x0) ≅Σ b2

k - Σbk Σaik ρk
0,i.

k=0 k=0     i=1

The value of K chosen to truncate the Hermite
polynomial is an important and subjective factor
that may influence the quality of the estimation.
Values of K=10 or higher can be recommended. An
additional practical problem is the need to invert K
matrices of n x n, which can slow down the com-
puting process considerably. The estimation of Z(B)
is analogous to Z(x0), taking into consideration the
point-to-block correction as discussed in 3.1.2 of
the Appendix. Disjunctive kriging algorithms can
be found in Yates et al. (1986).
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