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SUMMARY: Monitoring temporal and/or spatial variations in fish size-at-age data can often provide fisheries managers 
with important information about the status of fish stocks and therefore help them identify necessary changes in management 
policies. However, due to the multivariate nature of size-at-age data, commonly used single-age-based approaches ignore 
covariance between sizes of different age groups. Different results may therefore be derived when evaluating temporal vari-
ations using different age groups for the comparison. The possibility of atypical errors in size-at-age data due to ageing and 
measurement errors further complicates the comparison. We propose a two-step approach for developing an indicator for 
monitoring temporal and/or spatial variation in size-at-age data. A robust approach, minimum volume ellipsoid analysis, is 
used to identify possible outliers in size-at-age data. Then a weighted principal component analysis is applied to the data with 
the identified outliers down-weighted. An indicator is defined from the resultant principal components for monitoring tempo-
ral/spatial variations in size-at-age data. We illustrate the proposed approach with size-at-age data for cod (Gadus morhua) 
in the northwest Atlantic, NAFO subdivision 3Ps. The overall size-at-age indicator identified shows that the pre-1980 year 
classes tend to have a much higher size-at-age than the post-1980 year classes.
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RESUMEN: Desarrollo de un indicador de talla para poblaciones de peces. – El seguimiento de las variaciones 
temporales y/o espaciales de datos de talla por edad en peces puede, a menudo, aportar información a los gestores de pes-
querías sobre el estado de explotación de los stocks de peces y ayudarles a identificar los cambios necesarios en políticas de 
gestión. Sin embargo, debido a la naturaleza multivariante de los datos de talla por edad, las aproximaciones tradicionalmen-
te empleadas, basadas en el análisis de una sola clase de edad, ignoran la covarianza entre tallas de distintos grupos de edad, 
lo que puede generar distintos resultados cuando se analizan variaciones temporales mediante la comparación de distintos 
grupos de edad. La posible existencia de errores atípicos en datos de talla por edad, debidos a errores de atribución de edad 
o errores de medida, puede complicar más la comparación. Proponemos una aproximación en dos etapas para el desarrollo 
de un indicador para el seguimiento de variaciones temporales o espaciales en datos de talla por edad. Una aproximación 
robusta, conocida como análisis de elipsoide de volumen mínimo, nos permite identificar los posibles valores aberrantes en 
datos de talla por edad, y a continuación aplicamos el análisis ponderado de componentes principales a los datos con los 
valores aberrantes debidamente ponderados. Los componentes principales resultantes permiten definir el indicador para el 
seguimiento de las variaciones espacio-temporales en datos de talla por edad. Ilustramos la aproximación propuesta con 
datos por edad de bacalao (Gadus morhua) in el Atlántico noroccidental, correspondiente a la subdivisión 3Ps de la NAFO. 
El indicador general de talla por edad obtenido muestra que las clases de edad anteriores a 1980 tienden a tener una talla por 
edad mucho mayor que las clases de edad posteriores a 1980.

Palabras clave: talla-por-edad, robusto, análisis de componentes principales, análisis de elipsoide de volumen mínimo, 
indicador de talla.
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INTRODUCTION

Size-at-age data are important in understanding 
the dynamics of fish populations. They are essential 
in estimating fish stock biomass and productivity. 

The growth in size between two ages can be estimat-
ed by evaluating the differences in the sizes of these 
two age groups. This can provide fisheries managers 
with important information such as the fish growth 
rate and the age at which fish attain their highest 
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growth rate (Nikolskii, 1965; Paloheimo and Dickie, 
1965; Myers et al., 1997). Such information is essen-
tial for formulating management policies (Hilborn 
and Walters, 1992). Many fish stock assessment 
models, such as yield-per-recruit models and delay-
difference models, require size-at-age as input data 
(Ricker, 1975; Hilborn and Walters, 1992).

Many biotic and abiotic environmental variables 
can affect growth in size, and subsequently fish 
size-at-age values (Nikolskii, 1965; Paloheimo and 
Dickie, 1965; Moreau, 1987). A direct consequence 
of such a process is fluctuation in fish size-at-age 
values between different year classes (Beacham, 
1983; Chen and Harvey, 1995). Closely monitor-
ing temporal/spatial changes in size-at-age values 
reveals some important information about the status 
of fish stocks and can help fishery managers iden-
tify the necessary changes in management policies 
(Beverton and Holt, 1957; Ricker, 1975; Charnov, 
1993). For example, a substantial decrease in fish 
stock biomass or overexploitation may lead to a de-
crease in the age of fish when they attain maturity, 
which may in turn result in a decrease in size-at-
age (Nikolskii, 1965; Roff, 1984; Chen and Harvey, 
1994; Jensen, 1996).

It can be difficult to evaluate temporal/spatial 
changes in fish size-at-age data due to its multivari-
ate nature. In practice, such an evaluation is often 
conducted by examining the size of fish at each age 
separately or by evaluating the size of fish in an age 
group arbitrarily selected by researchers (Beacham, 
1983; Lilly, 1996). This single-age-based approach 
ignores the covariance between sizes of different 
ages (e.g. size at age 1 affects size at age 2). Different 
results may arise from using different age groups for 
evaluating temporal/spatial changes in sizes.  

Multivariate fisheries data are often analyzed us-
ing principal component analysis (PCA; Manly, 1991; 
Jackson, 1993; Chen and Harvey, 1995). This method 
is one of the most commonly used data-exploratory 
multivariate ordination techniques and allows data 
relationships and reductions in dimensionality to be 
studied (Rao, 1964; Jackson, 1993). This multivariate 
approach can reduce the size of data (i.e. the number 
of variables), while retaining the essential information 
inherent in the original data.

It is very likely that there will be atypical errors in 
size-at-age data as a result of errors in ageing, small 
sample sizes of an age group, and measurement er-
rors (Chen and Mello, 1999). This leads to erroneous 
results when evaluating temporal/spatial patterns of 

fish size-at-age data (Chen and Harvey, 1994; Chen 
et al., 1994). Thus, it is important to evaluate the 
possible existence of atypical data when analyzing 
size-at-age data.

In this study, we propose using PCA to sum-
marize size-at-age data. As fisheries data tend to be 
subject to atypical errors (Chen and Harvey, 1994; 
Chen et al., 1994), a two-step procedure is proposed: 
a robust multivariate approach is applied to size-at-
age data to identify outliers in the data, and then a 
weighted PCA is applied with the defined outliers 
down-weighted. The resultant principal components 
(PCs) are interpreted with respect to the original var-
iables (Manly, 1991; Jackson, 1993). An indicator is 
then identified from the resultant PCs for monitor-
ing temporal/spatial variations in size-at-age data. 
The proposed approach is applied to size-at-age data 
from cod (Gadus morhua) in the northwest Atlantic, 
NAFO subdivision 3Ps. An overall size-at-age indica-
tor is developed for evaluating changes in size-at-age 
values of cod between different year classes.

METHODS AND MATERIALS

Identifying outliers for multivariate data

Fisheries data are commonly subject to errors of 
various sources (Hilborn and Walters, 1992; Chen and 
Paloheimo, 1998; Jackson and Chen, 2003). This may 
result in outliers when modelling fisheries data (Chen 
et al., 1994; Jackson and Chen, 2003). Commonly 
used statistical methods such as PCA can be severely 
biased by the existence of outliers in the data (Rous-
seeuw and Leroy, 1987). Outliers are much more dif-
ficult to identify in a multivariate analysis than in a 
univariate analysis (Rousseeuw and Leroy, 1987). The 
squared Mahalanobis distance (Krzanowski, 1988) is 
the commonly used method for identifying outliers in 
multivariate analyses. For a data matrix with K vari-
ables and each variable has n observations,

X =

x ... x ... x
. . . . .

x ... x ...

1 1 i 1 K 1

1 j i j K jj

1 n i n K n

x

x ... x ... x

=

1

j

.
x

x
..

.

nx

the squared Mahalanobis distance is calculated as
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MD2 (xj, X) = (xj – T(X)) C–1(X)( xj – T(X))t

for each point xj, where bold letters are vectors or ma-
trices, T(X) is the arithmetic mean of the data set X 
and C(X) is the classical covariance estimate. These 
are calculated as
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Points with large MD2 (xj, X) values are identi-
fied as outliers and are subsequently deleted from the 
sample used for further analyses. This approach works 
well if there is only one single outlier (Rousseeuw 
and van zomeren, 1990), but it may not work prop-
erly when there are more than one outlier because one 
distant outlier can cause all the other outliers to have 
small MD2 (xj, X). Some refinements of this approach 
have been proposed, such as iterative deletion, itera-
tive trimming, and depth trimming (Campbell, 1980; 
Devlin et al., 1981; Rousseeuw, 1985). However, there 
are still problems associated with the MD2 approach in 
these methods (Rousseeuw and van zomeren, 1990; 
Jackson and Chen, 2003). 

Rousseeuw (1984, 1985), proposed a robust meth-
od, the minimum volume ellipsoid (MVE), for identi-
fying outliers when estimating means and covariance 
for multivariate data. Although it is not uncommon 
that data from fisheries or ecological studies are con-
taminated by outliers, the effects of outliers on multi-
variate analyses (e.g. PCA, canonical correspondence 
analysis, and multiscaling methods) have received lit-
tle attention. The MVE has recently been used in other 
research fields, such as engineering and economics 
(Rousseeuw and Leroy, 1987), but its application in 
fisheries or ecological studies is limited (Jackson and 
Chen, 2003). 

An algorithm that involves extensive computer 
subsampling has been suggested for the MVE analysis 
(Rousseeuw and Leroy, 1987). This algorithm can be 
summarized as follows:

(1) For a multivariate data matrix X with K vari-
ables and n observations (as described above), draw a 
subsample of K+1 different observations, indexed by 
J = (j1, ..., jK+1), and calculate the arithmetic mean and 
the corresponding covariance matrix as 

T =
K +J

j J

1

1
∈

Σ jx

and C x x
J

t

j JK
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∈
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j J j J-T -T  where CJ is nonsingu-

lar;
(2) Calculate m2

J = [(xj – TJ) C
-1

J(xj – TJ)
t]h:n 

where h = (n + K +1)/2; in the above computation the 
ellipsoid should be inflated or deflated to contain ex-
actly h points (out of n points);

(3) Calculate PJ = (det(m2
J CJ))

1/2;
(4) Repeat the above procedure for a large number 

of subsample J, and retain the one with the lowest PJ; 
(5) For this retained subsample J, compute  

T(X) = TJ and C(X) = c2 (n, K)(χ2
K,0.50)

-1m2
JCJ, where 

c2 (n, K) is a small-sample correction term calculated 
as [1+15/(n-K)]2 and χ2

K,0.50 is the median of the χ2 
distribution with K degrees of freedom. 

The T(X) and C(X) calculated in step (5) are the 
MVE-estimated mean and covariance matrices.

Intensive sampling and computation are necessary 
in order to find the solution in the MVE analysis. The 
total number of subsampling required depends on the 
values of K and n (Rousseeuw and Leroy, 1987). It in-
creases quickly with an increase in K and/or n. Based 
on the MVE-estimated mean T(X) and covariance 
C(X), the following statistic, which is similar to MD2, 
can be calculated,

W
j j j

t2 1= − ( )( ) ( ) − ( )( )−x X C X x XT T .

For a data point xj, if Wj
 2> χ2

K,0.975, it is defined as 
an outlier, otherwise it is defined as a “normal” obser-
vation. 

Principal component analysis

Principal component analysis is a multivariate 
technique for examining the relationship between sev-
eral quantitative variables. Giving a data set with K 
numerical variables X1, X2, …, and XK, each of which 
has n individuals, PCA linearly transforms the vari-
ables X1, X2, …, and XK, to new variables Y1, Y2, …, 
and YK,. These new variables are the principal compo-
nents (PC). The original data observation X(i), which 
is the observation vector for the ith individual denoted 
as X(i)=(Xi1, Xi2, …, XiK)t, is transformed to the cor-
responding PC scores Y(i)=( Yi1, Yi2, …, YiK)t. Each 
PC is a linear combination of the original variables, 
with coefficients equal to the eigenvectors of the cor-
relation or covariance matrix of the K variables. The 
principal components are sorted by descending order 
of the eigenvalues, which are equal to the variances of 
the components (Rao, 1964). 
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Principal component analysis is often used to sum-
marize multivariate data and reduce the number of 
variables (Rao, 1964; Cooley and Lohnes, 1971). Di-
mensionality reduction is effective when q (q<K) of 
the components Y convey most of the sample infor-
mation inherent in X. In this case the original observa-
tions X(i) can be replaced by the first q elements of 
the corresponding PC scores. The number of variables 
measured in a fisheries or ecological study is often 
large. A PCA can be used to replace a large number of 
the original variables with a few PCs. These derived 
PCs are then used for further regression analyses with 
other variables (e.g. principal component regression 
analysis: Hill et al., 1977; Mason and Gunst, 1985; 
Vogt and Kolsett, 1987). 

A two-step procedure is proposed for developing 
an indicator for monitoring temporal/spatial varia-
tions in size-at-age data. The robust MVE procedure 
is applied first to size-at-age data to identify possible 
outliers in the data. In the next step a weighted PCA 
(SAS, 1987) is applied to the size-at-age data. For the 
weighted PCA, data identified as outliers in the MVE 
analysis are given a weight of 0 (thus effectively re-
moving the impact of these data in the PCA) and the 
other “normal” data are given a weight of 1. For size-
at-age data with K age groups observed for n years (or 
n year classes), the number of PCs derived from the 
PCA is K. The resultant K PCs are interpreted with re-
spect to the original size-at-age data using eigenvector 
values calculated from the PCA. This can establish the 
relationship between the PCs and original size-at-age 
data. If the correlation between the sizes of age groups 
is high, the first PC, which always explains the largest 
proportion of variance inherent in the original data be-
tween all PCs, will be a good indicator of the sizes of 
fish of all the age  groups included in the analysis. This 
PC can then be interpreted as an overall indicator of 
fish size-at-age. Temporal changes in size-at-age can 
be evaluated using the scores of the first PC. 

Application

Previous studies have shown that cod in many ar-
eas of northwest Atlantic Canada have experienced 
pronounced changes in growth over the last 20 years 
(Beacham, 1983; Hutchings and Myers, 1994; Lilly, 
1996; Shelton et al., 1996; Myers et al., 1997). Declin-
ing size-at-age was observed in some stocks during 
this period. However, previous studies that evaluated 
temporal changes in size-at-age data did not consider 
the multivariate nature of the data. Temporal varia-

tions in cod size-at-age data were usually evaluated 
separately for each age group (Beacham, 1983; Lilly, 
1996). Such an approach disregards covariance in siz-
es between different age groups. As temporal patterns 
may differ for different age groups, inconsistency may 
arise when different age  groups are used for evaluat-
ing temporal variation in size-at-age values.

In this study, the proposed two-step approach was 
applied to cod size-at-age data collected from a fish-
ery-independent bottom trawl survey in the northwest 
Atlantic, NAFO subdivision 3Ps. Size-at-age data 
were available for 20 year-classes from 1971 to 1990. 
The between-cohort variations in size-at-age data of 
cod were examined  using the PCs derived from the 
proposed method. Since cod is a long-lived fish spe-
cies, to avoid the problem of nonlinearity, only the 
first 6 age groups of size data were included in the 
analysis. We also log-transformed the data because, 
like many other fishery variables, size-at-age data tend 
to follow a log-normal distribution and normality is 
assumed in PCA.

 In order to make the size scales in different age 
groups comparable, log-transformed size-at-age data 
were standardized using the following formula:

y
x x

Si j

i j i

i

=
−

,

where xij is log-size at age i for year class j, x
i
and 

Si are the mean and standard deviations of logarithm 
sizes at age i across all year classes, and yij is standard-
ized log-size at age i for year class j. This standardiza-
tion did not change the temporal variation patterns in 
size-at-age, but it did ensure that size-at-age data had 
the same scale for different age groups.

RESULTS 

Variations in size were observed between year 
classes included in this study for each age group (Fig. 
1). The size-at-age values of the recent year classes 
tended to be smaller when compared with those of 
the 1970s year classes. However, because data were 
log-transformed and there were large differences in 
sizes between different age  groups, the differences in 
temporal variations between age  groups were difficult 
to evaluate from Figure 1 as commonly done when 
showing temporal variations graphically. 

The standardized log-transformed size-at-age data 
showed differences in temporal variations in sizes 
in different age groups (Fig. 2). Temporal variations 
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Fig. 1. – Variations in size (cm TL) of six age groups for the 1971 to 1990 year classes.
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Fig. 2. – Plot of standardized size-at-age data for six age groups of 20 year-classes from 1971 to 1990.
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were large for age groups 1, 2, 3 and 6, while the vari-
ations were relatively small for ages 4 and 5 (Fig. 2). 
In general, we conclude that the size-at-age tends to 
decrease for recent year classes. However, different 
interpretations could be derived with respect to de-
tailed temporal variations when different age groups 
were used.

Three year-classes, 1971, 1972, and 1974, were 
identified as outliers in the MVE analysis of the size-
at-age data. They were subsequently given a weight 
of 0 in the PCA. Eighty-six percent of the variance in 
the size-at-age data was explained by the first three 
principal components in the PCA. The first PC ex-
plained 56% of the variance, and the second and third 
PCs explained 17% and 13% respectively. PC4, PC5 
and PC6 together only explained 14% of the variance 
inherent in the original size-at-age data, and were thus 
not important to this study.

The correlation coefficients between size-at-age 
variables and the first PC in the eigenvector ranged 
from 0.50 for age 4 to 0.30 for age 1 (Table 1). Such 
a small range in the correlation coefficients suggests 
that the first component was an overall indicator of 
sizes for all six age groups. The correlation coeffi-
cients between the size-at-age variables and the first 
PC were positive for all six age groups (Table 1). This 
implies that a year-class with a larger score for the first 
PC tends to have a larger  size. 

The scores for the first PC varied greatly among 
year classes (Fig. 3). The 1971 year-class, which was 
identified as an outlier in the MVE analysis, had the 
largest value for the scores of the first PC. This indi-
cates that the 1971 year class had the largest size prior 
to age 7 among the cohorts included in this study. 
The score values (thus sizes) decreased for cod from 
year class 1971 to 1974, and then increased from year 
class 1974 to 1979. The sizes decreased again from 
the 1979 year class. From year class 1981 to the most 
recent year class included in this study, the sizes of 
cod prior to age 7 were much smaller than those for 

year classes in the 1970s (Fig. 3).
The correlation between the second PC and size 

at age 2 was positive and much higher than the cor-
relation between the second PC and other age groups 
(Table 1). Thus, the second PC was positively related 
to size at age 3. A year class with a large score for the 
second PC tended to have a large size at age 3. The 
correlation between the third PC and size at age 1 was 
positive and much higher than the correlation between 
the third PC and other age groups (Table 1). Thus, 
the third PC was positively related to size at age 1. A 
year class with a large score for the third PC tended 
to have a large size at age 1. The scores for both the 

Table 1. – Eigenvectors for the first three components in the prin-
cipal component analysis of logarithmic sizes (cm TL) at ages 1 to 

6 for cod in 3Ps. 

  Principal component
Log size at age PC I PC II PC III    

1 0.30 0.03 0.90 
2 0.45 0.41 0.07 
3 0.32 0.70 -0.31      
4 0.50 -0.16 -0.11      
5 0.45 -0.34 -0.11      
6 0.40 -0.46 -0.25      
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Fig. 3. – Plot of the first three principal components (PC) derived 
in the proposed principal component analysis of size data of age 

groups 1 to 6 for the 1971 to 1990 year classes.
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second and third PCs fluctuated for year classes from 
1971 to 1990 with no clear-cut patterns (Fig. 3).  An 
evaluation of the correlation coefficient between the 
size-at-age variables versus the second and/or third 
PC suggests that neither the second nor the third PC 
are a good indicator for sizes of all age groups, and 
thus cannot be used for evaluating overall temporal 
variations in size-at-age. 

DISCUSSION

Principal component analysis is commonly used to 
reduce the size of a large set of data without losing 
information inherent in the data (Jackson and Chen, 
2003). Of all the principal components derived in 
PCA, PC1 always describes the largest proportion of 
variations inherent in the original data, followed by 
PC2 and PC3.  Due to this characteristic of PC1, it is 
more likely to be a good overall indicator of size-at-
age data than the other PCs. This study suggests that 
PC1 is a good overall size indicator, which is consist-
ent with the above argument.

The size of fish in one age group is often chosen 
in fisheries studies as an indicator of fish size with-
out considering the size of fish in other age groups. 
This may result in different interpretations of spatial 
or temporal change in size-at-age data if different age 
groups are chosen. The approach we proposed in this 
study considers variations in all the age groups and 
derives an overall size indicator which reflects overall 
variations in sizes in all age groups better. 

A simulation study is often carried out in fisheries 
with data that has been simulated with a prior knowl-
edge of the statistical attributes in order to evaluate the 
performance of a proposed modelling approach (e.g. 
Chen and Paloheimo, 1998; Jackson and Chen, 2003).  
This kind of simulation study is a necessary step for 
developing and evaluating a new stock assessment 
model with unknown statistical properties. However, 
PCA is a standard multivariate statistical method and 
its statistical properties are well known. The perform-
ance of PCA in association with MVE has been eval-
uated in an extensive simulation study conducted by 
Jackson and Chen (2003). Thus, it is not necessary to 
run a simulation study to evaluate the performance of 
PCA when analyzing size-at-age data in this study. 

An assumption implied in a PCA is that the rela-
tionship between variables included in the PCA is lin-
ear (Rao, 1964; Manly, 1991). This assumption may 
be violated when analyzing fish size-at-age data be-

cause the growth rate for size tends to decrease with 
age and the relationship between sizes of different 
ages may be nonlinear, especially for long-lived fish 
(Ricker, 1975). Two approaches can be used to avoid 
this problem: transforming size-at-age data (e.g. loga-
rithm) and grouping age classes so as to ensure that the 
relationship between sizes of age classes within each 
group is linear. These two approaches can be used to-
gether. If grouping of age classes is used, PCA should 
be conducted separately for each age group. In this 
study, we only include the first six age groups. Since 
cod age groups tend to grow quickly (Chen and Mello 
1999), their relationship is more likely to be linear. 

The MVE analysis showed that three year-classes 
(i.e. 1971, 1972 and 1974) were outliers. This might 
have resulted from exceptional values in some age 
groups for these year classes. The 1970 year class had 
exceptionally high values for sizes at ages 5 and 6. The 
1971 year class had high values for sizes at ages 4 and 
5, while the 1974 year classes had exceptionally low 
sizes at age 4. However, without knowing the level 
of measurement errors associated with these size data, 
it is difficult to tell whether these year classes were 
defined as outliers as a result of exceptionally large 
measurement errors or for other reasons. If it is rea-
sonable to assume that measurement errors are more 
or less the same for all data included in the study, the 
exceptional values may result from exceptional growth 
or the inclusion of a large number of samples from a 
different stock with different growth patterns for these 
three year-classes (Rollet et al., 1995; Lilly, 1996).  

Different hypotheses have been developed to 
explain the decrease in size-at-age observed in cod 
populations in recent years. These hypotheses include 
large scale temporal variations in water temperature 
(Beacham, 1983; Hutchings and Myers, 1994; Gomes 
et al., 1995), changes in stock biomass (Hanson and 
Chouinard, 1992; Swain, 1993), stock overfishing 
(Trippel, 1998) and variation in prey species biomass 
(Krohn et al., 1997). Regardless of the factors caus-
ing the decrease in size-at-age, most authors suggest 
that this phenomenon is indicative of population stress 
(Kovtsova, 1995; Trippel, 1995; 1998). If observa-
tions/data are available for these environmental vari-
ables, the overall indicator for size-at-age identified in 
the proposed PCA can be used as a variable represent-
ing fish size in regression analysis with these environ-
mental variables. A principal component regression 
analysis can identify whether the temporal variations 
in fish size are related to the temporal variations of 
environmental variables (Hill et al., 1977; Vogt and 
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Kolsett, 1987).  This approach can reduce the number 
of variables without losing information inherent in the 
original variables. When size-at-age data are used di-
rectly in an analysis with environmental variables, an 
arbitrary decision has to be made when determining 
which age group should be included in the analysis. 
Information for other age groups that are not included 
in the analysis is thus lost.

The size-at-age-1 data were obtained from small 
sample sizes (Lilly, 1996), and were thus less reliable. 
However, although this may undermine any reliable 
interpretation when using this kind of data series in 
a conventional univariate analysis, it is less disrup-
tive to the method proposed in this study because it 
assesses the cumulative effect of size-at-age over the 
total period of time the cohorts are considered in the 
study. The ability to minimize disruptions from data 
quality or availability issues is an important strength 
of the methodology proposed in this study.
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