
FLOW CYTOMETRY: A TOOL FOR PHYTOPLANKTON ANALYSIS 135

INTRODUCTION

The aquatic environment is subject to dynamic
processes on widely varying time and space scales.
The scale of the smallest independent biological
unit, the cell, remains a key scale for interpretation
and calibration of data. Although traditional micro-
scopical analysis is unsurpassed regarding species
identification power, there are drawbacks in terms of
enumeration, quantitative character and speed. Flow
cytometry allows fast counting and optical analysis
of individual particles, although with less detailed
species discrimination. Li (1995) for instance

showed with flow cytometry that Prochlorococcus
spp. comprised 78% of the cells of central North
Atlantic Ocean ultraphytoplankton, representing
28% of total fluorescence, a measure of chlorophyll
biomass, and about 11% of total light scattering,
being a measure of carbon biomass. In addition, the
high number of cells analysed by flow cytometry
permits more statistically significant results, impor-
tant for instance to study population and community
structures, as shown also by Gisselson et al. (1999)
who used cell cycle analysis to estimate in situ gross
growth rates. The first flow cytometric studies in
aquatic sciences were published over a decade ago
(Paau et al., 1978, 1979; Trask et al., 1982; Yentsch
et al., 1983a). Milestones were the special issue of
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Cytometry (Yentsch and Horan, 1989) and the
NATO Advanced Study Institute on Individual Cell
and Particle Analysis in Oceanography (Demers,
1991). Overviews were presented by Yentsch (1990)
and Olson et al. (1991). Samples containing fresh
water or coastal water phytoplankton populations
are much more heterogeneous in terms of size, mor-
phology and concentration as compared to the blood
cell samples for which flow cytometers were origi-
nally developed. Aquatic field samples are analysed
quite regularly though in the practice of aquatic sci-
ence, mainly using commercially available standard
equipment, and occasionally using experimental
instrumentation. Particles in the open oceans are
usually small, allowing oceanographers to use flow
cytometers without many problems, which led to the
discovery of Prochlorococcus (Chisholm et al.,
1988), and the determination of the “smallest
eukaryotic organism” (Courties et al., 1994). Detec-
tion of ‘new’ species or groups using flow cytome-
try still occurs (Corzo et al., 1999). Parallel to the
increasing application to algae, and with the advent
of more sensitive optics, flow cytometers were also
used to measure aquatic bacteria (Button and
Robertson, 1990), contributing to the awareness of
the importance of aquatic bacteria over the past
years (Azam and Smith, 1991). Robertson and But-
ton (1989) developed procedures for characterizing
aquatic bacteria according to population, cell size,
and apparent DNA content. Endo et al. (1997)
described a rapid flow cytometry technique based on
fluorescein diacetate to distinguish between viable
cells and dead cells for various sea water bacteria.
Flow and image cytometry were used by Sieracki et
al. (1995) to demonstrate overestimation of het-
erotrophic bacteria in the Sargasso Sea by standard
microscopical technique. The most recent achieve-
ments in terms of detection of small particles are the
enumeration of aquatic viruses (Marie et al. 1999),
making FCM a potentially useful tool for studies of
the structure and dynamics of virus populations in
natural waters and basic virus-host cell interactions
(Brussaard et al. 1999). 

All institutes of the survey are or were using flow
cytometry for the analysis of field samples. Twelve
institutes say they use, used or will use flow cytom-
etry on a routine basis. The 9 institutes who are cur-
rently doing regular analysis of field stations have
sampling strategies varying from weekly to yearly
analysis, depending on water type (estuarine > shelf
> oceanic), logistics (close to the lab > far away) or
otherwise. The combined numbers of stations cov-

ered are: 17 stations at a weekly or biweekly basis,
13 stations at a monthly or bimonthly interval and
more than 20 stations once per season or year. Sam-
ple collection varies between 1 and 10 depths sam-
pled per station. The total number of field samples
processed annually varies from about 50 to about
1000 per laboratory. Besides daily laboratory oper-
ation, 7 institutes employ the flow cytometers on
research cruises on a more or less regular basis.
During the cruises, typical strategies are daily
analysis of depth profiles, up to sampling every few
hours.

TECHNOLOGY

Measuring principle

Figure 1 is a schematic presentation of the mea-
suring principle and data processing of a flow
cytometer. Flow cytometers measure light scatter
and fluorescence of particles passing a zone of
intense illumination, carried and centred inside a
high speed water jet, free flowing in air or in a
quartz flow cuvette. Most cytometers use a laser for
illumination. Laser light is monochromatic, with
ultraviolet, visible or near infrared lines. Small air
cooled argon lasers delivering 488 and 515 nm
beams of up to about 100 mW are most commonly
used. The cells are pumped in a single file through
the analysis point at typically 1,000 cells or more
per second, with a practical analysis speed of 1-5
minutes per sample. The successive scattering and
fluorescence signals generated by each passing par-
ticle are detected by photomultiplier tubes or photo-
diodes. The detection sensitivity is sufficient to
analyse submicron particles. The electronics inter-
face converts these raw signals into correlated digi-
tal data, stored on disc for data analysis and presen-
tation as distributions (univariate) or multivariate
scatterplots or grey/colour maps. Instruments may
have a sorting device, allowing the physical separa-
tion of selected cells from the main stream during
analysis (Reckermann, 2000). Wallner et al. (1997)
sorted bacteria from lake water and sediment based
on differences in light scattering, DNA content,
and/or using rRNA-targeted oligonucleotide probes.
The cells of a single population give similar results,
showing as a single peak in a univariate distribution,
or a close group of data points in a multidimension-
al scatter plot. In addition to the instrumental prop-
erties, it is the biological variance, such as differ-
ences in cell size, life cycle, pigment content etc.,
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that causes the variance seen as the width of the
peaks or clusters (Campbell et al., 1989a, b, c). With
mixed cultures or field samples, more clusters
appear, more or less separated, representing groups
with different optical properties. Figure 2 shows a
typical bivariate plot of a sample containing several
species. The data points from a cluster can be select-
ed to yield distributions of physiological properties
of the cells belonging to this group (Li, 1990;
Demers et al., 1992). Exploration of data analysis
tools such as multivariate curve-fitting and diversity
indices is important in this respect. The discriminat-
ing power of the analysis increases if more indepen-
dent optical properties of the particles are measured,
or if specifically binding fluorescent probes are
used. This is important to allow classification of the

particles.Whereas in the biomedical field, the
cytometrist is faced with perhaps four to six or so
cell types to differentiate, in marine waters the num-
bers of cell types are typically up to an order of mag-
nitude greater. The development of procedures for
automated data analysis is crucial. Recent advances
achieved in neural network computing are promis-
ing (Smits et al., 1992; Balfoort et al., 1992b;
Frankel et al., 1989, 1996; Wilkins et al., 1996;
Jonker et al., 2000). 

Commercial instruments

The number of flow cytometers world wide is
probably around the 10.000 figure. Designed for
analysis and sorting of mammalian cells, by far the
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FIG. 1. – Schematic drawing of the flow cytometer operating principle and signal processing. The sample is injected in a sheath fluid that fun-
nels it into a thread, so thin that the particles are well separated, intersecting a focussed laser beam one by one at high flow speed. Here, each
particle emits a short (typically a few microseconds) flux of photons by scattering or fluorescing. Photodetectors convert those into electri-
cal pulses. Small particles give similar, gaussian shaped pulses, following the distribution of light in the laser focus. From these signals (top
electronics panel),  either the pulse maximum or the pulse area is sensed with analog electronics, subsequently digitized and stored on com-
puter disc in so-called list mode data files. In these files each detected particle is listed with its indiviual pulse values, one for each detector.
The directly available listmode data per cell may also be used to control a sorting module for the real-time physical selection (flow sorting)
of particles downstream of the laser focus. The shape and length of big diatoms and filaments dominate their detector pulses, impairing ana-
log electronic processing. This requires direct digitization of the detector output (lower panel) to obtain correct pulse area (integral) values
and to allow any other type of pulse analysis in principle, as applied in the CytoBuoy instrument (Dubelaar et al., 1999, Dubelaar and 

Gerritzen, this volume).



largest part, say about 95% of the instruments are
used in biomedical applications. The rest are
employed in a variety of fields such as pharmaceuti-
cal industry, food and beverages industry, diary
industry, botany, marine science, limnology and
drinking water industry. Becton Dickinson (BD
Immunocytometry Systems, San Jose, CA, USA)
and Coulter (Beckman Coulter Inc., Fullerton, CA,
USA) hold the major market shares with their FACS
and EPICS flow cytometry systems. Smaller com-
petitors are Partec GmbH (Münster, Germany) with
the PAS multiparameter laser and arc lamp flow
cytometry system, Cytomation Inc. (Fort Collins,
CO, USA ) with the MoFlo, a top grade 3 laser, 12
parameter high speed research sorter, and Optoflow
AS (Oslo, Norway), a relative newcomer aiming
specifically for the low cost side with the small,
portable all solid state Microcyte flow cytometer.
No recent information was found on the Cytoron
Absolute flow cytometer (Ortho-Clinical Diagnos-
tics, Raritan, NJ, USA). BioRad discontinued their
arc lamp based Bryte HS flow cytometer. Not a flow
cytometer, but very interesting is the LSC micro-
scope-slide based laser scanning cytometer from
Compucyte (CompuCyte Corporation, Cambridge,

MA, USA). None of these instruments is particular-
ly designed for marine and aquatic research. It
seems in practice that aquatic scientists have to
explore changing the main characteristics of their
standard instruments from medicine to plankton
research, e.g. to find the optimum optical filters and
combinations and to enhance the signal/noise-ratio
as far as possible. However, even if a cheap and use-
ful instrument would generate a boost in flow
cytometer sales in the aquatic research field, the
resulting market still would remain an order of mag-
nitude smaller as compared with the biomedical
market. It is not likely therefore that a dedicated
instrument for the aquatic market will be released
soon by these existing manufacturers. 

The answers on instruments used in the survey
concerned in total 30 instruments more or less reg-
ularly used by the institutes for phytoplankton
analyses. Most frequently used are the instruments
from Becton Dickinson (14 instruments with 5 FAC-
Sort and 4 FACS Calibur instruments) and Coulter
Electronics (8 instruments). Some no longer built
instruments are still in use such as a Bruker instru-
ment (related successor by Bio-Rad now). Some in-
home modified machines and completely dedicated
instruments are used (Table 1). About 10 institutes
operate more instruments, with a relative new
instrument for routine work and cruises and an
older instrument still in use for back-up, and exper-
imental work or modifications.

Limitations and pitfalls with phytoplankton
samples, dedicated instruments, methodology

Cells may be affected by fluid acceleration, elec-
trical shock and most importantly, light shock in
flow cytometers, possibly influencing subsequent
analyses (Rivkin et al., 1986; Haugen et al., 1987).
The instrument performance in turn may be
impaired by the specific properties of aquatic sam-
ples. Low concentrations may require either precon-
centration which deteriorates the sample composi-
tion, or pushing the sample flow rate to the max,
leading to less accurate measurements. 

Almost all participants of the survey considered
the small sample volumes processed by flow cytome-
ters a bottleneck. With low cell concentrations in
natural samples, relatively large sample volumes
should be analysed in order to get an acceptable sta-
tistical count. This is time consuming in standard
machines: 2 ml = around 25 minutes using the FAC-
SCalibur. In addition, as diversity increases, the
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FIG. 2. – An example of a bivariate scatter plot, with corresponding
univariate frequency distributions, of a fresh water field sample
containing single cells and some colony forming cyanobacterial
species, measured with an OPA flow cytometer. Vertical axis = side
scatter; horizontal axis = forward scatter. Each dot in the scatter plot
represents an individual particle.  The frequency  distributions show
the number of particles versus their measured forward or side scat-
ter value (horizontal and vertical distribution respectively,

numbers normalized to fit the frame).



number of measured particles per sample has to
increase accordingly for proper statistical analysis
of the less abundant species. Typically the cells larg-
er than 15 - 20µm, often comprising the bulk of bio-
mass in eutrophic coastal environments, are rela-
tively rare.

Standard instruments have limited particle size
ranges, with upper limits of typically 30 to 150 µm.
Large(r) particles result in system clogging or
‘merely’ loss of data quality. Examples of the latter
are selectivity against large particles owing to
small orifices and tubes in the fluid system or ‘dead
spaces’ where large particles settle out. Particles
may exceed the size of the optical sensing zone of
the instrument, their electronic signals may exceed
the proper range, a source of artifacts such as peak
height sensing with particles longer than the height
of the laser focus (Peeters et al., 1989) or time-of-
flight analysis of filamentous species. Big particles
slow down the fluid in a cuvette (about 20% for a
particle half the channel diameter). Long fragile
particles may break upon entering the flow chan-
nel, where velocity gradients are highest. Other

limitations are insufficient analytical power for the
wealth of cell and colony shapes, or insufficient
sensitivity for the small aquatic microorganisms. A
very high concentration of small particles, includ-
ing those below the detection limit, may cause an
upward drift of the electronic ‘background signal’.
This may occur with flow cytometry of sea water
viruses at concentrations of for instance 10 billion
per liter (Fuhrman, 1999). Even a 100 times dilut-
ed, their counting rate would be between thirty and
a hundred thousand per second, causing a higher
background signal that could decrease the detec-
tion probability for the smallest particles, and raise
the relative counts of virus doublets as reported by
Marie et al. 1999.

Olson et al. (1983) and Cunningham (1990a) con-
structed low-cost flow cytometers for phytoplankton
analysis. High-sensitivity flow cytometers for study-
ing picoplankton were developed by Frankel et al.
(1990) and Dusenberry and Frankel (1994). Hüller et
al. (1991) reported on a macro flow planktometer for
analysis of large marine plankton organisms (>100
µm). The optical plankton analyser (OPA) was
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TABLE 1. Instruments and set-up used among the survey group. 



developed for field samples (Balfoort et al., 1992a;
Dubelaar et al., 1989) containing single cells and
colonies, including aggregates and filaments with
lengths over a millimetre, being measured by the
OPA with fair linearity (Dubelaar and van der Reij-
den, 1995). In the subsequent EurOPA project
(Dubelaar et al., 1995b), a more versatile instrument
was developed with a photodetector array probing
diffracted light, a pulse profile acquisition module
(Cunningham, 1990b), a cytometric imaging device
(Wietzorrek, 1994; Kachel and Wietzorrek, 2000)
and a sorter system. Cavender-Bares et al. (1998)
developed a dual sheath flow cytometer for ship-
board analyses to cope with widely varying and very
low concentrations of phytoplankton in the olig-
otrophic oceans. Chekalyuk et al. (1996) developed
a prototype pump-during-probe fluorometry flow
cytometer to measure the photosynthetic capacity of
cells. None of these special instruments were com-
mercially produced on a significant scale to date.
Analysis algorithms for the processing of the mea-
sured data were deveoped such as various artificial
neural network approaches (Boddy and Morris,
1993; Boddy et al., 1994a, b) and multi-variate sta-
tistical protocols - the quadratic discriminant analy-
sis being fast and the canonical variate analysis being
graphically useful (Carr et al., 1994, 1996). 

Sample handling and preprocessing

Avoiding particle selectivity and damage to frag-
ile particles is not trivial. Each of the sampling, sub-
sampling, filtration, preservation, concentration,
staining, storage and transportation processes are
potential sources of bias or variability. Flow cytom-
etry requires small sample volumes, but allows more
samples and less sub-sampling to obtain good statis-
tical significance. Pre-filtration of field samples pre-
vents clogging of the instrument flow system; con-
centration reduces the sample volume. Both easily
impair the composition of samples containing dif-
ferent and fragile species. For a tenfold concentra-
tion of North Sea samples, Hofstraat et al. (1990)
successfully applied a combination of sedimentation
and upward filtration at low suction head. Bloem et
al. (1986) examined filtration and centrifugation of
heterotrophic nanoflagellates. Centrifugal elutria-
tion provides an alternative cell separation and con-
centration technique when large numbers of cells are
required (Pomponi and Cucci, 1989). Preservation is
used to preserve cell integrity and fluorescence
properties for periods of months. Although fluores-

cence gradually decreases in many cases, the preser-
vation may cause an initial short term (minutes to
hours) boost in fluorescence by blocking the energy
transfer mechanisms in the pigments. Flow cytome-
ters count particles, but one obtains accurate particle
concentrations only if i) the sample flow is steady
and calibrated and ii) if there is no unknown loss of
particle counts by coincidence. Flow cytometer
sample systems driven by air pressure may not be as
steady and reproducable as volumetric pump driven
systems. Coincidence is proportional to the particle
concentration and the dead time, occuring if parti-
cles are so close in the sample stream that they are
measured together (looking like a single particle
with double signal intensity), or if the opto-electron-
ic system is still busy processing the signal of the
first particle and the second goes undetected: the
‘dead time effect’. Particularly with more than one
laser, the dead time may be significantly larger
depending on the type of electronics. Whereas most
aquatic field samples have low particle concentra-
tions from a flow cytometrical perspective, cultures
and bloom samples may have to be diluted. In cases
of uncertainty, reliable particle counts may be
obtained by adding a known amount of fluorescent
calibration beads to each sample, and to correct the
cell counts for the number of detected beads. The
beads can also serve as a signal intensity and/or
quality reference.

The survey showed that the general working
principle is to try to analyse the samples in as close
to natural state as possible. Preconcentration was
not mentioned, prefractioning once. Adding calibra-
tion beads for concentration and data quality
assessment was mentioned once (this was not an
explicit question). Preferentially, samples are mea-
sured fresh, immediately after sampling. Logistics
may make it necessary to store samples, i.e. for a
few days (storage at 4° in the dark). This applies for
the analyses done during cruises, and samples col-
lected from shore or on short cruises. Small and
fragile cells suffer also from these short periods of
storage and may disintegrate. Light scatter proper-
ties will be influenced, as well as chlorophyll-a flu-
orescence. Fixatives used are based on what is used
in microscopy and include formaldehyde (mentioned
4 times), paraformaldehyde (mentioned 5 times),
glutaraldehyde (mentioned 6 times) and sometimes
combinations. Lugol was not mentioned since it
deteriorates fluorescence. Long time storage pre-
dominantly is in liquid N

2, in combination with 1%
glutaraldehyde fixation after Vaulot et al. (1989). 
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This method works well with picoplanktonic pop-
ulations. Troussellier et al. (1995) examined effects
on bacterioplankton and picophytoplankton. Larger
and more fragile cells can be lost to an important
extent however, and show variation of chlorophyll
fluorescence. A possibility for improvement would
be the addition of cryoprotectant (Lepesteur et al.
(1993), although both optical properties and cell num-
bers could not be preserved well. A protocol with
0.1% to 0.5% paraformaldehyde (methanol-free) and
storage at 4° was developed at JRC-Ispra (Premazzi
et al., 1992). Higher concentrations of paraformalde-
hyde increasingly impaired the results. Staining cells
requires extra steps like permeabilization and wash-
ing. Recently, detailed protocols for flow cytometric
enumeration of phytoplankton, bacteria, and viruses
in marine samples (Marie et al., 1999), as well as for
DNA/RNA analyses of phytoplankton, were pub-
lished (Marie et al., 2000).

MEASURED PARAMETERS

Light scatter

The light scatter of particles is measured parallel
to the laser beam: the forward or low angle scatter-
ing, and perpendicular to this: the side scattering.
Simple dependence on for instance particle diameter
or volume is restricted to limited classes and size
ranges of particles. The highest scatter intensities
are at small (low) scattering angles. Significant dif-
ferences exist between small particles as for instance
bacteria and larger particles as for instance ciliates.
The intensity of the light scattered by the bacteria
drops 3 orders of magnitude with increasing angle,
whereas the light scattered by the ciliates drops 6
orders of magnitude. The measured forward light
scatter depends mostly on the overall cell cross sec-
tion and not so much on smaller structures, whereas
the side scatter is dominated by the small internal
and external structures of the particles. Internal
micro structures such as light absorbing pigments
and intracellular gas vacuoles may have significant
effects on the forward light scatter signal, however,
caused by their effect on the global refractive index
of the small and medium sized cells (Dubelaar et al.,
1987). The side scatter may yield the most straight-
forward relation (proportional to particle cross sec-
tion) for particles of low refractive index, sized from
about 1µm upward (Morel, 1991), but is known to
be very sensitive to small cellular structures which

cause large variation in the data. Whereas forward
light scatter is a good measure for cell volume with
very small particles (<0.6 µm3) as shown by Koch et
al. (1996), the forward light scatter is linearly pro-
portional to cellular cross section only for optically
large cells (tens of microns diameter and/or highly
absorbing), and shows a fluctuating behaviour at
intermediate sizes. In the EC MAST project AIMS
(developing flow cytometry technology for identifi-
cation of microbial cell populations and determina-
tion of their cellular characteristics- Geider et al.,
1998; Jonker et al., 2000), algorithms are being
developed to translate flow cytometric light scatter
signals to size spectra. Under conditions, size and
refractive index of marine particles can be measured
(Ackleson and Spinrad, 1988, Spinrad and Brown,
1986). Dilution (osmosis), chemical fixation and/or
staining as well as cell damage cause changes in for-
ward light scatter signatures (Ackleson et al., 1988;
Navaluna et al., 1989). Ratios of intensities at dif-
ferent angles can be used for sizing bacteria (Koch,
1986). With azimuthally resolved forward light scat-
ter measurements, typical cell shape information
may be obtained (Buonaccorsi and Cunningham,
1990; Cunningham and Buonaccorsi, 1992; Forrest,
1985; Premazzi et al., 1989). Smart wiring of a 25
pixel photodiode array, reduces to only 4 measured
numbers per particle for symmetry and size infor-
mation (Dubelaar et al., 1995b). As the laser light is
linearly polarized, depolarization measurements can
be implemented also relatively simply, to probe
isotropic cell structures. Olson et al. (1989) used
polarization properties of forward scattered light in
addition to other parameters to discriminate eukary-
otic phytoplankton cell types. Particularly, the coc-
colithophores depolarized forward scattered light.
Direct measurements of particle absorption are very
difficult with flow cytometers, and no such possibil-
ities were reported. Beam attenuation (axial light
loss) can be measured with flow cytometers, but this
parameter is dominated by light scatter (Eisert,
1979). Many flow cytometers measure the duration
of the pulses, which is a good measure for particle
length if scatter pulses are used. Electrical resistance
sizing (Coulter volume) is optional on a few instru-
ments.

Endogenous fluorescence

Pigment fluorescence, the major component of
endogenous fluorescence, is used for quantification
of photosynthetic capacity, biomass and cell size
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(Chisholm, 1992), and identification of cellular pig-
ment composition type. Absorbed photons generate
higher excitation stages in the chlorophyll antenna
pigments, from which photosynthesis is driven or
by-products are generated such as heat or emission
of lower energy light, fluorescence. One of the key
problems in fluorescent diagnostics of photosynthet-
ic organisms is to distinguish the contributions of
constant and variable fluorescence components,
because the first one contains information on the
efficiency of exciton migration through the light
harvesting antenna, while the second one reflects the
state of PS II reaction centres and the electron-trans-
port chain (Chekalyuk et al., 1992). At low light
conditions, photosynthesis competes efficiently with
fluorescence and fluorescence is low (constant fluo-
rescence). The light intensity in flow cytometers is
very high, but the passage time of the particles is
extremely short (a few microseconds). The question
is to what extent the variable fluorescence rises dur-
ing the short passage time of the cell through the
laser beam. With double or triple beam cytometers,
the cell has to travel some time between the laser
beams, and effects may be quite different at the
down stream laser foci. Studies (Ashcroft et al.,
1986; Neale et al., 1989; Xu et al., 1990) on flow
cytometric fluorescence origin did not provide
coherent results. Another approach is to chemically
force chlorophyll fluorescence with DCMU (Furuya
and Li, 1992) for evaluating photosynthetic rates of
natural populations. At very high photon densities
such as in focused laser beams, ‘exciton annihila-
tion’ or photo-bleaching may reduce fluorescence
yield (Chekalyuk et al., 1992; Van den Engh and
Farmer, 1992). Another question is whether the
amount of absorbed quanta is (dis)proportional to
the amount of intracellular pigment owing to the self
shading effect, also called packaging effect (Duy-
sens, 1956). At the small size range the packaging
effect is not significant; Kerker et al. (1982) showed
a linear relation between fluorescence and size of
small calibration beads. Natural chlorophyll absorbs
light more efficiently, and obviously phytoplankton
cells may be much bigger. Sosik et al. (1989)
showed that analyses of Hymenomonas carterae and
Amphidinium carteri are influenced by the packag-
ing effect. Calibration is required for accurate use of
fluorescence as a size indicator (Legner, 1990).
Flow cytometric ‘pump and probe’ analysis was
demonstrated by Olson and Zettler (1995). The low
laser power required to measure the constant fluo-
rescence part, impaired the analysis of small cells.

Better results were obtained with a so-called ‘pump
during probe’ technique and using an infrared laser
for particle detection to preserve the dark adapted
state of the particles (Olson et al., 1996; Chekalyuk
et al., 1996). The intensities used for pump and
probe are orders of magnitude smaller than used in
the studies mentioned above. The conclusion seems
justified that more investigation of fluorescence rise
times in the microsecond area, at a range of con-
trolled flow cytometric illumination conditions,
including estimation of packaging and annihilation
effects, is required for a better understanding of
these phenomena.

The total chlorophyll fluorescence, obtained by
adding the individual particle fluorescence values,
correlates well to spectrophotometrically analysed
fluorescence per volume of sample (Hofstraat, 1991;
Jonker, 1995). Especially for larger cells and
colonies, these measurements require a dedicated
optical measuring system like in the OPA as was
shown for natural Microcystis colonies (Dubelaar
and van der Reijden, 1995a). Based on this relation-
ship the contributions of different groups of algae to
‘biomass’ can be assessed, which give more valu-
able information than counting of cells and colonies
of different size alone. The combination of data on
concentration, species and group discrimination and
quantitatively measured chlorophyll fluorescence
makes it possible to estimate the contribution of dif-
ferent species and groups to the total phytoplankton
biomass. In vivo phytoplankton pigments have
broad and overlapping excitation and emission char-
acteristics, but the choice of laser wavelength and
detection band influences the fluorescence measure-
ment efficiency for a certain pigment. Fluorescence
emission and excitation characteristics have been
demonstrated as tools to classify groups such as
cyanobacteria, cryptophytes, chlorophytes and
prasinophytes, bacillariophytes and dinophytes
based upon spectrally similar accessory pigments
within these groups (Yentsch and Yentsch, 1979;
SooHoo et al., 1986; Hilton et al., 1989; Hofstraat et
al., 1990, 1991, 1994). Olson et al. (1989) simulta-
neously used Coulter-volume, intensity and polari-
sation of forward scatter, right-angle scatter, and flu-
orescence. From 26 laboratory cultures, the two
cryptophytes and the rhodophyte, the coccol-
ithophorids, and chlorophytes could be distin-
guished from others. Instead of fluorescing them-
selves, accessory (antenna) pigments rather increase
chlorophyll-a fluorescence by energy transfer, the
exception being phycocyanine and phycoerythrine
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containing species. Therefore, excitation spectra
probe the spectral properties of pigments capable of
energy transfer to chlorophyll a (Owens, 1991). This
could encourage the application of flow cytometers
with three or more excitation beams. These instru-
ments are the most complex, unfortunately, espe-
cially the electronic timing circuitry which corre-
lates the data from one cell, coming from three
lasers. Artificial neural net analysis (Boddy et al.,
1994a; Wilkins et al., 1994, 1996) showed that 20-
40 species can be sufficiently discriminated based
on endogenous fluorescence and light scatter alone,
but also showed that discrimination by this tech-
nique is not primarily based on taxonomic group
identification.

Exogenous fluorescence

There are several options to extent analysis of
phytoplankton by staining specific components of
the cell. These fall apart in A: very specific but nor-
mally nonquantitative techniques in order to dis-
criminate species and B: techniques for quantitative
analysis of various constituents and physiological
conditions of cells like DNA content. The dye can
be fluorescent or the product of the dye and the cel-
lular component of interest may be fluorescent.
Except for the membrane binding dyes, the dyes
have to enter the cell to interact with their goal sub-
stances. This can be used as a diagnostic technique
for estimation of membrane integrity, otherwise the
membranes have to be perforated to let the dye in
(electroporation technique is described by Berglund
and Starkey, 1991). An example is the use of pro-
pidium iodide for live/dead cell discrimination.
Cytochemical stains are used to stain protein, DNA,
RNA, lipids and membranes. Hull et al. (1982) pre-
sented staining techniques for nuclear DNA in
algae. Schäfer et al. (1996) applied three-laser flow
cytometry for simultaneous measurement of photo-
synthesis pigments and protein content using FITC
of phytoplankton populations in lakes and rivers.
Edvardsen and Vaulot (1996) used cell size and rel-
ative DNA content for ploidy analysis of Prymne-
siophyceae spp. González-Gil et al. (1998) used
flowcytometric measurement of ELF (enzyme-
labeled fluorescence), a new insoluble fluorogenic
substrate for alkaline phosphatase to probe the
phosphorus (limitation) status of individual cells.
The sensitivity of flow cytometers allows the detec-
tion of very small quantities of fluorescence, down
to a level of a few thousand fluorescent molecules.

This allowed the development and application of
immunochemical labelling techniques. Double
staining allows the assessment of more than one
property at the same time, e.g. the double staining
of bacteria with a DNA and a protein stain to mon-
itor cell volume as a function of cell cycle (Steen et
al., 1982). Zubkov et al. (1999) developed a flow
cytometric assay for measuring protein content of
marine planktonic bacterial cells using SYPRO
staining. Advances in fluorescent probe technology
offer realistic approaches for direct cell identifica-
tion, viability assessment and responses to environ-
mental changes using basic, single light-source
flow cytometers (Porter et al., 1997). Jonker et al.
(2000) gives an overview on the use of fluorescent
probes in aquatic ecology.

Immunotechniques

An early overview on quantitative immunofluo-
rescence in flow cytometry and related staining
techniques was given by Visser et al. (1978). Ward
and Perry (1980) presented an immunofluorescent
assay for the marine ammonium-oxidizing bacteri-
um Nitrosococcus oceanus. Clones of marine
chroococcoid cyanobacteria were analysed by
Campbell et al. (1983) using immunofluorescence.
Antibodies to eukaryotic cells (to probe pigment
types and/or cell wall composition) were presented
by Shapiro et al. (1989) and Campbell et al. (1989).
Antibodies were found to various cellular molecular
constituents (Yentsch, 1981; Yentsch et al., 1988).
Flow sorting gated on forward light scatter and
FITC labelled anti-Cryptosporidium is being used in
water quality analysis as a quantitative preconcen-
tration method, which allows routinely screening of
hundreds of litres of water for Cryptosporidium
oocysts (Vesey, 1994). The antibody is not 100%
specific, but the highly infectious oocysts are count-
ed microscopically from the sorted fractions much
quicker than before, without enrichment. Vrieling
and Anderson (1996) and Vrieling et al. (1995,
1996, 1997), showed that antisera against purified
cell walls and against extruded trichocystal cores of
the organism, allow immunofluorescent detection in
flow of the dinoflagellates Prorocentrum micans,
Gyrodinium aureolum and Gymnodynium
nagasakiense. Simon et al. (1997) identified the
toxic algae Chrysochromulina and Prymnesium
species using fluorescent or chemiluminescent
oligonucleotide probes. For a review of immuno
flow cytometry, see Peperzak et al., 2000).
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DNA and RNA quantification

DNA can be fluorescently stained with many
fluorochromes. Flow cytometric determination of
phytoplankton DNA in cultures and field samples
was reported by Yentsch et al. (1983b), Bonaly et
al. (1987), and Boucher et al. (1991) from cultured
samples stained with DAPI, which can be excited
with UV light. The DAPI-DNA fluorescence was
related to cell DNA content over almost 4 orders of
magnitude. In natural populations, the fraction of
particulate DNA contained in photosynthetic
picoplankton could be computed. Currently, a new
series of fluorochromes are being applied for high-
resolution DNA quantification by flow cytometry.
Among these are TOTO-1, SYBR-Green,
Picogreen, SYTOX green (Marie et al., 1996; Li et
al., 1995; Marie et al., 1997; Guindulain et al.,
1997) and YOYO-1 (Jochem and Meyerdierks,
1999). They have major advantages over previous-
ly used dyes like DAPI and propidium iodide. They
can be excited at 488 nm, the standard laser wave-
length for most benchtop instruments, and result in
green fluorescence which hardly interferes with
pigment fluorescence (Chl-a), and are specific for
double stranded DNA, instead of also staining
RNA (Pan and Cembella, 1996; Pan et al., 1999). A
comparison of seven blue nucleic acid SYBR and
SYTO series dyes for flow cytometric enumeration
of bacteria in aquatic systems by Lebaron et al.
(1998a) showed that SYBR-II and SYTO-9 are the
most appropriate dyes for bacterial enumeration in
nonsaline waters and can be applied to both live
and dead bacteria, whereas SYBR-II is more appro-
priate than SYTO dyes for seawater samples.
SYTOX Green however underestimates the frac-
tion of dead bacterial cells within starved popula-
tions (Lebaron et al., 1998b, see also Gasol and del
Giorgio, 2000) and its application to natural sam-
ples should be considered with caution. Veldhuis et
al. (1997a) established a nice data set of DNA con-
tent of individual phytoplankton species. They also
showed that there is a good correlation between
DNA content, as measured with these dyes, and
phytoplankton biomass. This correlation is better
than the correlation between biomass and Chl-a flu-
orescence which is influenced significantly by the
light history of the cells. The next important step
would be to transfer this to field samples. The ratio
between RNA and DNA can be used to discrimi-
nate actively growing cells from resting cells. The
application of e.g. SYTO 13 allows assessment of

bacterial abundance (Del Giorgio et al., 1996;
Gasol and del Giorgio, 2000); SYBR Green allows
for discrimination between heterotrophic bacteria
and autotrophic Prochlorococcus cells (Marie et
al., 1997). Binder and Liu (1998) examined the
relationship between growth rate and rRNA content
in a marine Synechococcus strain by a combination
of flow cytometry and whole-cell hybridization and
found that both these methods correlated well in
determination of total cellular RNA, which varied
in a similar manner as growth rate, supporting the
notion that measurements of cellular rRNA content
might be useful for estimating in situ growth rates
in natural Synechococcus populations. Brussaard et
al. (1999) showed that flow cytometry can be a use-
ful tool to discriminate between virus infected and
noninfected phytoplankton cells by detection of de
novo synthesis of viral DNA and possible digestion
of host DNA.

Cell cycle analysis

Whereas the connection between cell division
and the need for metabolites and photosynthates is
obvious, the mechanism of light acting upon cellular
DNA synthesis regulation is not so clear (Yee and
Bartholomew, 1988). Flow cytometric DNA analy-
sis is a helpful tool in this respect (Chisholm et al.,
1986). Brzezinski et al. (1990) examined the role of
silicon availability on cell-cycle progression in
marine diatoms. Examination of DNA histograms
allowed the localization of the effect of silicon
deprivation in terms of progress through G1, S, and
G2+M phase. Yee and Bartholomew (1988) studied
light regulation of the cell cycle in Euglena gracilis
bacilaris. Euglena grown under phototrophic condi-
tions are easily synchronized to a 12 h light-12 h
dark regime. By inoculating stationary phase, nondi-
viding cells into fresh media and exposing the dilut-
ed cells to either light or darkness, it was observed
that initiation of DNA synthesis for the cell division
cycle is light dependent. Commitment to the cell
cycle requires exposure to more than 6 h of light,
supposedly to allow the accumulation of an initiat-
ing factor that will enable DNA synthesis to begin.
Flow cytometry analysis showed that once cells are
committed to the cell cycle, they complete the cycle
in the dark, so mitosis is a light-independent step.
Lefort et al. (1987) used DNA flow cytometry to
study cell cycle blockade of vitamin B12-starved
cells. Binder and Chisholm (1990) studied the rela-
tionship between DNA cycle and growth rate in
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Synechococcus-sp strain PCC 6301. This cyanobac-
terium was shown to contain multiple chromosome
copies even at very low growing rates. Evidence
was found for asynchronous initiation of DNA repli-
cation. Vaulot et al. (1995) elegantly showed that
DNA replication occurred in the afternoon by ana-
lyzing Prochlorococcus in samples from different
depths using Hoechst 33342. The next step in in situ
growth rate analysis is to combine specific detection
of single species with cell cycle analysis. Specific
detection can be done with in situ hybridization or
with monoclonal antibodies. Peperzak et al. (1998)
showed that flow cytometry can be used for the
analysis of the dial DNA cycle. 

Identification of species and groups using 
ribosomal RNA-targeted nucleic acid probes

The use of ribosomal RNA probes for flow cyto-
metric identification of both individual species and
taxonomic groups is very promising. Parts of the
ribosomal RNA sequences were highly conserved
during evolution and the differences in rRNA
sequences correlate well with evolutionary relations.
Fluorescently labelled rRNA probes are relatively
small and penetrate easily in fixed cells (Amann et
al., 1990). There they hybridize specifically to the
target sequences. This is very useful for fluorescent
in situ hybridization (FISH), a process which can be
visualized using both microscopy and flow cytome-
try. Recently, the application of rRNA probes for
detection of phytoplankton species and groups was
established (Lim et al., 1993; Simon et al., 1995;
Knauber, 1996; Rice et al., 1997; Partensky et al.,
1997, Jonker et al., 2000). Lange et al. (1996) have
shown that target regions specific for the class
Prymnesiophyceae and the genus Phaeocystis (Har-
iot) Lagerheim could be identified from 18S rRNA
coding regions, and two complementary probes
were designed. Detection of whole cells hybridized
with these probes labelled with fluorescein isothio-
cyanate (FITC) was difficult using epifluorescence
microscopy because autofluorescence of the chloro-
phylls seriously interfered with the fluorescence of
the probes. In contrast, flow cytometry proved very
useful to detect and quantify the fluorescence of the
hybridized cells. Hybridization conditions were
optimized, especially with respect to formamide
concentration. Both probes were tested on a large
array of both target and non-target strains. Positive
and negative controls were also analysed. Specifici-
ty was also tested by adding a competing non-

labelled probe. Whereas probe PHAEO01 seems to
have good specificity, probe PRYMN01 appeared
less specific and must be used with stringent posi-
tive and negative controls. A large number of rRNA
sequences has already been analysed and is avail-
able through internet. The use of a 18S rRNA probe
for detection of Cryptosporidium was established by
Vesey (1996). This allows for a very quantitative
technique for analysis of Cryptosporidium. 

Monoclonal antibodies and/or other molecular
probes are used for aquatic bacteria and phyto-
plankton analysis by 6 of the 19 survey institutes; 4
other institutes say they will in the future.

Applications: The survey institutes all carry out
species or (pigment or taxonomic) group identifica-
tion in field samples by flow cytometry, mostly taxo-
nomic groups based on pigment analysis, such as
prochlorophytes, cyanobacteria, (sub-types of)
Synechococcus e.g. phycocyanin- and phycoery-
thrin-rich Synechococcus spp., cryptophytes,
dinoflagellates and diatoms. Furthermore, eukary-
otic picoplankton (three types of picoeukaryotic
algae), and nanoplankton can be identified. Size is
used by one institute as extra indicator to identify 6
groups in North Sea waters: Phaeocystis (only
blooms), Mesodinium, Rhodomonas, Dinoflagel-
lates and Diatoms <25 µm, 25-100, >100 µm.
Gymnodinium mikimotoi is being identified using
monoclonal antibodies. Heterotrophic bacteria are
distinguished with DNA stains, while some molecu-
lar probes are also used. Applications mentioned
included

• Phytoplankton photophysiology, ecophysiolo-
gy, toxicology, metabolic activity (3 times)

• The relationship between phytoplankton, bacte-
ria and detritus (4 times), bacterial sorting to dis-
criminate active cells (twice), size distribution of
bacteria (2 times)

• Grazing impact studies (6 times), food selectiv-
ity of cockles 

• Isolation of strains(e.g. gonyaulacoid cells)
from natural populations by sorting (twice), isola-
tion of diatoms transformed with GFP gene

• In situ hybridization with taxon-specific rRNA
probes

Phytoplankton abundance

Basic characterisation of particles by flow
cytometry can be done on a routine basis, such as a
division in organic and inorganic particles, living
and nonliving organic particles, e.g. Moreira-Turcq
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and Martin (1998). Flow cytometry allows rapid
phytoplankton counting and sizing based on the
chlorophyll fluorescence, and limited identification
of taxonomic groups and species (Li and Wood,
1988; Yentsch and Yentsch, 1979; Yentsch and
Pomponi, 1986; Olson et al., 1989; Hofstraat et al.,
1990, 1994; Blanchot and Rodier, 1996; Binder et
al., 1996; Li, 1997; Veldhuis and Kraay, 1990;
Wood et al., 1985). Clearly, pigment analysis using
flow cytometry is much cruder than, for example,
HPLC, but main pigments can be studied with suc-
cess (Olson et al., 1990; Hess et al., 1996). Using
the specific, immuno- and molecular probes enables
the determination of intracellular substances such as
lipid droplets in diatoms and toxins in dinoflagel-
lates, and allows more specific species/group char-
acterisation and discrimination (Bloodgood et al.,
1987; Simon et al., 1994, 1995; Rao et al., 1991).
Biodiversity of unicellular pico- and ultraplankton-
ic eukaryotes was studied by Chrétiennot-Dinet and
Courties (1997). As very little is known about sex-
uality and life-cycles of these tiny algae, a whole set
of complementary techniques including flow
cytometry appears necessary to ensure a reliable
assessment of identification and diversity. Gasol et
al. (1999) estimated bacterial abundances with epi-
fluorescence microscopy methods and with flow
cytometry (SYTO13) and found good correspon-
dence between microcosm experiments and coastal
Mediterranean water.  Flow cytometry is likely to
prove useful for detecting the low-level occurrence
of harmful species, giving early warning of the
probability of bloom development. It enables moni-
toring of bacteria in seawater (Button and Robert-
son, 1989, 1990; Robertson and Button, 1989;
Wiebenga et al., 1997; Zubkov et al., 1998).  Flow
cytometry allows higher sampling frequencies,
important for the execution of ship transects, depth
profiles and also incubation experiments to study
the distribution and composition of phytoplankton
populations, including diurnal variations (Tarran
and Burkill, 1993; Burkill, 1987; Olson et al., 1985;
Li, 1989; DuRand et al., 1994; Jacquet et al., 1998).
Flow cytometry has also been used in all Joint Glob-
al Ocean Flux Studies (JGOFS) to date, particularly
studies of the dynamics and distribution patterns of
pico-phytoplankton, ultra-phytoplankton, and bac-
teria (Binder et al., 1996; Detmer and Bathmann,
1997), with diel cycling and biomass assessed from
flow-cytometer cellular light scatter observations
(Blanchot et al. 1997; Gin et al., 1999, respective-
ly), the importance of Prochlorococcus to commu-

nity structure (Campbell et al., 1994) and the effect
of environmental forcing on microbial community
structure (Campbell et al., 1998), investigations in
the microbial food web structure in the Arabian Sea
by Garrison et al. (2000), revealing a correlation
between dominance of large phytoplankton, primar-
ily diatoms, and the seasonal maxima of mass flux
during the SW Monsoon. Landry et al. showed in
1996 that, while picoplankton account for most of
the chlorophyll biomass and primary production in
the central equatorial Pacific, their abundances and
distributions are relatively stable and conservative
while other populations, such as diatoms, respond
more dramatically to environmental forcing. Other
JGOFS missions included microzooplankton graz-
ing in the central equatorial Pacific (Constantinou
et al., 1995) and the Arabian Sea (Reckermann and
Veldhuis, 1997), and flow cytometry based studies
of energetics and growth kinetics of a deep
Prochlorococcus spp. population in the Arabian
Sea (Johnson et al., 1999), populating almost
exclusively the detected secondary fluorescence
maxima (SFM).

Ecology and physiology

Flow cytometers can play an important role in
the experimental verification of ecological models
(Campbell et al., 1997). These models include spa-
tial and/or temporal distributions of species and
groups (Olson et al., 1990; Partensky et al., 1996;
Shimada et al., 1993, 1995; Tarran et al., 1999;
Vaquer et al., 1996; Vaulot et al., 1990; Zubkov et
al., 1998, 2000), size distributions and population
dynamics, but can also consider flow cytometrically
probed status of life cycle (Binder and Chisholm,
1995; Brzezinski et al., 1990; Van Bleijswijk et al.,
1994; Van Bleijswijk and Veldhuis, 1995; Green et
al., 1996; Vaulot and Marie, 1999) allowing growth
rate determination (Veldhuis et al., 1997b), and
physiological properties of the cells such as meta-
bolic activity (Dorsey et al., 1989; Jellet et al., 1996;
Del Giorgio et al.,1997). Shalapyonok et al. (1998)
reported ultradian growth (faster than 1division per
day) observed for the widespread marine prokaryote
Prochlorococcus, even though cell division was
strictly phased to the light-dark cycle. Correlation of
metabolic with flow cytometric characteristics is a
feasible means of investigating the heterogeneity of
phytoplankton metabolic state in the marine envi-
ronment. The response to changes in light condi-
tions (Armbrust et al., 1989, 1990; Gerath and
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Chisholm, 1989; Vaulot et al., 1986), nutrient avail-
ability (Trousselier et al., 1997; Vaulot et al., 1987;
Veldhuis and Kraay, 1993; Graziano et al., 1996;
Zettler et al., 1996; Timmermans et al., 1998;
Lebaron et al., 1999) and kinetics (Button and
Robertson, 2000) can be assessed. Lipschultz (1995)
measured nitrogen-specific uptake rates of marine
phytoplankton by flow cytometry. Huisman et al.
(1999) elegantly used flow cytometry in competi-
tion experiments in order to validate models describ-
ing competition for light using fresh water species
from eutrophicated systems. Other applications
include the investigation of microbial food webs
(Cowles et al., 1988; Cucci et al., 1985, 1989; Ger-
ritsen and Sanders, 1987; Lesser et al., 1991; Sellner
et al., 1994; Hansen et al., 1996; Reckermann and
Veldhuis, 1997) and the evaluation of the effect of
toxic substances on algae (Gala and Giesy, 1990,
1994), or toxic algae on zooplankton (Turner et al.,
1998). Boelen et al. (2000) used flow cytometry for
phytoplankton species composition and size analy-
sis in a study of ultraviolet-B (UVB) radiation
induced DNA damage in picoplankton assemblages
in the tropical Atlantic Ocean, indicating that radia-
tion damage is size dependent, and mean received
doses are reduced by wind-induced mixing. Mosta-
jir et al. (1999) found retardation of cell division,
inhibition of photosynthesis and cell size enlarge-
ment of Prymnesiophyceae provoked by UVB.
Waite et al. (1995) measured sugar-containing com-
pounds on cell surfaces of marine diatoms with flow
cytometry using concanavalin A. Measurements of
effects of iron stress on chromatic adaptation by nat-
ural phytoplankton communities in the Southern
Ocean by Van Leeuwe et al. (1998) showed that iron
did affect the pigment composition, but the efficien-
cy of electron transfer. Reed et al. (1999) followed
changes in the neutral lipid content of actively
swimming zoospores of the palm kelp Pterygopho-
ra californica by flow cytometry using the fluores-
cent stain Nile Red. A flow cytometric approach to
assess the environmental and physiological status of
phytoplankton was presented by Demers et al.
(1989). The analysis of natural phytoplankton popu-
lations can indicate changes in water quality and
environmental stress (Olson and Chisholm, 1986;
Olson et al., 1986; Parpais et al., 1996), starvation
conditions (Joux et al., 1997), and contamination by
anthropogenic inputs (Berglund and Eversman,
1988; Bonaly-Cantarel, 1988; Firth et al., 1994; Cid
et al., 1996, 1997; Cavender-Bares, 1999; Faber et
al., 1998; Franqueira et al., 1999).

Size and biomass

Many biological processes involved in biogeo-
chemical fluxes, e.g. production, respiration, graz-
ing, sinking, aggregation, are linked to the biomass
and size distributions of bacteria (Button and
Robertson, 1989, Robertson et al., 1998) and phyto-
plankton (Rodriguez and Li, 1994, Gin et al., 1999).
For that reason the development of flow cytometric
techniques for particle size determination was advo-
cated by Legendre and Le Fevre (1991). Shipboard
based instruments allow fast assessment of abun-
dance and biomass variations (Burkill, 1987; Bor-
sheim et al., 1989; Zohary et al., 1998; Zubkov et
al., 1998, 2000), to probe three dimensional patchi-
ness dynamics such as in eddies (Tintore et al.,
1998). Buck et al. (1996) estimated living carbon
biomass of microplankton, nanoplankton and
picoplankton using a combination of dual beam flow
cytometry and epifluorescence microscopy. The
contribution of picophytoplankton to biomass, pro-
ductivity and community structure was the subject
of various studies using flow cytometry (Li, 1994,
1995; Charpy and Blanchot, 1998, 1999; Liu et al.,
1997; Gasol et al, 1997, 1999). Pichard et al. (1997)
used flow cytometry to show the utility of group-
specific gene probes for examining the relation of
active phytoplankton community structure to the
fixation of inorganic carbon. Weisse and Kirchhoff
(1997) measured feeding rates and food selectivity
of the heterotrophic freshwater dinoflagellate Peri-
diniopsis berolinense by flow cytometry and other
techniques. Bougrier et al. (1997) used flow cytom-
etry to study preingestive selection of different
microalgal mixtures in Crassostrea gigas and
Mytilus edulis. A rapid cytometric method assessing
the distribution of ingested bacteria in nanoflagel-
lates was presented by Bratvold et al. (2000), inves-
tigating grazing behaviour of cultures of Rhyn-
chomonas nasuta and Paraphysomonas vestita.
Their results suggest a heterogeneous population
composed of subgroups of flagellates with different
grazing rates, although the specific biological impli-
cations of the statistical models used with regard to
the number of flagellate subgroups remain to be
proven. Grazing was also studied by Christaki et al.
(1999) who found that Prochlorococcus may be less
subject to ciliate predation than Synechococcus, and
Kenter et al. (1996) who recorded the feeding of
Balanion planctonicum on the cryptomonad
Rhodomonas sp. in vivo at 2-3 min intervals by flow
cytometry. Vazquez-Dominguez et al. (1999) pre-
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sented some succesful flow cytometric experiments
to estimate grazing rates on bacteria with fluores-
cently labeled tracers, and Kuipers and Witte (1999)
demonstrated the use of flow cytometry to obtain
significant results in a study of the impact of micro-
zooplankton community grazing on different size
classes of algae. Pile et al. (1997 ) studied trophic
effects of sponge feeding on four types of
picoplankton, and Monger et al. (1999) examined
the influence of cell-surface hydrophobicity. Gin et
al. (1999) studied seasonal and depth variation in
microbial size spectra at the Bermuda Atlantic time
series station, using dual-beam flow cytometry to
generate concentration and biomass size spectra of
bacteria and phytoplankton. 

Almost half (8) of the survey participants carry
out quantification of growth/production rates (bas-
ing on DNA / cell cycle analysis) of phyto-/bacterio-
plankton.

The ocean colour is a prime source of informa-
tion (Morel and Prieur, 1977). Remote sensing data
may be utilized in calibration and validation of
hydrodynamic and ecological models, and for
instance the assessment of the spatial variability of
biomass within a bloom area, or on a larger scale
the photosynthetic carbon fixation in the world
oceans. Data interpretation depends on atmospher-
ic correction methods and bio-optical algorithms,
calibrated with locally (on site) acquired entities
such as extracted chlorophyll. Calibration with ‘sea
truth’ data on the particle level is complicated
(Lewis and Cullen, 1991) but feasible, for instance
for coccolithophore blooms (Holligan and Balch,
1991; Balch et al., 1992, 1993), or a bio-optical
classification of sea particles (Ackleson and
Robins, 1990). Although flow cytometers can mea-
sure cellular light absorption indirectly only (Perry
and Porter, 1989), other entities such as fluores-
cence, forward and perpendicular light scatter are
useful to assess particle optical properties and the
relationship with the in situ light fields (Spinrad,
1984; Ackleson et al., 1993; Cullen et al., 1988;
DuRand and Olson, 1996).

The general idea is, although it is obviously not
a trivial matter, that flow cytometry data could be
related to measurements of bulk light scatter or
attenuation data measured with other instruments.
Some scientific work and projects are being exe-
cuted in this field currently. Some institutes com-
pare flow cytometry data with microscopic counts
and optical telemetry (shipboard SpectraScan)
data from specific stations. The main advantage of

the flow cytometer is the straightforward evalua-
tion of phytoplanktonic biomass within main
groups. Another aspect is that major changes in
ocean colour are based on new production (hence
large) species. If cytometers were to be technical-
ly tuned towards larger organisms (probably even
aggregates) and larger measuring volumes they
could be useful for that purpose, in addition to the
importance of flow cytometry for characterising
small particles. 

DISCUSSION

A high potential of the technique was acknowl-
edged by all participants of the survey. It was stat-
ed that the direct on-line estimation of phytoplank-
ton biomass and the ability to discriminate between
different phytoplankton groups allows analysis of
undisturbed natural samples (growth, grazing, the
spatial or seasonal evolution of populations). Also,
the application of specific fluorescent stains
(bound to antibodies, or as DNA probes) may pro-
vide early detection of plankton groups of special
interest, e.g. toxic species. By combining auto- and
artificially fluorescent properties, potential devel-
opments arise include monitoring, in situ growth
rates, biomass estimation of both autotrophs and
heterotrophs, ecosystem processes, physiological
status of microbial assemblages such as nutrition-
al status, viability, photosynthesis, and various
stress physiology. On a broader scale, we can use
a similar approach to study primary productivity,
and new production in the field. Flow cytometry
also carries potential for the determination of
small particles such as bacteria. Besides limita-
tions as mentioned previously, an inherent draw-
back of flow cytometry is that it can only differen-
tiate particles based on their optical characteristic
as seen by the PMT’s. This is better than the eye for
the very small cells (picoplankton), and vice versa
for the larger cells. The species resolution of field
samples done by flow-cytometry is far below the
Utermoehl-microscopy. The expectation that this
situation can improve if the lack of specific fluo-
rescent probes is reduced was widely supported in
the survey. The laborious work to establish them
remains a hurdle, as well as perhaps the human
factor: ecologists prefer microscopic monitoring
data. With regard to reproducibility it was men-
tioned that there is a real need for (i) standardiza-
tion of flow cytometric analysis of field samples,
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and (ii) continuous checking against other inde-
pendent methods (such as microscopy).

Clearly, applications of flow cytometry in the
field of aquatic sciences are numerous and expand-
ing. It is not possible to define general require-
ments: shipboard analysis requires robust, easily
transportable equipment; oceanography requires
high sensitivity analysis of small cells; coastal and
fresh water applications require a large dynamic
range. Many physiological experiments and species
identification using molecular techniques can be
done with one or two parameters, whereas species
identification based on inherent optical properties
requires large numbers of independent entities mea-
sured from a single particle. Broadly used dedicat-
ed commercial equipment is not expected soon, but
the general instrumental developments are promis-
ing. Data acquisition and processing gets more effi-
cient, lasers and detectors get smaller, PC’s get
faster and hard discs get bigger, costs decrease.
Instrument size, -operation, -costs and -reliability
and data handling will not remain bottlenecks for
long. Developments over a longer period will allow
real-time in-situ measurements. These develop-
ments facilitated the development of the buoy based
flow cytometer CytoBuoy with radiotransmission
(viz. Fig. 1) to shore (Dubelaar et al., 1999; Dube-
laar and Gerritzen, 2000). A submersible version
will also be deployed on missions with an
autonomous underwater vehicle (AUV), while
Olson and Sosik (1999) developed a submersible
flow cytometer without a sheath fluid system. Much
effort has to be devoted to standardization of sam-
pling and preservation and of reporting and data
analysis. This also requires intercalibration of flow
cytometers. Also the systematic investigation of the
phenomena governing the light scatter and fluores-
cence of phytoplankton cells as measured flow
cytometrically would contribute to a better under-
standing of these analysis tools. This may facilitate
the intercalibration between flow cytometers and
possibly the intercalibration of data from flow
cytometers with remote sensing data and other
‘bulk’ techniques (Dubelaar et al., 1994; Geider et
al., 1998). It would also support the further devel-
opment and use of ‘pump/probe’ capabilities in
flow cytometry to measure photosynthetic parame-
ters in a single cell. If analysis of major functional
groups within the phytoplankton and bacteria
becomes routine, it will be possible to base time-
series on flow cytometric data, with the advantages
of higher frequencies in time and space.
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