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Summary: The occurrence, characteristics and response to changes in environmental salinity of Na+-K+ ATPase and 
levamisole-sensitive alkaline phosphatase (AP) activities were studied in chela muscle of the euryhaline crab Cyrtograpsus 
angulatus. Chela muscle exhibited an Na+-K+ ATPase activity which was strongly dependent on ATP concentration, pH and 
temperature of the reaction mixture. Maximal activity was found at 1 mM ATP, 30-37ºC and pH 7.4. Levamisole-sensitive 
AP activity was characterised at physiological pH 7.4 and at pH 8.0. I50 for levamisole-sensitive AP activity was 8.8 mM 
and 8.0 mM at pH 7.4 and 8.0, respectively. At both pH levels, levamisole-sensitive AP activity exhibited Michaelis-Menten 
kinetics (Km=3.451 mM and 6.906 mM at pH 7.4 and 8.0, respectively). Levamisole-sensitive AP activities were strongly 
affected by temperature, exhibiting a peak at 37ºC. In crabs acclimated to low salinity (10; hyperegulating conditions), Na+-
K+ ATPase activity and levamisole-sensitive AP activity at the physiological pH were higher than in 35 psu (osmoconforming 
conditions). The response to low salinity suggests that both activities could be components of muscle regulatory mechanisms 
at the biochemical level secondary to hyperegulation of C. angulatus. The study of these activities under hyperegulating 
conditions contributes to a better understanding of the complexity of biochemical mechanisms underlying the adaptive 
process of euryhaline crabs.
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Resumen: Caracterización parcial y respuesta bajo condiciones de hiperregulación de las actividades de Na+-K+ 

ATPasa y fosfatasa alcalina levamisol-sensible en músculo de la quela del cangrejo eurihalino Cyrtograpsus angulatus. 
– En el presente trabajo se estudió la presencia, características y respuesta a la salinidad ambiental de las actividades de 
Na+-K+ ATPasa y fosfatasa alcalina (AP) levamisol-sensible en el músculo de la quela del cangrejo eurihalino Cyrtograpsus 
angulatus. El músculo de la quela exhibió una actividad de Na+-K+ ATPasa marcadamente dependiente de la concentración 
de ATP, pH y temperatura del medio de reacción. La actividad fue máxima a 1 mM de ATP, 30-37ºC y a pH 7.4. La 
actividad de AP levamisol-sensible se caracterizó parcialmente a pH fisiológico (pH 7.4) y a pH 8.0. La I50 fue de 8.8 
y 8.0 mM de levamisol a pH 7.4 y 8.0 respectivamente. A ambos pH la actividad de AP levamisol-sensible exhibió una 
cinética michaeliana (Km=3.451 y 6.606 mM de pNPP, respectivamente). Las actividades de AP levamisol-sensibles fueron 
fuertemente afectadas por la temperatura, exhibiendo un pico a 37ºC. En cangrejos aclimatados a baja salinidad (10) 
(condiciones de hiperregulación), las actividades de Na+-K+ ATPasa y de AP levamisol-sensible a pH fisiológico fueron 
mayores que a 35 de salinidad (condiciones de osmoionoconformación). La respuesta a baja salinidad sugiere que ambas 
actividades serían componentes de los mecanismos regulatorios a nivel bioquímico secundarios a la hiperregulación en C. 
angulatus. El estudio de estas actividades contribuye a un mejor conocimiento de los complejos mecanismos bioquímicos en 
el proceso adaptativo bajo condiciones de hiperregulación de cangrejos eurihalinos.

Palabras clave: fosfatasa alcalina, Na+-K+ ATPasa, cangrejos, Cyrtograpsus angulatus, levamisol, músculo.
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Introduction

Estuarine crabs have to cope with a variety of 
challenges, including frequent and abrupt changes in 
environmental salinity. Environmental fluctuations 
in salinity can trigger adjustments at different levels 
(biochemical, physiological, morphological and/or 
behavioural) to control movements of water and ions 
between animals and their medium (Kirschner, 1991). 
In low salinities, hyperregulating crabs maintain the 
hemolymph osmotic concentration above that of the ex-
ternal medium by absorbing both sodium and chloride 
from the environment. Posterior gills are considered 
to be the main site of the biochemical adaptations of 
hyperregulation (reviewed by Lucu and Towle, 2003; 
Kirschner, 2004). In the euryhaline crab Cyrtograp-
sus angulatus, a hyperregulatory role for the anterior 
gills has also been suggested (López Mañanes et al., 
2002). Branchial Na+-K+ ATPase activity appears to 
be a central component of the ionorregulatory proc-
ess at the biochemical level (reviewed by Towle, 1997; 
Lucu and Towle, 2003). Little is known about the 
occurrence and characteristics of Na+-K+ ATPase in 
other tissues of hyperregulating crabs.

The biochemical adaptations in other organs or 
tissues (i.e. muscle) of crabs to different environmen-
tal salinities, have received little attention. Hypoos-
motic stress led to adjustments associated with acid-
base regulation in leg muscle of Eriocheir sinensis, 
(Whiteley et al., 2001) and to an increase of arginine 
kinase flux in muscle of Callinectes sapidus (Holt 
and Kinsey, 2002). In muscle of Chasmagnathus 
granulatus, an increase in the mobilization of lipids 
occurred upon acclimation to low salinity (Luvizo-
tto-Santos et al., 2003) and in phosphoenolpyruvate 
carboxykinase and gluconeogenic activities under 
hyperosmotic stress (Schein et al., 2004). Muscle 
cells of the freshwater red crab Dilocarcimus pagei 
display a certain degree of regulatory volume in-
crease upon volume loss in hyperosmotic medium 
(Amado et al., 2006). 

Alkaline phosphatases (AP) (EC 3.1.3.1) are 
ubiquitous non-specific metalloenzymes which hy-
drolyse many types of phosphate esters at a range of 
optimal pH above 7.0. In mammals, AP plays a role 
in several essential functions (Hessle et al., 2002; Ali 
et al., 2006a,b; Nakano et al., 2006). In amphibians, 
AP has been suggested to be involved in adaptive 
osmoregulation (Dore et al., 2000). Although AP has 
been identified and characterised in several tissues 
of invertebrates (Itoh et al., 1999; Chen et al., 2000; 

2005; Park et al., 2001; Mazorra et al., 2002; Xiao et 
al., 2002), its exact physiological role has not always 
been clearly established. 

The role of AP in euryhaline crab adaptation to en-
vironmental salinity has been scarcely studied. An AP 
activity sensitive to low salinity occurs in the posterior 
gills of the euryhaline crab C. sapidus, which would 
modulate the osmoregulatory response, probably be-
ing an effector for the increases of branchial Na+-K+ 

ATPase activity (Lovett et al., 1994). We have recently 
demonstrated the occurrence of a levamisole-insensi-
tive AP activity with optimal pH 7.7, which decreased 
upon acclimation to low salinity in chela muscle of C. 
granulatus, whereas levamisole-sensitive AP activity 
appeared not to be affected. The differential response 
of both muscle AP activities to low salinity suggests a 
different participation in mechanisms of adjustments 
to varying environmental conditions (Pinoni et al., 
2005). C. angulatus is a euryhaline crab which is 
found from Rio de Janeiro (Brazil) to Patagonia (Ar-
gentina) in habitats with varying salinities (Boschi, 
1964). In Mar Chiquita coastal lagoon (Buenos Aires 
Province, Argentina), it is exposed to highly and 
abruptly variable environmental salinity (Anger et al., 
1994; Spivak et al., 1994). The regulatory mechanisms 
at the biochemical level in other organs or tissues of 
C. angulatus under low salinity conditions have been 
poorly investigated. As part of our integrative studies 
on the identification of enzyme activities involved in 
biochemical adaptations to environmental salinity in 
estuarine crabs, the aim of this work was to determine 
the occurrence, characteristics and response to low 
salinity at physiological pH of AP activity and Na+-K+ 
ATPase activity in muscle of C. angulatus from Mar 
Chiquita coastal lagoon. The study of the responses of 
muscle total AP, levamisole-sensitive AP and Na+-K+ 
ATPase activities under hyperregulating conditions 
contributes to a better understanding of the complex-
ity of biochemical mechanisms underlying adaptive 
process of euryhaline crabs.

Materials and methods

Chemicals

Na2ATP (adenosine 5’ triphosphate, vanadium-
free), Tris-(hydroxymethylamino-methane) (Tris), 
ethylenglicol N, N’, N’-tetraacetic acid (EGTA), 
imidazole, G-Strophantin (ouabain), pNPP (p-ni-
trophenylphosphate), levamisole (L [-]-2, 3, 5, 6-
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Tetrahydro-6-phenylimidazol [2, 1-b] thiazole) and 
bovine serum albumin were from Sigma (St. Louis, 
MO, USA); sucrose and sodium chloride were from 
Merck (Darmstadt, Germany); magnesium chloride 
was from ICN (Ohio, USA); potassium chloride, 
magnesium sulphate and Coomasie Blue G250 were 
from Fluka (Germany). All solutions were prepared 
in glass-distilled water. 

Animal collection and maintenance

Crabs were caught from a single area from Mar 
Chiquita lagoon which exhibited  high and abrupt 
variations in salinity ranging from 4 to 35 psu. For 
all the experiments salinity was measured in practi-
cal salinity units (psu). Only adult male crabs with a 
carapace width greater than 2.5 cm were collected. 
Animals were transported to the laboratory in lagoon 
water on the day of collection. Crabs were main-
tained in natural seawater (35 psu) or dilute seawater 
(10 psu) for at least 10 days prior to use. The aquaria 
contained 36 l of water, continuously aerated and 
filtered. A regime of 12 h light/12 h dark was applied 
and the temperature was kept at 22 ± 2ºC. Aquaria 
were shielded by black plastic to reduce disturbance. 
Crabs were fed three times a week with commercial 
food (Cichlind T.E.N., Wardley, USA) (about 0.07 
g per individual) but they were starved 48 h prior to 
experiments. Dilute seawater was obtained by dilu-
tion of natural seawater with distilled water.

Preparation of enzyme muscle extract

 The crabs were cryoanaesthetised by putting 
them on ice for about 15 min. After removal of the 
chelae, the muscle was immediately excised, mixed 
with homogenising medium (0.25 M sucrose/0.5 
mM EGTA-Tris, pH 7.4; 8 ml g–1 of muscle tissue) 
and homogenised (CAT homogeniser x120, tool 
T10) on ice. The muscles from both chelae of one in-
dividual were pooled and used for each preparation 
of enzyme extract. The homogenate was fractionated 
into 200 µl aliquots and used immediately (for assay 
of Na+-K+ ATPase activity) or stored at –20ºC until 
use (for assay of AP activities). Glycerol (1.3% v/v) 
was added to samples before freezing.

Assay of Na+-K+ ATPase activity

Total (Mg2+-Na+-K+) ATPase activity was deter-
mined by measuring ATP hydrolysis in a reaction 

medium containing 100 mM NaCl, 30 mM KCl, 10 
mM MgCl2 and 0.5 mM EGTA in 20 mM imidazole 
buffer (pH 7.4). Residual (Mg2+-Na+) ATPase activ-
ity was assayed in the same medium but without 
KCl and in the presence of 1 mM ouabain (specific 
inhibitor of Na+-K+ ATPase). Na+-K+ ATPase activ-
ity was determined as the difference between the two 
assays. An aliquot of the corresponding sample (lin-
earity zone on activity vs protein concentration plot) 
was added to the reaction mixture and pre-incubated 
for 5 min at 30ºC. The reaction was initiated by the 
addition of ATP (final concentration 1 mM). Incuba-
tion was carried out at 30ºC for 15 min. The reaction 
was stopped by addition of 2 ml of cooled Bonting’s 
reagent (560 mM sulphuric acid, 8.1 mM ammonium 
molybdate and 176 mM ferrous sulphate). After 20 
min at room temperature, the amount of released Pi 
was determined by reading the absorbance at 700 nm 
of the reduced phosphomolybdate complex (Bonting, 
1970). To study the effect of ATP concentrations, pH 
and temperature on Na+-K+ ATPase activity, the pro-
cedure was the same as that described above, except 
that the activities were determined in the presence of 
varying ATP concentrations or at different pH lev-
els of the reaction mixture, respectively. Individu-
als acclimated to 10 psu salinity were used in these 
experiments. Since a residual (Mg2+-Na+) ouabain-
insensitive ATPase activity is usually determined as 
part of the assay of Na+-K+ ATPase activity, we also 
determined the characteristics and responses of this 
activity in chela muscle of C. angulatus. The deter-
mination of enzyme activity was always performed 
with samples, without previous freezing.

Assay of alkaline phosphatase activity

In the standard assay, AP activity was determined 
by measuring pNPP hydrolysis in a reaction medium 
containing 1 mM MgSO4 in 100 mM Tris–HCl buffer 
(pH 7.4 or 8.0) in the absence (total AP activity) and 
presence of 16 mM levamisole (levamisole-insensi-
tive AP activity). Levamisole-sensitive AP activity 
was estimated as the difference between the two 
assays. An aliquot of the corresponding sample (lin-
earity zone on activity vs protein concentration plot) 
(200-350 μg of proteins) was added to the reaction 
mixture and pre-incubated for 5 min at 37ºC. The 
reaction was initiated by the addition of pNPP (final 
concentration 9.5 mM). Incubation was carried out at 
37ºC for 30 min. The reaction was stopped by addi-
tion of 2 ml of 0.1 M KOH. The amount of released 
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pNP was determined by reading the absorbance at 
410 nm. To study the effect of pH on AP activity, the 
procedure was the same as that described above, ex-
cept that the activity was determined in the presence 
of varying pH levels of the reaction mixture. To study 
the effect of pNPP concentration on AP activity, the 
procedure was the same as that described above, 
except that the activity was determined in the pres-
ence of varying pNPP concentrations in the reaction 
mixture. The effect of temperature on AP activity 
was determined as described above, but the incuba-
tion temperature was varied. Individuals acclimated 
to 35 psu salinity were used in these experiments. 
The determination of enzyme activity was always 
performed with samples which had been stored at 
–20ºC, without any previous thawing. This freezing 
procedure did not alter the activity values.

Measurement of hemolymph ionic concentration

Hemolymph (about 500 μl) was sampled from 
the infrabranchial sinus by mean of a syringe at the 
base of the cheliped, and transferred to an iced cen-
trifuge tube. Serum was separated by centrifugation 
at 10000 Xg (Beckman, Microfuge, B) for 30 s. Na+ 
and K+ were determined by flame photometry (Ra-
diometer Copenhagen, FLM3). Cl- was determined 
by a colorimetric method (Randox Commercial Kit) 
based on the formation of a blue Fe-2,4,6-tri-(2-pyri-
dyl)-1.3.5-triazine-ferrous sulphate complex.

Protein analysis

Protein was assayed according to Bradford (1976). 
Bovine serum albumin was used as standard.

Statistical analysis

Statistical analyses were performed using the Sig-
ma-Stat 3.0 statistical package for Windows operat-
ing system, which automatically performs a previous 
test for equal variance and normality. A parametric 
(one-way ANOVA or repeated measures ANOVA) 
or non-parametric (Kruskal-Wallis) analysis of vari-
ance was used. A posteriori ANOVA test using the 
Holm-Sidak method was used to identify differences 
and p<0.05 was considered significant. Results of 
the effect of varying concentrations of pNPP on 
AP activity were analysed by means of non-linear 
regression analysis (GraphPad Prism 2.01 software). 
The corresponding curves shown are those which 

best fit the experimental data. Km values (Michaelis-
Menten constant) were estimated by analysis of data 
using a Lineweaver-Burk plot (GraphPad Prism 2.01 
software). I50 (levamisole concentration at which le-
vamisole-sensitive AP activity was 50% inhibited) 
was calculated from the inhibition curve (GraphPad 
Prism 2.01 software).

Results

Na+-K+ ATPase activity of muscle of 
Cyrtograpsus angulatus

The effect of ATP concentration on Na+-K+ AT-
Pase activity of muscle of Cyrtograpsus angulatus 
is shown in Figure 1. Maximal activity occurred at 
1 mM ATP. At 5.0-10.0 mM ATP, Na+-K+ ATPase 
activity was about 40% lower than maximal activity 
(Fig. 1). The response to ATP of muscle Na+-K+ AT-
Pase activity did not fit to any of the equations tested 
(one-site binding, two-site binding, sigmoidal, sig-
moidal variable slope) (non-linear regression analy-
sis GraphPad Prism software version 2.01). Residual 
(Mg2+-Na+) ATPase activity was similar within the 
range of ATP concentrations used (Fig. 1, Inset). Na+-
K+ ATPase activity in chela muscle was affected by 
 pH and temperature of the reaction mixture. Maximal 
  
Na+-K+ ATPase activity occurred at pH 7.4 (Fig. 2). 
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Fig. 1. – Effect of ATP (0.1-10.0 mM) on Na+-K+ ATPase activity 
in chela muscle of C. angulatus. Inset: residual (Mg2+-Na+) ATPase 
activity. The values of Na+-K+ ATPase and residual (Mg2+-Na+) 
ATPase activity are expressed as a relation to the maximal activity 
(100%, Na+-K+ ATPase activity: 61.8±7.7 and (Mg2+-Na+) ATPase 
activity: 63.6±5.1 nmoles Pi x min-1 x mg prot-1). In some cases, de-
viation bars were smaller than the symbols used. Data are the mean 
± S.E. for three to five crabs. Different letters indicate significant 

differences (p<0.05).



Crab muscle alkaline phosphatase and Na+-K+ATPase • 19

SCI. MAR., 72(1), March 2008, 15-24. ISSN 0214-8358

At pH between 6.2 and 7.0 and at pH 7.8 the activity 
was only about 20% of the maximal activity. Muscle 
residual (Mg2+-Na+) ATPase activity was not affected 

by pH within the range used (Fig. 2). Na+-K+ ATPase 
activity increased upon enhancement of temperature 
from 22 to 30-37°C. At higher temperature (45°C) 
Na+-K+ ATPase activity decreased strongly to about 
13% of the activity at 30°C (Fig. 3). Residual (Mg2+-
Na+) ATPase activity was similar within the same 
range of temperature (Fig. 3, Inset).

Levamisole-sensitive AP activity of muscle of 
Cyrtograpsus angulatus

Initially, AP activity of chela muscle was deter-
mined within the range of pH 7.4-10.0 in the absence 
and presence of the AP inhibitor levamisole (Fig. 4). 
The inhibition by levamisole revealed the presence 
in chela muscle of C. angulatus of a levamisole-
sensitive AP activity which was high between the 
range of pH 7.4-8.4, and maximal at pH 8.0 (Fig. 4). 
Levamisole-sensitive AP activity was not inhibited 
by ouabain or activated by K+ (not shown). Further 
characterisation of AP activity in chela muscle of 
C. angulatus was made at physiological pH 7.4 and 
comparatively at pH 8.0. I50 (the concentration that 
produced 50% levamisole-sensitive AP activity in-
hibition) was similar at pH 7.4 and 8.0 (8.8 and 8.0 
mM, respectively) (Fig. 5). Levamisole-sensitive AP 
activity exhibited Michaelis-Menten kinetics; Km 
of p-nitrophenylphosphate being lower at the physi-
ological pH (Km= 3.451 mM and 6.906 mM at pH 
7.4 and 8.0, respectively; Fig. 6). Levamisole-sensi-
tive AP activity was notably affected by temperature. 
At 4ºC, no activity at pH 7.4 was detected, whereas 
at pH 8.0 it was very low. At higher temperatures, 
levamisole-sensitive AP activity at both pH levels 
increased, being maximal at 37°C and decreasing by 
about 60% at 45°C (Fig. 7).
Effect of acclimation to low salinity on Na+-K+ 
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Fig. 2. – Effect of pH on Na+-K+ ATPase activity in chela muscle 
of C. angulatus. The values of Na+-K+ ATPase activity and residual 
(Mg2+-Na+) ATPase activity are expressed as a relation to the activ-
ity at pH 7.4 (100%, Na+-K+ ATPase activity: 66.3±5.5 and (Mg2+-
Na+) ATPase activity: 110±28.6 nmoles Pi x min-1 x mg prot-1). In 
some cases, deviation bars were smaller than the symbols used. Data 
are the mean ± S.E. for three individuals. Circles: Na+-K+ ATPase 
activity. Squares: Residual (Mg2+-Na+) ATPase activity. Different 

letters indicate significant differences (p<0.05).
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Fig. 3. – Effect of temperature on Na+-K+ ATPase activity at pH 7.4 
in chela muscle of C. angulatus. Inset: Residual (Mg2+-Na+) ATPase 
activity. The values of Na+-K+ ATPase and residual (Mg2+-Na+) 
ATPase activities are expressed as a relation to the corresponding 
activity at 30°C (100%, Na+-K+ ATPase activity: 135.9±70.2 and 
(Mg2+-Na+) ATPase activity: 105.3±23.1 nmoles Pi x min-1 x mg 
prot-1). In some cases, deviation bars were smaller than the symbols 
used. Data are the mean ± S.E. for three individuals. Different letters 

indicate significant differences (p<0.05).
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Table 1. – Concentration of ions (mEq l-1) in external medium and in C. angulatus hemolymph.

	 35 psuª	 10 psuª
	 Medium	 Hemolymph	 Medium	 Hemolymph

Na+	 420.8±18.8 (4)	 406.7±18.8 (9)	 179±3.2 (4)	 332.8±6.6 (6)*
K+	 10.2±2.7 (4)	 7.8±1.9 (9)	 3.8±0.3 (4)	 8.6±0.4 (6)*
Cl-	 497.6±34.2 (4)	 440±12.1 (9)	 152±3.3 (4)	 363.3±16.1 (6)*

ª Hemolymph of crabs acclimated to either 35 or 10 psu. *Denotes significantly different from the corresponding concentration of the  
external medium (ANOVA, p<0.05). Data are the mean ± S.E. ( ): Number of specimens.
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ATPase and levamisole-sensitive AP activity of 
muscle of Cyrtograpsus angulatus

To determine the effect of environmental salinity 
on Na+-K+ ATPase and on levamisole-sensitive AP 
activity at the physiological pH in chela muscle of 
C. angulatus, specimens were acclimated to 35 and 
10 psu, salinities at which this crab ionoconforms 

and hyperregulates, respectively (Table 1). In crabs 
acclimated to 35 psu, chela muscle exhibited a low 
Na+-K+ ATPase activity (27.9±3 nmoles Pi x min-1 x 
mg prot-1). In individuals acclimated to low salinity 
Na+-K+, ATPase activity was about 2.3 times higher 
(65±5 nmoles Pi x min-1 x mg prot-1) than at 35 psu 
(Fig. 8; Table 2). No differences in residual (Mg2+-
Na+) ATPase activity were found in muscle of indi-
viduals acclimated to either 35 or 10 psu (Table 2). 

In individuals acclimated to 10 psu, levamisole-
sensitive AP activity at pH 7.4 (548.5 ± 21.5 nmol 
pNP min-1 mg protein-1) was higher than the activity 
in crabs acclimated to 35 psu (449.7 ± 34.8 nmol 
pNP min-1 mg protein-1; Fig. 8; Table 2). Levami-
sole-insensitive AP activity was not affected by ac-
climation of crabs to 10 psu (Table 2). 

Discussion

Our results show the occurrence of a Na+-K+ 
ATPase activity and a levamisole-sensitive AP 
activity in chela muscle of the euryhaline crab C. 
angulatus, which increased upon acclimation to low 
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Table 2. – Na+-K+ ATPase, (Mg2+-Na+) ATPase and AP specific activities in chela muscle of C. angulatus.

Salinity	N a+-K+ ATPase	 (Mg2+-Na+) ATPase 	L evamisole-Sensitive AP	T otal AP
 	 (nmoles Pi x min-1 x mg prot-1)	 (nmoles pNP x min-1 x mg prot-1)

35 	 27.9 ± 3.1 (5)	 61.1 ± 3.1 (5)	 449.7 ± 34.8 (7)	 2137.7 ± 426.6 (6)
10 	 65.4 ± 5.3 (5)*	 99.8 ± 20.3 (5)	 548.5 ± 21.5 (5)*	 2119.0 ± 401.6 (5)

*Denotes significantly different from the corresponding activity at 35 psu (ANOVA, p<0.05). Data are the mean ± S.E. ( ): Number of 
specimens.
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salinity. Na+-K+ ATPase in chela muscle of C. an-
gulatus appeared to be quite sensitive to ATP (Fig. 
1). In crustaceans, the pattern of response of Na+-K+ 
ATPase activity to varying ATP concentrations var-
ies according to species. Na+-K+ ATPase activity in 
gills of various crabs exhibits Michaelis-Menten ki-
netics (Neufeld et al., 1980; D’Orazio and Holliday, 
1985; Corotto and Holliday, 1996). However, Na+-K+ 
ATPase from posterior gills of the swimming crab 
Callinectes danae follows a biphasic curve (Masui et 
al., 2002). In gill homogenates from the air-breath-
ing crab Leptograpsus variegates, Na+-K+ ATPase 
activity exhibited a markedly low optimum ATP 
concentration (0.87 mM), being inhibited at higher 
ATP concentrations (Cooper and Morris, 1997). 

The strong dependency on pH of Na+-K+ ATPase 
activity of chela muscle of C. angulatus (Fig. 2) is in 
agreement with that found for this activity from crusta-
ceans (reviewed by Lucu and Towle, 2003). Branchial 
Na+-K+ ATPase activity shows optimum pH values of 
between 7.0 and 7.7 in species so far studied (reviewed 
by Lucu and Towle, 2003). In homogenates from ante-
rior and posterior gills of C. granulatus the optimum 
pH of Na+-K+ ATPase activity was found in a sharp 
maximal at about 7.4-7.6, a dramatic decrease in activ-
ity occurring at lower and higher pH values (Castilho et 
al., 2001). The strong dependency on temperature and 
the low Na+-K+ ATPase activity in chela muscle of C. 
angulatus at high temperature, 45°C (Fig. 3), is similar 
to that described for this activity in homogenates from 
posterior gills of C. granulatus (Castilho et al., 2001; 
Genovese et al., 2004). The highest Na+-K+ ATPase 
activity in chela muscle of C. angulatus at 30-37°C is 
in agreement with the optimum temperature for this 
activity in gills from several crustaceans (reviewed by 
Lucu and Towle, 2003). 

Levamisole, a well-known AP inhibitor, is com-
monly used to discriminate between mammals AP 
isoforms and in clinical studies (Van Belle, 1976; 
Calhau et al., 2000; Ali et al., 2006a). In euryhaline 
crabs, the occurrence of a levamisole-sensitive AP 
activity has been shown in gill homogenates of C. 
sapidus (Lovett et al., 1994). C. angulatus from Mar 
Chiquita coastal lagoon exhibited a levamisole-sensi-
tive AP activity which is high within the broad range 
of pH 7.4-8.4 (Fig. 4). AP from different invertebrate 
tissues exhibits an optimum pH ranging between 7.1 
and 10.9 (Lovett et al., 1994; Itoh et al., 1999; Funk, 
2001; Mazorra et a.l, 2002; Xiao et al., 2002). The 
response to pH of levamisole-sensitive AP activity 
in chela muscle of C. angulatus was also similar to 

that described for this activity in chela muscle of 
C. granulatus (Pinoni et al., 2005). The Michaelis-
Menten kinetics of levamisole-sensitive AP activity 
of chela muscle of C. angulatus (Fig. 6) is in agree-
ment with that described for this activity in gills of 
C. sapidus (Lovett et al., 1994) and in chela muscle 
of C. granulatus (Pinoni et al., 2005). 

Animal APs from different tissues exhibit a vari-
able sensitivity to temperature (Olsen et al., 1991; 
Àsgeirsson et al., 1995; Funk, 2001). In invertebrates, 
the optimum temperature of AP activity appeared to 
be species- and tissue-dependent. The response of 
levamisole-sensitive AP activity of chela muscle of 
C. angulatus to temperature (Fig. 7) is in agreement 
with that found for this activity in chela muscle of C. 
granulatus (Pinoni et al., 2005). An inhibition of AP 
activity at high temperatures has also been described 
for AP purified from viscera of P. fucata (Xiao et 
al., 2002) and from the digestive tract of S. serrata 
(Chen et al., 1997). 

The ability of hyperregulating crabs to adapt to 
varying environmental salinity may imply responses 
ranging from the molecular level to the organism. 
In dilute media, hyperregulating crabs absorb both 
sodium and chloride from the external medium via 
the gills, thus regulating their concentrations in 
the hemolymph and compensating for salt losses. 
In posterior gills of several hyperregulating crabs, 
adaptive increases of Na+-K+ ATPase activity occurs 
both upon acclimation and after transfer to reduced 
salinity. Thus, this enzyme plays a central role in 
the biochemical adaptation to low salinity (reviewed 
by Lucu and Towle, 2003; Towle, 1997; Kirshner, 
2004). We have previously shown the occurrence of 
differential changes in Na+-K+ ATPase activity of 
anterior and posterior gills of C. angulatus from the 
Mar Chiquita coastal lagoon suggesting that this en-
zyme is a component of the biochemical adaptations 
of this crab to low salinity (López Mañanes et al., 
2002). The participation of Na+-K+ ATPase activity 
as a component of the biochemical adaptation of C. 
angulatus to environmental salinity in other tissues 
is still unknown. The higher Na+-K+ ATPase activity 
of chela muscle of C. angulatus at 10 psu (Fig. 8), a 
salinity at which this crab exhibits a strong hyper-
regulatory capacity (Table 1), along with the fact that 
under osmoionoconforming conditions (35) Na+-K+ 

ATPase activity in chela muscle was low (Fig. 8), 
suggest the role of this enzyme and of the muscle 
in regulatory mechanisms at the biochemical level 
secondary to hyperregulation. In mammal skeletal 
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muscle, Na+-K+ ATPase activity has been involved 
in the response to various stressful conditions and 
the maintenance of resting membrane potential and 
osmotic balance. The Na+ gradient created by the 
enzyme also appears to be the driving force for the 
maintenance of Na+-dependent secondary processes 
such as transport of nutrients and Ca2+ (Clausen, 
1996; McCarter et al., 2001). In frog muscle, Na+-K+ 

ATPase has been shown to have a role in mechanisms 
of adjustment to hypo-osmotic stress (Venosa, 1991, 
2003). Muscle of euryhaline crabs has been involved 
in cellular volume regulation (Lang and Gaener, 
1969) and acid-base balance (Whiteley et al., 2001), 
and provides an energy source through mobilisa-
tion of lipids (Luvizotto-Santos et al., 2003) under 
hypo-osmotic stress. The enhanced Na+-K+ ATPase 
activity in chela muscle of individuals acclimated to 
low salinity (Fig. 8; Table 2) could support the ion 
concentrations and electrochemical gradients neces-
sary for functioning of the transport systems that are 
probably involved in these physiological processes 
secondary to osmo-ionoregulation.

The role of AP as a component of euryhaline crabs’ 
responses to environmental salinity has received little 
attention (Pinoni and López Mañanes, 2004). Levami-
sole-sensitive and levamisole-insensitive AP activities 
in the gills of C. sapidus have been shown to decrease 
upon acclimation of crabs to low salinity (Lovett et 
al., 1994). AP has been suggested to be an effector 
for the adaptive changes of this crab to low salinity 
in branchial Na+-K+ ATPase activity. AP regulates the 
synthesis or delivery of polyamines which, in turn, 
modulate Na+-K+ ATPase activity (Lovett et al., 1994). 
The higher levamisole-sensitive AP activity at physi-
ological pH in chela muscle of C. angulatus (Fig. 8) 
acclimated to low salinity suggests that this activity 
could also be a component of the biochemical adapta-
tion to low salinity in this crab. Several physiological 
processes in animals are regulated via dephosphoryla-
tion of key components (i.e. several enzymes) mediat-
ed by different phosphatase activities. In chela muscle 
of C. angulatus, it remains to be established whether 
levamisole-sensitive AP activity is involved in phos-
phorylation/dephosphorylation processes regulating 
key components involved in mechanisms underlying 
biochemical adaptation to low salinity (i.e. cell volume 
and acid-base regulation, and mobilisation of energy 
substrates). Whether the increase of levamisole-sen-
sitive AP activity could be related to a physiological 
link with Na+/K+ ATPase activity in chela muscle of C. 
angulatus, as was suggested in the gills of C. sapidus 

(Lovett et al., 1994), requires further investigation. In 
muscle of the squirrel, Na+/K+ ATPase has been de-
scribed to be regulated via dephosphorylation by AP 
(Mac Donald and Storey, 1999). 

In summary, our results show the existence of 
Na+-K+ ATPase and levamisole-sensitive AP activi-
ties in muscle of C. angulatus. The response of Na+-
K+ ATPase and of levamisole-sensitive AP activities 
to low salinity under hyperregulating conditions sug-
gests the participation of these enzymes in responses 
at the biochemical level to varying environmental 
salinity. Whether or not these activities in chela 
muscle of C. angulatus are involved in physiologi-
cal processes secondary to osmo-ionoregulation (i.e. 
cell volume regulation, acid-base equilibrium, mo-
bilisation of substrates) remains to be investigated. 
Future studies should focus on establishing the exact 
physiological roles of these muscle activities in the 
integrative adaptive responses of euryhaline crabs to 
varying environmental conditions.
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