Scientia Marina 88 (1)
March 2024, e081
ISSN: 0214-8358, eISSN: 1886-8134
https://doi.org/10.3989/scimar.05383.081

Length-weight relationships of 15 mesopelagic shrimp species caught during exploratory surveys off the Canary Islands (central eastern Atlantic)

Relaciones talla-peso de 15 especies de crustáceos mesopelágicos capturados durante campañas exploratorias frente a las Islas Canarias (Atlántico Centro Oriental)

Airam Guerra-Marrero

IU-ECOAQUA, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Campus de Tafira, Gran Canaria, Canary Islands 35017, Spain.

https://orcid.org/0000-0002-8226-1786

Catalina Caballero-Méndez

IU-ECOAQUA, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Campus de Tafira, Gran Canaria, Canary Islands 35017, Spain.

https://orcid.org/0009-0004-2756-6917

Ana Espino-Ruano

IU-ECOAQUA, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Campus de Tafira, Gran Canaria, Canary Islands 35017, Spain.

https://orcid.org/0000-0002-9493-0289

Lorena Couce-Montero

IU-ECOAQUA, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Campus de Tafira, Gran Canaria, Canary Islands 35017, Spain.

https://orcid.org/0000-0002-5132-6698

David Jiménez-Alvarado

IU-ECOAQUA, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Campus de Tafira, Gran Canaria, Canary Islands 35017, Spain.

https://orcid.org/0000-0002-7164-8125

José J. Castro

IU-ECOAQUA, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Campus de Tafira, Gran Canaria, Canary Islands 35017, Spain.

https://orcid.org/0000-0002-0461-5489

Summary

Length-weight relationships (LWRs) were estimated for 15 mesopelagic shrimp species off the Canary Islands (central eastern Atlantic). Total length, cephalothorax length and total weight were taken for individuals collected during three research campaigns using a commercial semi-pelagic trawl net. The most represented families among the collected species were Sergestidae and Oplophoridae, with eight and three species, respectively. Overall, 60% of the species showed isometric growth, 33.3% negative allometry and 6.7% positive allometry. These 15 LWRs are the first contribution on mesopelagic shrimp species from the northwest Africa region, contributing to knowledge on the relative growth of these crustaceans.

Keywords: 
relative growth; Oplophoroidea; Penaoidea; Sergestoidea; Atlantic Ocean
Resumen

Se estimaron las relaciones talla-peso (LWR) para 15 especies de crustáceos mesopelágicos de las Islas Canarias (Atlántico Centro Oriental). Se tomaron la longitud total (TL), la longitud del cefalotórax (CL) y el peso total (W) de los individuos recolectados durante tres campañas de investigación utilizando una red de arrastre semipelágica comercial. Las familias más representadas entre las especies colectadas fueron Sergestidae y Oplophoridae con ocho y tres especies, respectivamente. En general, el 60% de las especies presentó crecimiento isométrico, el 33,3% alometría negativa y el 6,7% alometría positiva. Estas 15 LWR son la primera contribución para estas especies de crustáceos mesopelágicos de la región del noroeste de África, contribuyendo a aumentar el conocimiento sobre el crecimiento relativo de estos crustáceos.

Palabras clave: 
crecimiento relativo; Oplophoroidea; Penaoidea; Sergestoidea; océano Atlántico

Received: March  22,  2023. Accepted: November  22,  2023. Published:   February, 28  2024

Editor: M.B. Gaspar.

Citation/Cómo citar este artículo: Guerra-Marrero A., Caballero-Méndez C., Espino-Ruano A., Couce-Montero L., Jiménez-Alvarado D., Castro J.J. 2024. Length-weight relationships of 15 mesopelagic shrimp species caught during exploratory surveys off the Canary Islands (central eastern Atlantic). Sci. Mar. 88(1): e081. https://doi.org/10.3989/scimar.05383.081

CONTENT

INTRODUCTION

 

Mesopelagic shrimps live between the surface and 1000 m depth, and the most abundant families are Acanthephyridae, Benthesicymidae, Ciferidae, Oplophoridae, Pandalidae, Pasiphaeidae, Penaeidae and Sergestidae (Landeira and Fransen 2012Landeira J.M., Fransen C.H.J.M. 2012. New data on the mesopelagic shrimp community of the Canary Islands region. Crustaceana 85: 385-414. https://doi.org/10.1163/156854012X626428, Vereshchaka et al. 2019Vereshchaka A.L., Lunina A.A., Sutton T. 2019. Assessing deep-pelagic shrimp biomass to 3000 m in the Atlantic Ocean and ramifications of upscaled global biomass. Sci. Rep. 9: 1-11. https://doi.org/10.1038/s41598-019-42472-8). Many mesopelagic decapod crustaceans show diel vertical migrations (DVMs) associated with predation avoidance, ascending towards surface waters at night to feed and descending to depths during the day to hide from predators (Irigoien et al. 2004Irigoien X., Conway D.V., Harris R.P. 2004. Flexible diel vertical migration behaviour of zooplankton in the Irish Sea. Mar. Ecol. Prog. Ser. 267: 85-97. https://doi.org/10.3354/meps267085, Torres et al. 2018Torres A.P., Reglero P., Hidalgo M., et al. 2018. Contrasting patterns in the vertical distribution of decapod crustaceans throughout ontogeny. Hydrobiologia 808: 137-152. https://doi.org/10.1007/s10750-017-3414-x).

Over the years, the estimation of mesopelagic shrimp biomass from oceanographic campaigns has been influenced by a catchability problem of the fishing gears, since the sample size is usually not very large and the DVMs can significantly affect the estimated biomass in the water column (Vereshchaka et al. 2019Vereshchaka A.L., Lunina A.A., Sutton T. 2019. Assessing deep-pelagic shrimp biomass to 3000 m in the Atlantic Ocean and ramifications of upscaled global biomass. Sci. Rep. 9: 1-11. https://doi.org/10.1038/s41598-019-42472-8). Biomass is normally estimated from acoustic data and primary production studies (Irigoien et al. 2014Irigoien X., Klevjer T.A., Røstad A., Martinez U., Boyra G., Acuña J.L., Bode A., Echevarria F., Gonzalez-Gordillo J.I., Hernández-Leon S., Agusti S., Aksnes D.L., Duarte C.M. Kaartvedt S. 2014. Large mesopelagic fishes biomass and trophic efficiency in the open ocean. Nat. Comm. 5: 1-10. https://doi.org/10.1038/ncomms4271) because the information available on the ecology and biology of these species, and particularly on growth, is very scarce.

Frequently, the lack of biological data on crustacean species with low or without fishing interest at regional level is partially compensated by using standardized data available on global databases such as SeaLifeBase.org (Palomares and Pauly 2012Palomares M.L., Pauly D. 2012. FishLifeBase. Available at: www.sealifebase.org), where it is possible to obtain the maximum length and weight reported for some species, the depth range and the geographical distribution. However, such data are only useful for a general approach, not for establishing any particular characteristic of the species at a more local or regional level. Unfortunately, in the particular case of mesopelagic shrimps, the biological information available is almost nil in the specialized literature, particularly for the central eastern Atlantic, with the exception of a few taxonomic monographies (Zariquiey-Alvarez 1968Zariquiey-Álvarez R. 1968. Crustáceos decápodos ibéricos. Inv. Pes., 32: 1-510., De Grave and Fransen 2011De Grave S., Fransen C.H.J.M. 2011. Carideorum catalogus: The recent species of the Dendrobarachiate, Stenopodidean, Procarididean and Caridean shrimps (Crustacea: Decapoda). Zoo. Med., Leiden, 85: 195-588.), first records, faunal lists and latitudinal/vertical distributions of species (Quiles et al. 2001Quiles J.A., González J.A., Santana J.I. 2001. New and little known Dendrobranchiata and Caridea of the Canary Islands (Crustacea, Decapoda). Bol. Inst. Esp. Ocean. 17: 7-13., Muñoz et al. 2012Muñoz I., García-Isarch E., Sobrino I., et al. 2012. Distribution, abundance and assemblages of decapod crustaceans in waters off Guinea-Bissau (north-west Africa). J. Mar. Biol. Ass. UK, 92: 475-494. https://doi.org/10.1017/S0025315411001895, Vereshchaka et al. 2019Vereshchaka A.L., Lunina A.A., Sutton T. 2019. Assessing deep-pelagic shrimp biomass to 3000 m in the Atlantic Ocean and ramifications of upscaled global biomass. Sci. Rep. 9: 1-11. https://doi.org/10.1038/s41598-019-42472-8

Species life-cycle parameters are required for the proper management of fishing resources, but also for estimating biomass fluxes between trophic levels and assessing the role of each group within the marine ecosystem (Couce-Montero et al. 2021Couce-Montero L., Christensen V., Castro J.J. 2021. Simulating trophic impacts of recreational fishing scenarios on two oceanic islands using Ecopath with Ecosim. Mar. Env. Res. 169: 105341. https://doi.org/10.1016/j.marenvres.2021.105341). Knowledge on the length-weight relationships (LWR) can be used to gather information of species growth patterns, estimate condition index and analyse growth variations on temporal or spatial scales between populations/stocks (González-Acosta et al. 2004González-Acosta A.F., De La Cruz Agüero G., De La Cruz Agüero J. 2004. Length-weight relationships of fish species caught in a mangrove swamp in the Gulf of California (Mexico). J. App. Ichth. 20: 154-155. https://doi.org/10.1046/j.1439-0426.2003.00518.x, Gerritsen and McGrath 2007Gerritsen H.D., McGrath D. 2007. Significant differences in the length-weight relationships of neighbouring stocks can result in biased biomass estimates: Examples of haddock (Merlangius merlangus, L.) and whiting (Merlangius merlangus, L.). Fish. Res., 85: 106-111. https://doi.org/10.1016/j.fishres.2007.01.004, Froese and Pauly 2015). In this study, 15 mesopelagic shrimp species caught around the Canary Islands (central eastern Atlantic) were analysed to estimate the LWRs and analyse their relative growth patterns.

MATERIAL AND METHODS

 

Fishing surveys

 

Individuals were collected during three research campaigns (Table 1) around the Canary Islands (Central eastern Atlantic) performed on board the R.V. La Bocaina. In a total of 70 biological sampling hauls, mesopelagic shrimps were caught between the sea surface and 1035 m depth. The fishing gear was a commercial semi-pelagic trawl net with 5 mm mesh size at the cod-end (for more details see Guerra-Marrero et al. 2020Guerra-Marrero A., Hernández-García V., Sarmiento-Lezcano A., et al. 2020. Migratory patterns, vertical distributions and diets of Abralia veranyi and Abraliopsis morisii (Cephalopoda: Enoploteuthidae) in the eastern North Atlantic. J. Moll. Stud. 86: 27-34. https://doi.org/10.1093/mollus/eyz029).

Table 1.  Names and dates of research campaigns, number of trawls and depth intervals where the mesopelagic shrimps were collected.
Research campaigns Dates No. trawls Depth intervals (m)
ECOS 04/99 8-30 April 1999 23 8 - 716
Pelagic 11/00 10-22 November 2000 20 17 - 1009
Bocaina 03/02 7-18 April 2002 27 13 - 1035

Biological sampling

 

Immediately after capture, shrimps were initially fixed in formaldehyde (4%) for 4 hours, and then preserved in 70% ethanol, prior to their identification to the lowest possible taxonomic level (Crosnier and Forest 1973Crosnier A., Forest J. 1973. Les crevettes profondes de l’Atlantique oriental tropical (Vol. 19). IRD Editions., Zariquiey-Alvarez 1968Zariquiey-Álvarez R. 1968. Crustáceos decápodos ibéricos. Inv. Pes., 32: 1-510., González-Perez 1995González-Pérez J.A. 1995. Catálogo de crustáceos decápodos de las Islas Canarias: gambas, langostas, cangrejos. Sta. Cruz de Tenerife, Turquesa, 282 pp., Burukovskii 1992Burukovskii R.N. 1992. Key to shrimps and Lobsters. A.A. Balkema/Rotterdam, 174 pp., among others). Subsequently, in the laboratory, the total length (TL) and cephalothorax length (CL) were measured to the nearest 0.01 mm using a digital calliper, and the total weight (TW) was recorded to the nearest 0.0001 g using a digital balance (Sartorious, Basic).

Length-weight relationships

 

The LWRs were fitted using the equation TW= aTLb (power function), where TW is the total weight, TL is the total length, a and b are the regression parameters (a, regression intercept or constant; b, regression slope or allometric coefficient) estimated by linear regression on the logarithmic-transformed data and adjusted through the least squares method. Student’s t-test was used to verify the positive or negative allometry when the b value is significantly higher or lower than the isometric value (b=3). The standard error and 95% confidence interval were also estimated for the LWR parameters.

All statistical analyses were conducted using the R software (R Core Team 2023).

RESULTS

 

A total of 1210 specimens belonging to 15 species from 3 superfamilies (Oplophoroidea, Penaeoidea and Sergestoidea) were sampled and identified (Table 2). Five families were collected, Sergestidae being the most abundant in both number of species (eight) and individuals, following by Oplophoridae with three species.

Table 2.  Length-weight relationships for mesopelagic shrimps from Canary Island waters. TL, total body length; CL, cephalothorax length; W, wet weight; CI, confidence interval; n, number of specimens analysed; ns, nonsignificant. a, b and R are the regression parameters calculated from the TL~W relationship.
Superfamily Family Species n TL range (mm) CL range (mm) W range (g) a b 95% CI of b R p-value Relative growth
Oplophoroidea Acanthephyridae Acanthephyra purpurea 23 56.98-102.52 20.34-39.55 0.6370-4.3046 0.000007 2.866 2.433-3.298 0.900 ns i
Ephyrina hoskynii 59 56.02-123.87 13.15-31.42 0.9232-15.3201 0.000001 3.348 2.844-3.853 0.972 ns i
Oplophoridae Oplophorus spinosus 288 31.41-67.47 15.02-32.89 0.1024-1.7358 0.000004 3.095 2.851-3.339 0.943 ns i
Systellaspis debilis 57 48.52-88.80 14.55-31.18 0.3641-3.9890 0.0000001 3.878 3.210-4.547 0.985 <0.001 a+
Systellaspis pellucida 49 19.74-57.55 5.44-27.88 0.0592-0.3445 0.0002 1.752 1.250-2.254 0.874 <0.001 a-
Penaeoidea Benthesicymidae Gennadas valens 172 12.18-46.82 4.37-12.56 0.0668-0.8482 0.0002 2.154 1.985-2.323 0.905 <0.001 a-
Penaeidae Funchalia villosa 159 36.85-80.01 9.92-23.55 0.2354-2.592 0.000003 3.157 2.874-3.440 0.972 ns i
Sergestoidea Sergestidae Allosergestes nudus 66 26.92-51.80 7.35-15.17 0.0975-0.8581 0.000002 3.342 2.976-3.709 0.994 ns i
Allosergestes sargassi 75 20.37-61.31 5.74-19.78 0.1116-1.1513 0.00007 2.347 1.440-3.254 0.928 ns i
Deosergestes corniculum 21 24.29-61.04 7.05-20.32 0.11187-1.3032 0.00005 2.477 2.071-2.883 0.955 <0.001 a-
Deosergestes henseni 63 31.39-59.43 10.11-17.33 0.2313-1.0182 0.00008 2.311 1.648-2.973 0.959 <0.001 a-
Parasergestes armatus 28 13.87-37.95 6.35-13.09 0.0196-0.4700 0.00001 2.829 2.577-3.081 0.954 ns i
Parasergestes diapontius 42 19.61-51.65 6.11-13.45 0.0603-0.7585 0.00003 2.576 2.123-3.030 0.941 ns i
Robustosergia robusta 40 21.70-75.07 7.57-20.65 0.1933-2.2974 0.0002 2.157 1.948-2.367 0.920 0.001 a-
Sergestes atlanticus 68 30.51-78.9 8.04-25.18 0.0938-1.9709 0.000004 3.021 2.105-3.936 0.955 ns i

The growth patterns of 15 species were described from the LWRs parameters (Tables 1 and 2). The mean values of the correlation coefficients were high, with a mean value of 0.944±0.0333. Systellaspis pellucida showed the worst correlation index, with a value of 0.874, while Allosergestes nudus showed the highest correlation index (R=0.994). In relation to growth, it was observed that 60% of the species analysed showed isometric growth (b=3; t-test, p>0.05), while 6.7% and 33.3% showed positive (b>3; t-test, p<0.05) or negative allometric growth (b<3; t.test, p<0.05). Allosergestes sargassi and S. pellucida showed the lowest values of the allometry coefficient range (b), while Systellaspis debilis showed the highest value.

DISCUSSION

 

This study provides the first estimation of the LWRs of 15 mesopelagic shrimp species caught in several exploratory surveys carried out in the Canary Islands area (central eastern Atlantic). This is the first study that gives growth information on these mesopelagic decapod crustaceans. Biological data on these crustaceans are scarce, probably because the fishing gears used in the exploratory campaigns of this mesopelagic community make the individuals suffer a significant deterioration of their structures, because their exoskeleton and appendages are very fragile. The deterioration of these structures of high taxonomic value reduces the number of samples, so in this study only individuals that allowed a reliable taxonomic identification were included.

It should be noted that although the LWRs of the 15 species are shown, only 53.3% had the necessary correlation values for reliable LWRs (greater than 0.95, the preferred significant level).

The sample conservation system is a subject under study because conservation dehydrates the tissues. In the case of crustaceans, Fazhan et al. (2021)Fazhan H., Waiho K., Jalilah M., et al. 2021. Effect of different measuring techniques, preservation methods and storage duration on the morphometric measurements of crustacean larvae. Mar. Biol. Res. 17: 98-105. https://doi.org/10.1080/17451000.2021.1900576, describe reductions of around 5% for larvae of Scylla olivacea and Macrobrachium rosenbergii, although they state that this low percentage of contraction is a result of their rigid chitinous exoskeleton. In our study, we did not evaluate the effect of conservation on the dehydration of these individuals, and because previous studies are not known, it is recommended that the estimated parameters for the 15 species be used as preliminary. In conclusion, the information provided for these 15 species contributes to knowledge of these species and allows for more accurate biomass estimations of them, which is vital for the sustainable management and conservation of mesopelagic shrimp populations. The information will also be a reference for future comparisons between populations from other areas of the region, for identifying stocks in the same area, or for determining changes in the growth pattern according to variations in climate parameters (Gerritsen and McGrath 2007Gerritsen H.D., McGrath D. 2007. Significant differences in the length-weight relationships of neighbouring stocks can result in biased biomass estimates: Examples of haddock (Merlangius merlangus, L.) and whiting (Merlangius merlangus, L.). Fish. Res., 85: 106-111. https://doi.org/10.1016/j.fishres.2007.01.004).

DECLARATION OF COMPETING INTEREST

 

The authors of this article declare that they have no financial, professional or personal conflicts of interest that could have inappropriately influenced this work.

FUNDING SOURCES

 

All surveys were carried out in projects supported by the Viceconsejería de Pesca del Gobierno de Canarias. Ana Espino-Ruano was supported by a PhD fellowship (CIENCIAS-1) from the University of Las Palmas de Gran Canaria.

AUTHORSHIP CONTRIBUTION STATEMENT

 

Airam Guerra-Marrero: Conceptualization, Formal analysis, Writing - original draft. Catalina Caballero-Méndez: Investigation, Methodology, Formal analysis, Writing - review & editing. Ana Espino-Ruano: Formal analysis, Writing - review & editing. Lorena Couce-Montero: Formal analysis, Writing - review & editing. David Jiménez-Alvarado: Formal analysis, Writing - review & editing. José J. Castro: Conceptualization, Methodology, Funding acquisition, Investigation, Project administration, Writing - review & editing.

REFERENCES

 

Burukovskii R.N. 1992. Key to shrimps and Lobsters. A.A. Balkema/Rotterdam, 174 pp.

Couce-Montero L., Christensen V., Castro J.J. 2021. Simulating trophic impacts of recreational fishing scenarios on two oceanic islands using Ecopath with Ecosim. Mar. Env. Res. 169: 105341. https://doi.org/10.1016/j.marenvres.2021.105341

Crosnier A., Forest J. 1973. Les crevettes profondes de l’Atlantique oriental tropical (Vol. 19). IRD Editions.

De Grave S., Fransen C.H.J.M. 2011. Carideorum catalogus: The recent species of the Dendrobarachiate, Stenopodidean, Procarididean and Caridean shrimps (Crustacea: Decapoda). Zoo. Med., Leiden, 85: 195-588.

Fazhan H., Waiho K., Jalilah M., et al. 2021. Effect of different measuring techniques, preservation methods and storage duration on the morphometric measurements of crustacean larvae. Mar. Biol. Res. 17: 98-105. https://doi.org/10.1080/17451000.2021.1900576

Gerritsen H.D., McGrath D. 2007. Significant differences in the length-weight relationships of neighbouring stocks can result in biased biomass estimates: Examples of haddock (Merlangius merlangus, L.) and whiting (Merlangius merlangus, L.). Fish. Res., 85: 106-111. https://doi.org/10.1016/j.fishres.2007.01.004

González-Acosta A.F., De La Cruz Agüero G., De La Cruz Agüero J. 2004. Length-weight relationships of fish species caught in a mangrove swamp in the Gulf of California (Mexico). J. App. Ichth. 20: 154-155. https://doi.org/10.1046/j.1439-0426.2003.00518.x

González-Pérez J.A. 1995. Catálogo de crustáceos decápodos de las Islas Canarias: gambas, langostas, cangrejos. Sta. Cruz de Tenerife, Turquesa, 282 pp.

Guerra-Marrero A., Hernández-García V., Sarmiento-Lezcano A., et al. 2020. Migratory patterns, vertical distributions and diets of Abralia veranyi and Abraliopsis morisii (Cephalopoda: Enoploteuthidae) in the eastern North Atlantic. J. Moll. Stud. 86: 27-34. https://doi.org/10.1093/mollus/eyz029

Irigoien X., Conway D.V., Harris R.P. 2004. Flexible diel vertical migration behaviour of zooplankton in the Irish Sea. Mar. Ecol. Prog. Ser. 267: 85-97. https://doi.org/10.3354/meps267085

Irigoien X., Klevjer T.A., Røstad A., Martinez U., Boyra G., Acuña J.L., Bode A., Echevarria F., Gonzalez-Gordillo J.I., Hernández-Leon S., Agusti S., Aksnes D.L., Duarte C.M. Kaartvedt S. 2014. Large mesopelagic fishes biomass and trophic efficiency in the open ocean. Nat. Comm. 5: 1-10. https://doi.org/10.1038/ncomms4271

Landeira J.M., Fransen C.H.J.M. 2012. New data on the mesopelagic shrimp community of the Canary Islands region. Crustaceana 85: 385-414. https://doi.org/10.1163/156854012X626428

Muñoz I., García-Isarch E., Sobrino I., et al. 2012. Distribution, abundance and assemblages of decapod crustaceans in waters off Guinea-Bissau (north-west Africa). J. Mar. Biol. Ass. UK, 92: 475-494. https://doi.org/10.1017/S0025315411001895

Palomares M.L., Pauly D. 2012. FishLifeBase. Available at: www.sealifebase.org

Quiles J.A., González J.A., Santana J.I. 2001. New and little known Dendrobranchiata and Caridea of the Canary Islands (Crustacea, Decapoda). Bol. Inst. Esp. Ocean. 17: 7-13.

Torres A.P., Reglero P., Hidalgo M., et al. 2018. Contrasting patterns in the vertical distribution of decapod crustaceans throughout ontogeny. Hydrobiologia 808: 137-152. https://doi.org/10.1007/s10750-017-3414-x

Vereshchaka A.L., Lunina A.A., Sutton T. 2019. Assessing deep-pelagic shrimp biomass to 3000 m in the Atlantic Ocean and ramifications of upscaled global biomass. Sci. Rep. 9: 1-11. https://doi.org/10.1038/s41598-019-42472-8

Zariquiey-Álvarez R. 1968. Crustáceos decápodos ibéricos. Inv. Pes., 32: 1-510.