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INTRODUCTION

A prominent problem in fisheries assessment is
to provide prognoses of fish stock development.
Estimates of stock development rely on current
stock abundance and expectations about future
recruitment, individual growth and mortality rates,
including fishing mortality. While fishing mortality
to a certain degree can be regulated through man-
agement, it is difficult to predict recruitment, growth
and natural mortality. This is especially a problem
when changes in the ecosystem occur, which can
alter the vital rates substantially within short time

intervals (Hamre, 1994). One way of getting around
this problem is to apply models such as the artificial
neural network (ANN, Rummelhart et al., 1986),
which is a general computational method, built on
principles from neurology. The approach can be
used to find patterns in complex data, and has been
applied successfully in fisheries science for predict-
ing yields of the Japanese sardine population
(Komatsu et al., 1994; Aoki and Komatsu, 1997),
yields of African lake fisheries (Laë et al., 1999),
capelin biomass (Huse and Gjøsæter, 1999), and
recruitment of Pacific herring (Chen and Ware,
1999). Under this approach, relevant input data are
associated with the target variable, for example fish
biomass in the subsequent year. Through a training
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process, the ANN “learns” how growth and mortali-
ty of the target stock tend to be affected by for exam-
ple the combination of abundance of predators and
prey. This “knowledge” is compiled in the weights
of the ANN, and given the current state of the time
series variables, it can be used to predict stock devel-
opments, which may be applied when establishing
harvest quotas. 

Here we use ANNs to forecast stock dynamics of
Northeast Arctic (NA) cod (Gadus morhua) in the
Barents Sea (Fig. 1). This arcto-boreal shelf sea can
be described as a region of high productivity, but of
low biological diversity, i.e. it is rich in fish produc-
tion, and the fish belong to a few species. Such an
ecosystem is attractive to fisheries, but has low sta-
bility and may be seriously affected by over-
exploitation of one or more of the key species in the
system (Jakobsson, 1992). In addition to NA cod,
which is the main piscivorous stock, the dominating
fish species are capelin (Mallotus villosus) and ado-
lescent herring (Clupea harengus). Pronounced
inter-annual variation in individual growth is seen in
the NA cod stock (Brander, 2000), and this variabil-
ity is mainly attributed to variation in food abun-
dance (Mehl and Sunnanå, 1991; Yaragina and Mar-
shall, 2000) and temperature (Nakken, 1994; Bran-
der, 2000). Recruitment is also highly variable with
a 20-fold range of abundance at age 3 (Nakken,
1994), and a combination of temperature, wind
stress, and spawning stock characteristics can

explain much of this variability (Ottersen and Sund-
by, 1995; Marshall et al., 2000). The objective of the
current paper is to develop ANN models that can
predict recruitment and biomass of NA cod. 

INPUT DATA

Time series of data thought to represent the state
of the NA cod stock or processes relevant for its
population dynamics were used as input information
in the ANN (Table 1). Cod biomass, spawning stock
biomass (SSB), and number of recruits (ICES, 2001)
are estimated using Virtual Population Analysis
(Pope, 1972). Biomass of 1-3 year old herring in the
Barents Sea is estimated using acoustics (Gjøsæter
and Bogstad, 1998). Data on cod landings are taken
from ICES (2001). Capelin biomass is estimated
using acoustics during scientific surveys in Septem-
ber-October, and the capelin data are taken from
Toresen (2000). Total liver energy (TLE) data for
cod were provided by Tara Marshall (see Marshall et
al. 2000). The temperature data applied were annu-
al mean temperature of monthly measurements from
the Kola meridian transect (33°30’E, 70°30’N)
intersecting the Murman Current in the south central
Barents Sea. Here values vertically averaged from 0-
200 m depth are used. The historical data were taken
from Bochkov (1982) and Tereshchenko (1996),
while the most recent values were provided by
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FIG. 1. – The Barents Sea with the main features of the distributions of cod, capelin and herring. Cod prefers feeding on capelin, but turns to 
herring in years with low capelin abundance. Modified from Huse and Gjøsæter (1999).



PINRO, Murmansk. We used annual means of
monthly values for the biomass predictions, and val-
ues for September in the recruitment predictions,
based on the results of some test runs. The North
Atlantic Oscillation (NAO), an alternation in the sea
level air pressure difference between the Azores
high and Icelandic low, is an important source of
seasonal to decadal-scale climatic variability in the
North Atlantic sector (Hurrell, 1995). NAO winter
(December-March) indices, slightly modified from
the index of Hurrell (1995), were obtained from the
web page of Jim Hurrell of NCAR’s Climate and
Global Dynamics Division
(http://www.cgd.ucar.edu/~jhurrell/nao.html).

THE MODEL

Mathematically, the ANN is a sophisticated mul-
tiple regression model. ANNs find patterns by dif-
ferential weighting of input data, analogous to the
way our brain is thought to “calculate” responses
from stimuli. For an introduction to ANNs see
Anderson (1995), and for ecological and fisheries
applications see Saila (1996), Lek and Guegan
(1999) and Huse and Gjøsæter (1999). The weights

of ANNs can be trained using a variety of tech-
niques, and here the weights are adapted using the
genetic algorithm (GA, Holland, 1975). A general
introduction to GAs is provided by Mitchell (1996),
and van Rooij et al. (1996) give a presentation of
how to use the GA in training ANNs. The GA
applies the Darwinian principle of evolution by nat-
ural selection to search for increasingly better solu-
tions to complex problems. It works by having a
population of solutions in which each solution here
is an ANN with a unique set of weights (Fig. 2).
These solutions compete like individuals in a natur-
al population, and the best solutions in each genera-
tion are continuously reproduced and improved
using random changes (mutations) in the weights.
After a sufficient number of generations, the ANNs
are well adapted to the training set and can be used
in forecasting. The model used here is a modified
version of the model presented by Huse and
Gjøsæter (1999). 

Network architecture

A fully connected feed forward ANN (Rummel-
hart et al., 1986) was used with an input, one hidden
and an output layer (Fig. 2). Each layer consists of
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TABLE 1. – Input data to the ANN model. The number of cod recruits at age 3 (CR) is in billions. The biomass data including cod biomass
(CB), spawning stock biomass (CS), landings (CF), capelin biomass (LB), and herring biomass (HB), are in million tonnes. TLE is total cod
liver energy in trillion kJ. Average temperature (TA) and the temperature for September (TS) is in °C. N refers to the North Atlantic Oscil-
lation. Labels at the bottom of the top row indicate acronyms used in the paper. Herring biomass data are lagged by 2 years in the model, and 

the biomasses of the years 1972 and 1973 were assumed to be 0 and are not listed in the table (Gjøsæter and Bogstad, 1998). 

Year CR CB CS CF TLE LB HB TA TS N

1974 0.52 2.24 0.16 1.102 0.95 4.80 0.00 4.0 5.10 1.23
1975 0.62 2.04 0.14 0.829 1.23 7.30 0.00 4.4 5.30 1.63
1976 0.61 1.93 0.17 0.867 1.31 5.80 0.00 4.1 5.40 1.37
1977 0.35 1.95 0.34 0.905 1.25 4.20 0.00 3.6 4.50 -2.14
1978 0.64 1.58 0.24 0.699 1.10 4.50 0.00 3.0 3.80 0.17
1979 0.20 1.11 0.17 0.441 0.71 4.10 0.00 2.9 4.00 -2.25
1980 0.14 0.86 0.11 0.380 0.43 5.50 0.00 3.6 4.70 0.56
1981 0.15 0.98 0.17 0.399 0.42 3.00 0.00 3.2 4.00 2.05
1982 0.15 0.75 0.33 0.364 0.44 2.50 0.00 3.7 5.00 0.8
1983 0.17 0.74 0.33 0.290 1.47 2.60 0.00 4.6 5.90 3.42
1984 0.40 0.82 0.25 0.278 0.32 2.40 0.31 4.1 5.10 1.6
1985 0.52 0.96 0.19 0.308 0.34 0.70 0.87 3.7 4.60 -0.63
1986 1.04 1.29 0.17 0.430 0.22 0.08 0.26 3.7 4.60 0.5
1987 0.29 1.12 0.12 0.523 0.17 0.02 0.00 3.4 4.20 -0.75
1988 0.20 0.91 0.20 0.435 0.12 0.40 0.00 3.8 4.60 0.72
1989 0.17 0.89 0.19 0.332 0.15 0.30 0.02 4.5 5.80 5.08
1990 0.24 0.96 0.34 0.212 0.17 3.20 0.05 4.6 5.50 3.96
1991 0.41 1.56 0.68 0.319 0.47 5.60 0.49 4.5 5.40 1.03
1992 0.72 1.91 0.87 0.513 0.86 3.90 1.67 4.6 5.40 3.28
1993 0.89 2.35 0.73 0.582 0.94 0.80 1.52 4.1 4.90 2.67
1994 0.81 2.14 0.60 0.771 0.73 0.10 2.86 3.8 4.90 3.03
1995 0.66 1.82 0.50 0.740 0.71 0.15 0.63 4.3 5.55 3.96
1996 0.43 1.69 0.57 0.732 0.42 0.26 0.10 3.8 4.85 -3.78
1997 0.71 1.53 0.57 0.762 0.50 0.49 3.6 4.60 -0.2
1998 0.87 1.23 0.39 0.593 1.25 3.6 4.60 0.72
1999 0.56 1.08 0.26 0.485 2.12 4.2 5.00 1.89



nodes, which are either input data, connection points
where summations and transformations of data
occur, or output data. An example of how predic-
tions are calculated from a trained network using the
equations below is provided in the Appendix. The
calculations proceed sequentially from the input, via
the hidden layer to the output layer, and this process
is described in Eqs. 1-4. The input data (Table 1) are
standardised so that the maximum value of each
time series is 1, and multiplied by the weights
between the input and hidden layers (Fig. 2): 

(1)

where Ii is the input data of input node i (Table 1),
IWih is the connection weight between input data i
and hidden node h, Nh is the sum of the weighted
input data of hidden node h, and m is the number of
input nodes. At the hidden node, values are trans-
formed using the standard sigmoid transformation: 

(2)

where TNh is the transformed value and Bh is the bias
(van Rooij et al., 1996) of hidden node h. The bias
Bh is similar to an intercept value in a regression
model. Next the output value P is calculated by
adding together the sums of the transformed hidden
node values multiplied by the output weights (OWh):

(3)

The output is then transformed and scaled (S,
Table 1) from values between 0 and 1 to the

observed recruitment or biomass level. This yields
the forecast output of the model TPt:

(4)

where t refers to the year for which the forecast is
made. The weights and biases are initiated random-
ly between -1 and 1, but as a result of the training
process, they may move out of this range. 

The GA

A population of 2000 weight sets is initiated ran-
domly at generation number 1. This population is
then evolved using the GA, to seek the best combi-
nation of weights for minimising the discrepancy
between predictions and observations (Eq. 5). The
sum of the squared discrepancies between the annu-
ally predicted (TPt) and observed (Ot) values from
the initial year (IY) to the final year (FY) of the train-
ing set is here applied as a measure of model perfor-
mance during training: 

(5)

For the recruitment and biomass forecasts, Ot

will be the CR and CB values respectively (Table 1).
The error value (E) is used in the GA to rank the
solutions, and the solutions with the lowest E are
selected to be parents for the next generation. The
error term is independent of the number of input
variables. The parameter values used in the GA are
given in Table 2. New weight sets are based on the
weights of parents, which are the 400 best solutions
in each generation. It is common to use recombina-
tion in GAs, but when used for training ANNs it can
be counter productive since recombinations tend to
break down the ANN structure. Thus we only intro-
duced weight variability through mutations. Muta-
tions are performed randomly with a probability of
occurring of 10% per weight or bias per generation
(Table 2). When a mutation occurs, a value chosen
randomly from the initiation range [-1,1] is added to
the weight value. The new generation is then put
through the test described above, and once again the
best ones are selected and mutated. By carrying out
this procedure over many generations, increasingly
better solutions to the problem will emerge. To avoid
over-training (Geman et al., 1992), the number of
hidden nodes was kept at two, which gave the best
performance for most models, and the number of
generations was kept low (Table 2). 
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FIG. 2. – The ANN used. The input data (Table 1) are weighted by
the connection strength between the input and hidden layers (IWih),
added together including the biases at each hidden node, and trans-
formed. The data are then multiplied by the weights of connection
between the hidden and output nodes (OWh) and these sums are
added together and transformed at the output node to produce fore-
casts. Differences in thickness of lines illustrate the variation in 

connection strength among different nodes.



Evaluation procedure

In each simulation, parts of the time series are
used as a training set, which contains the data used
to adapt the ANN. Two different sorts of simula-
tions were performed based on training over the
entire time series except the prediction year (full
training set), and training only over the time series
prior to the prediction year (reduced training set)
respectively. In the latter case, the training set
increases from the start to the end of the time
series, and for predictions made at the end of the
time series, the reduced training set is equal to the
full training set. Following training, the value of
the prediction year, not included in the training set,
was predicted. Different input data were tested for
their ability to contribute in predicting the observed
cod dynamics, and several combinations of input
data were left out of the presentation due to their
poor performance. When referring to different
“models” here we generally mean ANN simula-
tions relying on different input data. Recruitment
forecasts of 3 year old cod were made at the year of
birth. Biomass forecasts were made one, two and
three years ahead. A weight analysis was per-
formed to shed light on the importance of the dif-
ferent input data. In general, weight values indicate
importance to the behaviour of ANN models, with

larger weights being more important than smaller
ones (Aoki and Komatsu, 1997). 

Since the results of a computer run to some
extent depend on the initial weights and the muta-
tions, which are dependent on random numbers, ten
replicate trials were performed for all computer sim-
ulations. The average values of these replicate runs
are presented here. The Pearson correlation coeffi-
cient (r2) between observations and predictions was
used as a measure of model fit to observations. 

RESULTS

Recruitment forecast 

The results of the recruitment forecasts show that
the ANN model using temperature alone provides a
reasonably high predictive ability (Table 3). The
NAO time series on the other hand provided a lower
forecasting ability, and the model based on temper-
ature and NAO performed worse than the model
relying solely on temperature. In addition to these
physical factors, we tested several biological vari-
ables. Three proxies relating to the state of the
spawning stock were tested including spawning
stock biomass, total liver energy (TLE) of the cod
population, and the biomass of capelin, which is the
main prey of cod. Models based on these data per-
formed similarly when used together with tempera-
ture (Table 3). The overall best model relied on
capelin biomass, SSB and temperature as input data
(Fig. 3), and this model provided forecasts with
r2=0.74. In general, this model has problems in
recreating the highest peaks in recruitment such as
in 1983 (Fig. 3). The simulations with reduced train-
ing sets performed worse than the simulations with
full training sets, especially for the first part of the
time series. Towards the end of the time series when
the reduced set is rather large, the predictions are
quite similar (Fig. 3). The weight analysis of the best
model ranked cod spawning stock biomass as the
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TABLE 2. – Parameter values used in the model. 

Parameter Value

Mutation probability in 
weights and biases 0.1

Mutation effect in weights 
and biases randomly between –1 and 1 

Number of offspring per parent 5
Parent selection 400 best individuals
Partner selection among 80% of best individuals
Generations per run 25
Population size 2000
Number of replicate runs 10
Output scaling, S 3 in recruitment runs, 6 in 

biomass runs

TABLE 3. – Pearson correlations (r2) between predicted and observed cod recruitment at age 3 based on ANN model simulations with differ-
ent input data. The results are averages of 10 replicate runs. See Table 1 for acronym definitions. Forecasts are made for 3-year-old cod over
the time series 1979-1999, and t is defined as the year of birth. The models are sorted by their forecasting ability in ascending order. The 

numbers in brackets give the total number of weights and biases used in each model.

Forecast Input data
CSt Nt TSt,Nt TSt TSt,CSt TSt,TLEt-1 TSt,LBt-1 TSt,CSt,LBt-1
(6) (6) (8) (6) (8) (8) (8) (10)

Rt+3 0.27 0.42 0.45 0.54 0.59 0.59 0.60 0.74
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FIG. 3. – Observed and predicted number of 3-year-old cod based on information about temperature (TSt), cod spawning biomass (CSt), and
capelin biomass (LBt). Average values and confidence limits of replicate runs are shown. For the predictions based on the full training set (T-

set) the correlation was r2=0.74, while with the reduced training set it was r2=0.60.

TABLE 4. – Pearson correlations (r2) between predicted and observed cod biomasses based on ANN model simulations with different input
data. The subscripts on the variable names give the time lag of the input data and forecasts. Values are average of 10 replicate runs. See Table
1 for acronym definition. The models are sorted by their forecasting ability for t+1 in ascending order. The numbers in brackets give the total
number of weights and biases used in each model. 

Forecast Input data
CBt, LBt CBt CBt, TAt CBt, TAt, Nt CBt, TAt, HBt-2, LBt CBt, TAt, HBt-2 CBt, TAt, LBt CBt, TAt, CFt

(8) (6) (8) (10) (12) (10) (10) (10)

CBt+1 0.71 0.72 0.83 0.83 0.83 0.85 0.87 0.89
CBt+2 0.36 0.39 0.72 0.67 0.65 0.70 0.69 0.72
CBt+3 0.02 0.05 0.47 0.44 0.57 0.45 0.50 0.42

FIG. 4. – Observed and predicted biomass of NA cod one year ahead based on input information about cod biomass (CBt), cod landings (CFt)
and temperature (Tt). Average values and confidence limits of replicate runs are shown. For the predictions based on the full training set (T-

set) the correlation was r2 = 0.89, while with the reduced time series it was r2 = 0.84.



most important contributor to the output followed by
capelin biomass and temperature. 

Forecast of total stock biomass 

The different input data varied greatly in their
ability to predict adult cod dynamics (Table 4). The
models based solely on input information about cod
biomass performed reasonably well in predicting
biomass development one year ahead, but were much
worse for the longer term predictions (Table 4). The

best model for one year predictions was based on cod
biomass, cod landings, and temperature as input vari-
ables (Fig. 4). This model produced one year fore-
casts with r2=0.89. The average difference between
the predicted and observed biomass estimate for this
model was 0.12 mill. tonnes, and the maximum dis-
crepancy was 0.33 mill. tonnes. As expected, the
forecasting ability of the models was reduced for the
two (Fig. 5) and three (Fig. 6) year forecasts. For
two-year predictions, a model based only on temper-
ature and cod biomass performed as well as the one
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FIG. 5. – Observed and predicted biomass of NA cod two years ahead based on input information about cod biomass (CBt) and temperature
(Tt). Average values and confidence limits of replicate runs are shown. For the predictions based on the full training set (T-set) the 

correlation was r2 = 0.72, with the reduced training set it was r2 = 0.65. 

FIG. 6. – Observed and predicted biomass of NA cod three years ahead based on input information about cod biomass (CBt), capelin biomass
(LBt), herring biomass (HBt-2), and temperature (Tt). Average values and confidence limits of replicate runs are shown. For the predictions 

based on the full training set (T-set) the correlation was r2 = 0.57, with the reduced training set it was r2 = 0.41. 



with landings included (Table 4). A different model
still, based on cod, herring and capelin biomass, and
temperature performed best for the three year predic-
tions. In general, models based on full training sets
performed better than the models based on reduced
training sets, and the discrepancy increased with
increasing time span of predictions (Figs. 4-6). When
relying on the reduced training set, models typically
produced rather poor estimates for the first part of the
time series, while the performance improved towards
the end of the time series along with the increase in
the training set. The weight analysis showed that cod
biomass and temperature have average weights of the
same magnitude, while the landings data had smaller
average weight. 

DISCUSSION

Recruitment 

The number of studies in which attempts have
been made to explain recruitment variability in
marine fish populations by means of fluctuations in
population parameters and the environment is exten-
sive. Since the stock-recruitment relation for most
stocks is weak, much attention has been given to
environment-recruitment correlations and many
studies have been able to explain a reasonably large
part of the recruitment variability during the period
studied. However, a recent review is rather discour-
aging (Myers, 1998). Published environment-recruit-
ment correlations were tested for an extended or dif-
ferent period and the proportion that was verified was
low. Nevertheless, there was one generalisation that
stood out. Correlations for populations at the limit of
a species’ geographic range often remained statisti-
cally significant when re-examined. This generalisa-
tion is further supported by Planque and Frédou
(1999). Several other studies have also pointed to the
importance of temperature in explaining recruitment
in NA cod (Nakken, 1994; Ottersen and Sundby,
1995; Brander, 2000; Sundby, 2000; Dippner and
Ottersen, 2001). It is therefore not surprising that we
are able to explain much of the recruitment variation
observed for NA cod by means of temperature. How-
ever, in the current study model fit was improved
considerably (from r2=0.54 to r2=0.74) when input
data on spawning stock state were added to the tem-
perature-based model. This is supported by Ottersen
and Sundby (1995), whose best model relied on
abundance of 3 year old cod one year (positive con-

tribution) and three years earlier (negative contribu-
tion), in addition to temperature and SSB. This
autoregressive model explained around 70% of the
total variability in the recruitment time series, similar
to our best model. Recent contributions (Marshall et
al., 1999; Marshall et al., 2000) have further shown
that in NA cod, TLE-recruitment correlations are
much stronger than SSB-recruitment correlations.
Our results did not show a great difference in model
performance among the three indicators of spawning
stock state when used with temperature. Overall, the
combination of capelin biomass, spawning stock bio-
mass, and temperature provided the best predictive
ability. Recruitment in NA cod is therefore best
explained as a combination of spawning stock state
and environmental factors, as seen in previous stud-
ies as well (Ottersen and Sundby, 1995; Marshall et
al., 2000). It should be noted, that as opposed to the
studies referred to above, and indeed most earlier
work, in which the models explain variability during
the time period on which they were developed, we
present real predictions made three years ahead of
the actual recruitment to the stock.  

Biomass predictions

The biomass of cod in any given year is a result
of the biomass at the start of the year minus the loss
through natural mortality and fisheries, plus the
growth and recruitment to the stock during the year.
These dynamics are implicit in the biomass data for
cod, and as a consequence the ANN adapts to all
these processes during the training. The state of the
stock is represented by the biomass level at the pre-
diction point, and the processes taking place are rep-
resented by proxies such as the temperatures at a
fixed position, or the biomass of prey. In addition to
being important for recruitment, temperature is
known to strongly affect growth of NA cod
(Michalsen et al., 1998; Brander, 2000). The first
order autocorrelation in cod biomass is high
(r2=0.75), and it is therefore not surprising that the
best biomass prediction models had a common
reliance on temperature and cod biomass. This was
also seen in the weight analysis in which these input
data were found to have the greatest weights, and
thus contributed the most to the output. An ANN
forecasting model for capelin biomass, which has a
first order autocorrelation of 0.55, had about the
same performance as the current cod model (Huse
and Gjøsæter, 1999). Thus, high autocorrelation in
stock biomass is not a prerequisite for good perfor-
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mance of ANNs. Autocorrelation in cod biomass is
much weaker for two (r2=0.36) and three (r2=0.09)
years than for one year. In spite of this, the ANN
predictions remained rather strong with correlation
coefficients of 0.72 and 0.57 respectively. ANN
based models may therefore be useful for medium
term forecasting of stock biomass. 

The collapses in the Barents Sea capelin stock in
the mid eighties and early nineties led to reduced
growth and fecundity in cod (Bogstad and Mehl,
1997). Furthermore, increased cannibalism among
cod during periods of low capelin abundance has
been suggested (Ponomarenko and Ponomarenko,
1975; Sundby et al., 1989), although Bogstad et al.
(1994) found little support for this hypothesis. Such
events may have changed the relationships between
variables in the current model substantially. We tried
to implement proxies for cannibalism, but none of
these seemed to be important for model perfor-
mance. An example of how changes in key variables
may affect ANN performance has been presented
for the Barents Sea capelin (Huse and Gjøsæter,
1999). High abundance of juvenile herring in the
Barents Sea has a strong negative impact on capelin
recruitment, and is the cause of the recent capelin
stock collapses (Hamre, 1994; Gjøsæter and
Bogstad, 1998; Huse and Toresen, 2000). An ANN
model using a training set from a period without her-
ring in the Barents Sea performed very poorly in
predicting the dynamics for a period when herring
was present in the Barents Sea. This illustrates the
importance of having a representative training set
when forecasting stock developments. For NA cod,
the biomass predictions seem to be little affected by
the inclusion of the years after 1990 in the training
set, since the model based on the full and reduced
training sets performed similarly for this period
(Fig. 4). These results are encouraging with regard
to the generality of the model in predicting dynam-
ics of future years, which suggests that the model
predictions should not necessarily change too much
given the inclusion of new years in the training set.
The latter has sometimes been raised as a criticism
against the use of ANNs, and the potential effect is
illustrated by the capelin case discussed above. 

The data used as input in the model are general-
ly not available at the start of the year. Their avail-
ability rather depends on the timing of the surveys
used to gather them, or the scientific meetings used
to estimate them. For example, the capelin biomass
is not measured until September, only three months
prior to the prediction point of cod biomass at Janu-

ary 1 (CBt+1). Some of the models tested therefore
provided less than 12 months predictions, although
they are listed as one year predictions. 

Fish stock assessment

Providing prognoses about fish stock develop-
ment is a prominent part of fisheries assessment. The
approach used here can have two main areas of appli-
cation in fisheries assessment: predicting stock
recruitment, and providing prognoses of biomass
development given that a traditional fishing pattern is
performed on the stock. Since fairly reliable prog-
noses of recruitment are made three years ahead,
forecasts for several year classes can in fact be made.
Such information is important for the expectations
about future stock development of NA cod. The
ANN model also provided quite strong forecasting
abilities for cod biomass. Fishing mortality is an inte-
gral part of the dynamics of NA cod that is difficult
to eliminate from the analysis. The current approach
can therefore not be used for studying the effect of
different levels of fishing mortality on stock dynam-
ics. Instead, historic fishing mortalities are an inte-
gral part of the population dynamics of NA cod, and
the ANN is consequently trained to the fishing pat-
tern exerted on the NA cod. This is intrinsic to the
ANN model regardless of whether cod landings are
used as an input factor or not. The correlation
between landings and cod biomass in the following
year is very high (r2 =0.85), explaining why the best
model relied on cod landings as an input factor.
Obviously, this does not imply a causal relationship,
suggesting that there is a high cod biomass because
the landings are large, but landings are a good proxy
for subsequent cod biomass. 

An assessment concept could alternatively be
built using separate models for each age group,
which would be more in line with current stock
assessment procedures in which one is often inter-
ested in knowing the change in stock structure. Also,
different age or size groups generally experience
similar patterns in growth and distribution, which
may improve the forecasting ability of the model.
Another way of applying ANNs in fisheries assess-
ment could be to forecast collapses in stock abun-
dance, for example biomass reductions greater than
some target value. We did not attempt this, but for
stocks, such as the Barents Sea capelin, where col-
lapses do indeed occur (Gjøsæter, 1998), it can be an
interesting analysis to make, that may provide early
warning of negative trends. 
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Pros and cons

A potential disadvantage of the ANN approach,
as for most statistical models, is that there is no
specification of the processes involved. This means
that although we can get a predictive ability we do
not achieve an understanding of the mechanisms
causing the specific relationship between the vari-
ables. We are therefore still limited by the available
datasets and the ”knowledge“ compiled in the
weights rather than a mechanistic understanding of
the phenomenon. In order to provide better under-
standing there is a need for models that build on
evolutionary and ecological principles to provide
answers to “what if” questions. However, such
models (Fiksen et al., 1995; Giske et al., 1998;
Huse and Giske, 1998) are currently not advanced
to a state where they can be applied in fisheries
management. 

The current way of using the ANN has many
similarities with standard multiple regression. Nev-
ertheless, ANNs have been shown to perform better
than multiple regression under ecological scenarios
similar to the current (Brey et al., 1996; Chen and
Ware, 1999; Laë et al., 1999). Adding more para-
meters in multiple regression models can be
counter-productive. Although it increases the fit to
data, predictive power is generally lost (Hilborn and
Walters, 1992). The number of free parameters used
in the current ANN models varied between 6 and 12.
Even though the training error (Eq. 5) often was
reduced when input variables were added to the
training set, the predictive ability of the models was
not improved in the same manner. Thus neither for
the recruitment or biomass forecasts were the best
models those with the greatest number of free vari-
ables (Tables 3 and 4). 

The advantage of the ANN approach is its abili-
ty to predict biomass developments without the need
to directly specify parameter values such as growth
or mortality rates, which are difficult to establish
ahead. Rather these are specified implicitly in the
weights of the ANN by relating input data to the
resulting dynamics and use these relationships to
train the network. By combining several variables
the network can predict the dynamics given the cur-
rent state of the input variables. The ability of the
model to react to environmental changes in a broad
sense and predict the response of the target feature,
be it recruitment or biomass dynamics, is thus the
particular strength of ANN models. ANNs are good
at sorting out non-linear relations, which are com-

mon in fish population dynamics, and could readily
be applied as a forecasting technology for recruit-
ment and biomass in fisheries assessment. 
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APPENDIX

This appendix illustrates how predictions are calculated using a trained ANN. The case presented is pre-
diction of cod biomass for the year 1999 one year ahead using the best model (Fig. 4). The standardised input
values applied are CB98= 0.525, TA98 = 0.795, CF98 = 0.538, where the subscripts refer to the year of input
data observation, 1998 in this case. The evolved weights and biases are listed in Table A1. Putting these
weights and input values into Eqs. 1-4 yields a predicted biomass value for 1999 of 1.05 million tonnes. 

TABLE A1. – The evolved input weights, biases of hidden nodes, and output weights of one of the 10 replicate computer runs trained to 
predict the biomass of cod in 1999. The weight subscripts refer to the location of weights and biases in the ANN (Fig. 2).

Input weights Biases Output weights
IW11 IW21 IW31 IW12 IW22 IW32 B1 B2 OW1 OW2

-4.682 -0.266 2.496 0.157 -3.39 -1.661 0.349 2.34 -4.049 -1.884




