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INTRODUCTION

A fisheries management system usually includes
many components (Fig. 1). Large errors in any of
these components may result in mis-management of
a fisheries stock, resulting in either over-exploitation
of fisheries resources or unnecessary economic loss
or social hardship for the coastal communities that
depend upon fisheries (Hilborn and Walters, 1992;
Walters, 1998). The impacts of errors occurring in
some components of the management system (Fig.
1) have been evaluated in many studies (Hilborn and
Walters, 1992; McAllister and Kirkwood, 1998;
NRC, 1997, 1999). Of particular interest in this
study, however, are the impacts of measurement
errors in fisheries data on stock assessment and fish-
eries management.

Measurement errors, which may greatly influ-
ence the quality of fisheries data, can originate from
different sources with different statistical properties.
Errors resulting from directly measuring a fisheries
variable (e.g. length and weight) or from a well-
designed subsampling programme are probably ran-
dom and small. However, in some cases, errors asso-
ciated with fisheries data can be non-random and
biased. An example of this is catch statistics in a
quota-managed fisheries system. Fishermen may try
to maximise their profits for a given quota by high
grading, a practice of discarding less valuable or
desirable catch (usually small fish) while keeping
more valuable or desirable catch (usually large fish).
In this case, only landed catch is included in catch
statistics while discarded catch, although also part of
the fishing mortality, is excluded from the catch sta-
tistics (Hilborn and Walters, 1992). Thus, the total
catch is under-estimated. Because small fish are
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more likely to be discarded, the estimation of
length/age composition for catch may also be biased
(Pikitch, 1987)

In addition to these biased errors, atypical mea-
surement errors may also occur in fisheries data. The
phrase “atypical error” in this study refers to the
error only occurring in a small number of years, the
statistical properties of the error being significantly
different from errors occurring in most of the other
years (Chen et al., 2000). For example, data collect-
ed in the first few years of applying a new manage-
ment strategy to a fisheries stock may be subject to
errors different from those of data of later years
when a data collection system is established and
problems in the data collection are identified and
remedied. Some abnormal events may significantly
increase or decrease the magnitude of measurement
errors in a year, resulting in atypical errors (e.g. a

change in sampling protocols). The data subject to
atypical errors may become outliers, which can have
large impacts on fisheries stock assessment model-
ling (Chen et al., 2000; Hinrichsen, 2001).

Errors in data are often assumed to have certain
statistical properties (e.g. random, independent,
normal etc.) when an objective function for stock
assessment modelling is formulated (Megney,
1989). The existence of non-random and atypical
errors in data violates the assumption made con-
cerning the statistical properties of the measure-
ment errors in data. Because parameter estimation
methods used in stock assessment are often sensi-
tive to the violation of the error assumptions
(Schnute, 1989; Chen et al., 2000), the existence of
non-random and/or atypical errors may lead to sub-
stantial biases in stock assessment modelling, and
subsequently to mis-management of fisheries
resources. Thus, it is important to understand how
the non-random and atypical errors may affect para-
meter estimation and how we can reduce the likeli-
hood of negative impacts of these errors on stock
assessment.

In this paper, using a case study as an example I
evaluate the impacts of two types of errors, biased
and atypical errors which are directly related to the
quality of fisheries data, on stock assessment. The
robustness of different statistical approaches used in
stock assessment modelling is evaluated with
respect to these errors. 

METHODS AND MATERIALS

Fishery and data availability 

For simplicity in model structures, I chose a fish-
ery with catch and catch-per-unit-effort (CPUE)
data available, which calls for the use of a produc-
tion model. The fishery used as an example in this
study is the eastern rock lobster (Jasus verreauxi)
fishery on the coast of New South Wales (NSW),
Australia.

Rock lobsters have been fished off the NSW
coast since the late nineteenth century. Since the
1994-95 fishing year (i.e. from July 1 1994 to June
30 1995), this fishery has been managed under an
output-control scheme with an annual total allow-
able catch (TAC) of 106 t. Abundance indices,
CPUE, were developed for the period 1903-36 and
that from 1969-70 to 1996-97 (Fig. 2; Montgomery,
1995; Montgomery et al., 1997). 
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FIG. 1. – A diagram of the fisheries management system.



Production model

A production model requiring a time series of
catch and CPUE as input data was used to describe
the biomass dynamics of the rock lobster. This
model can be written as

Bt+1 = Bt + Gt – Ct (1)

where Bt and Bt+1 are the biomasses of the stock at the
beginning of years t and t+1, Ct is the total catch dur-
ing the year t, and Gt is the intrinsic growth of stock
biomass during year t (Hilborn and Walters, 1992). A
Schaefer or logistic type model was modified to relate
Gt to the average stock biomass in year t, rather than
to the biomass at the beginning of year t,

(2)

where r is the rate of intrinsic growth of the stock
biomass and K is the carrying capacity or biomass of
the virgin stock. Replacing Gt in Equation 1 with
Equation 2 and solving the derived polynomial func-
tion, we can calculate Bt+1 as

(3)

where , and

.
Thus, the biomass at the beginning of a year can be
estimated from the biomass at the beginning of the
previous year if parameters r and K are known.

Because B cannot be observed directly from the
fishery, an observational model is needed to relate B
to an abundance index (I) that can be measured in
the fishery. In this study, It is the CPUE observed in
the commercial rock lobster fishery year t. The stock
biomass is assumed to be proportional to I (Hilborn
and Walters, 1992). Thus, the observational model
can be written as

, (4)

where q is the catchability coefficient and error term
εT,t ∈ N(0, σI 

2).
The unit of CPUE and the source of data were not

the same for each period for the NSW rock lobster
fishery. CPUE was measured as kg/vessel and esti-
mated from annual reports of NSW Fisheries for the
period from 1903 to 1957-58; as kg/(trap-month)
estimated from fishers’ catch cards for the period of
1969-70 to 1983-84; and as kg/(trap-month) estimat-
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FIG. 2. – Catch and catch-per-unit-effort (CPUE) data for rock lobster fishery in New South Wales, Australia. For catch and CPUE data after 
1969-70 fishing year, both reported and adjusted data were included.



ed from the LCATCH database of NSW Fisheries for
the period from 1984-85 to 1996-97 (Montgomery,
1995). To incorporate CPUEs from these different
sources into the observational model, three different
q’s corresponding to the three different series of the
CPUE were used. They were referred to as q1 (from
1903 to 1957-58), q2 (from 1969-70 to 1983-84), and
q3 (from 1984-85 to 1996-97). Thus, the model para-
meters to be estimated are B1884, r, K, q1, q2, and q3.
Because year 1884 was in the early stage of the
development of the rock lobster in NSW, it would be
reasonable to assume that the stock biomass at the
beginning of year 1884 (B1884) was approximately the
same as the exploitable virgin biomass K. This
reduced the number of the parameters to be estimat-
ed to five, i.e. β = (r, K, q1, q2, and q3). 

Data quality

The catch data collected for the period from
1969-70 to 1996-97 were thought to underestimate
the true commercial catch because of the under-
reporting and black market (Montgomery, 1995).
Recently, it was believed that the CPUE data for the
same time period might also be underestimated due
to the underestimation of the catch. The proportion
of the commercial catch that was not reported (At)
was estimated for the time period after 1969-70
based on a survey of fishermen in the rock lobster
fishery (Fig. 3; Montgomery et al., 1997). The recre-
ational catch was estimated as a proportion of the
commercial catch. This proportion factor, referred to
as RAt, was estimated from a survey of recreational

fishermen (Fig. 3; Montgomery et al., 1997). Thus,
for the period from 1969-70 to 1996-97, the total
catch and CPUE in year t were adjusted as 

, (5)
and

. (6)

The data estimated after the adjustment for
under-reporting and recreational catch are believed
to better represent the true mortality resulting from
fishing. The unadjusted catch and CPUE data appar-
ently severely under-estimated the total catch and
CPUE for the period from 1969-70 to 1996-97 (Fig.
2). To evaluate the impacts of such biases in catch
and CPUE on stock assessment, I simulated the fol-
lowing four data sets in this study: (1) both catch and
CPUE were adjusted; (2) catch was adjusted, but
CPUE was not adjusted; (3) CPUE was adjusted, but
catch was not adjusted; and (4) neither catch nor
CPUE was adjusted (Table 1). Stock assessment was
conducted using each set of these data as inputs and
the results in parameter estimations were compared
among the four data sets.

To study the impacts of outliers on stock assess-
ment, two sets of CPUE data were simulated from
adjusted catch-CPUE data (i.e. set I; Table 1) using
the following procedures: (1) fitting the production
model and observational model described above to
adjusted catch-CPUE data (i.e. set I) using the non-
linear LS method (Polacheck et al., 1993); (2)
using the estimated parameters to calculate predict-
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FIG. 3. – Adjustment coefficients (At) and recreational factor (RAt) used in equations (5) and (6) for adjusting catch and catch-per-unit-effort 
(CPUE) data reported after 1969-70 fishing year.



ed CPUE using equations (3) and (4); and (3)
adding predicted CPUE with randomly and nor-
mally distributed errors (CV=25%). This simulated
a set of CPUE data, which had no apparent outliers
(Fig. 4a). Using this set of CPUE data, a second set
of CPUE data was simulated by greatly altering
values of 6 observations in the first period of CPUE
data (1903 to 1957-58) and values of 3 observa-
tions in the second period (1969-70 to 1996-97;
Fig. 4b). These two sets of CPUE data, referred to
as data without outliers and data with outliers
respectively, were used in the study of impacts of
outliers on stock assessment, together with the
adjusted catch data.

Statistical approach to estimating parameters

Two Bayesian approaches were used to estimate
model parameters. The first one is the commonly
used Bayesian inference based on log normal distri-
bution of observation error in Equation (4) in for-
mulating a likelihood function (McAllister and
Kirkwood, 1998; Walters, 1998). The second
approach is a robust Bayesian method incorporating
a two-component mixture likelihood function which
is robust to outliers (Chen and Fournier, 1999). A
detailed description of this approach can be found in
Chen and Fournier (1999).

For the rock lobster fishery, the likelihood func-
tion for the commonly used Bayesian approach can
be written as

where i is an index for the three periods, t1 is from
1903-1957-58, t2 is from 1969-70 to1983-84, t3 is
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TABLE 1. – Catch and catch-per-unit-effort (CPUE) data sets used in 
the study.

Data set Catch CPUE

I Adjusted Adjusted
II Adjusted Not adjusted
III Not adjusted Adjusted
IV Not adjusted Not adjusted

FIG. 4. – Simulated catch-per-unit-effort (CPUE) data without (top panel) and with (bottom panel) outliers. The normal random errors were 
the same for both sets of data. 



from 1984-85 to 1996-97, and β is a parameter vec-
tor. For each time period σ̂ was estimated as

(7)

where T1 and T2 are the start and end of the years and
n is the number of year for each time period. This
method is referred to as the “normal method” (NM)
in this study. 

The likelihood function for the robust Bayesian
method for the rock lobster can be written as

where α is the proportion of data subject to atypical
errors. The value of α was set at 0.05, reflecting the
belief that only a small proportion of data was sub-
ject to atypical errors (Chen and Fournier, 1999).
The Bayesian estimation based on this approach is
referred to as the “robust method” (RM) in this
study.

Priors for all parameters except r were assumed
to have uniform distributions, K = B1884 ⊂ U(1,
50000), q1 ⊂ U(10-6, 0.3), q2 ⊂ U(10-6, 0.01), and q3

⊂ U(10-6, 0.01). Parameter r was assumed to follow
the normal distribution r ⊂ N(0.07, 0.12) with a
lower and upper boundary of 0.001 and 0.4 respec-
tively. The choice of lower and upper boundaries
assumed for these parameters was based on the rock
lobster biology, previous stock assessment experi-
ence of this fishery, and similar species (e.g. New
Zealand rock lobster; Polacheck et al., 1993; Mont-
gomery, 1995; Montgomery et al., 1997; Chen and
Montgomery, 1999). For example, q is catchability
coefficient defined as the proportion of stock bio-
mass that can be removed by one unit of fishing
effort. For q1, it is assumed to be impossible that one
vessel (unit of fishing effort for that time period) can
catch 30% of stock biomass in any given year, which
leads us to set the upper boundary of 0.3. 

The Sampling-Importance-Resampling (SIR)
algorithm (Rubin, 1988) was used to estimate poste-
rior distributions for the model parameters (Smith
and Gelfand, 1992). The posterior distributions were
estimated for the NM and RM respectively. For each
set of data defined in Table 1, the NM and RM meth-
ods were applied to estimate posterior distributions
of parameters. These parameters included five
model parameters β = (r, K, q1, q2, and q3) and three
fisheries parameters, current stock biomass (B1997-98),
stock depletion described as the ratio of B1997-98 over
K, and maximum sustainable yield (MSY) calculat-
ed as rK/4 (Ricker, 1975). Posterior distributions
estimated for biased data sets (i.e. sets II, III, and IV;
Table 1) were compared with those estimated for the
unbiased data set (i.e. set I; Table 1) using the NM
and RM respectively. For the posterior distribution
of each parameter estimated using either NM or
RM, a difference index was calculated as

(8)

where pI(i) is the ith interval of posterior distribution
of a parameter for data set I (Table 1) and m is the
total number of intervals used in plotting posterior
distributions. A large value of this index indicates a
large departure of posterior distributions resulting
from using biased data (Chen et al., 2000).

To evaluate impacts of outliers on stock assess-
ment and robustness of different methods with
respect to outliers, both the NM and RM were
applied to data with and without outliers. I evaluat-
ed how outliers may affect estimating posterior dis-
tributions using the NM and RM by calculating the
following index

(9)

where m is the number of intervals of a posterior dis-
tribution, PN,i is the relative frequency of the ith

interval of posterior distribution estimated using the
NM method for data without outliers, and pi is the
relative frequency of the ith interval of posterior dis-
tribution estimated using the RM or NM for data
with or without outliers (Chen et al., 2000). It is
expected that the RM would yield a small CIndex
value for data both with and without outliers
because of its robustness to outliers, while the NM
would yield a large CIndex for data with outliers.
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RESULTS

When the NM was applied to the adjusted catch-
CPUE data (set 1; Table 1), the derived posterior dis-
tributions were right skewed for all parameters (Fig.
5) with mean values larger than the corresponding

median values (Table 2). The means, medians, and
90% credibility intervals of the posterior distribu-
tions of all parameters changed little when the unad-
justed CPUE and adjusted catch data (set II; Table 1)
were used (Table 2). In this case, the posterior dis-
tributions were almost identical to those of data set I
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FIG. 5. – Posterior distributions of key fisheries parameters estimated using the normal method (NM) for the four data sets defined in Table 1.



for all parameters (Fig. 5). Differences in the sum-
mary statistics from those for data set I increased
when the unadjusted catch and adjusted CPUE data
(set III) were used in the estimation (Table 2). The
modes of posterior distributions estimated using
data set III shifted from those estimated using data
set I for all parameters except the 3 catchability
coefficients (Fig. 5). Similar results were observed
between data sets I and IV (Table 2 and Fig. 5).
Indices of differences in posterior distributions CI
calculated using Equation (8) were much smaller for
data set II than for data sets III and IV, which had
similar indices of differences (Table 3). This sug-
gested that posterior distributions estimated using
the NM were more sensitive to biases in catch than
biases in CPUE data. The impacts of using biased
data on estimating posterior distributions differed
among different parameters; the three q’s and K
were least affected while growth rate r, MSY, and
status of exploitation being most affected in data
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TABLE 2. – Summary statistics of posterior distributions for key parameters. Bcur is current stock biomass; Ratio is calculated as Bcur/K, 
indicating stock depletion level; and MSY is maximum sustainable yield.

Method Data Statistics K(t) r Bcur(t) Ratio MSY(t) q1(103) q2(103) q3(103)

Mean 9380 0.136 4625 0.496 249 131.1 1.59 2.54
I Median 7751 0.131 3230 0.520 216 121.8 1.11 1.70

5% 3599 0.018 428 0.045 78 15.4 0.18 0.21
95% 19994 0.275 13320 0.895 508 274.2 4.68 7.66

Mean 9739 0.132 4725 0.488 249 135.8 1.44 2.54
II Median 8055 0.126 3307 0.510 213 128.3 0.94 1.68

5% 3701 0.016 424 0.040 67 15.6 0.15 0.19
95% 20515 0.275 13718 0.903 541 277.5 4.39 7.75

Normal
Mean 9335 0.114 4771 0.559 206 136.3 2.08 2.58

III Median 8208 0.104 3672 0.686 179 127.6 1.40 1.74
5% 3545 0.009 326 0.031 39 16.6 0.22 0.22
95% 18171 0.262 12851 0.939 455 278.2 6.32 7.70

Mean 9622 0.111 4946 0.557 203 141.9 1.81 2.59
IV Median 8351 0.097 3740 0.663 178 136.9 1.18 1.69

5% 3551 0.009 328 0.031 35 17.9 0.16 0.20
95% 18734 0.260 13128 0.940 459 280.8 5.60 7.70

Mean 10003 0.143 5808 0.558 282 71.1 2.75 3.29
I Median 7910 0.137 4168 0.603 228 55.0 1.52 2.32

5% 3702 0.022 545 0.068 94 13.0 0.17 0.21
95% 23014 0.286 16708 0.919 612 187.8 8.61 9.11

Mean 9721 0.144 5563 0.551 281 70.4 2.85 3.33
II Median 7783 0.139 4038 0.597 226 55.1 1.62 2.33

5% 3683 0.024 545 0.068 99 13.0 0.15 0.20
95% 21783 0.283 16228 0.917 607 179.3 8.70 9.16

Robust
Mean 9460 0.133 6035 0.670 245 79.5 2.78 3.27

III Median 7670 0.125 4534 0.806 199 61.5 1.59 2.18
5% 3440 0.013 687 0.066 54 14.8 0.18 0.21
95% 21219 0.275 16679 0.952 573 209.0 8.78 8.99

Mean 9190 0.131 5632 0.652 233 78.1 2.73 3.36
IV Median 7628 0.122 4372 0.794 195 61.7 1.60 2.32

5% 3380 0.013 639 0.061 52 14.4 0.16 0.20
95% 19994 0.273 14732 0.951 546 201.7 8.66 9.34

TABLE 3. – Indices of differences (DI as defined in Equation 8) in
posterior distributions of the model parameters estimated using 

unbiased data (Set I) and biased data (sets II, III, and IV). 

Data set
Method Parameter II versus I III versus I IV versus I

K 5.6 15.4 17.0
r 4.4 25.6 29.0
Bcur 2.0 16.4 17.2

Normal MSY 2.8 44.4 42.0
Ratio 6.0 49.4 51.4
q1 6.6 11.0 13.0
q2 11.6 19.0 9.0
q3 4.2 6.8 9.8

K 4.0 9.8 12.0
r 2.6 11.6 14.0
Bcur 4.8 26.8 25.6

Robust MSY 2.8 57.4 53.0
Ratio 4.6 39.8 43.8
q1 6.2 12.8 13.0
q2 3.6 7.8 6.8
q3 3.6 4.6 4.0



sets III and IV (Table 3). All parameters except q1

had their posterior distributions rather different from
their priors (Fig. 5), an indication that the informa-
tion from data was informative.

Similar results were observed in comparing pos-
terior distributions of data set I with those of data
sets II to IV when the RM was applied (Tables 2 and
3, Fig. 6), suggesting that the impacts of systematic
biases in catch-CPUE data on the estimation of pos-
terior distributions were similar between the NM

and RM. When data had no biases, a large difference
in posterior distributions as described by DI between
the NM and RM was observed for three catchability
coefficients, while parameters K and r had the small-
est DI (Table 4). The status of the rock lobster stock
estimated according to the RM was more optimistic
than that of the NM. However, the differences were
small. For the NM, carrying capacity K increased
slightly while intrinsic growth rate r decreased
quickly after biases were introduced in catch and/or
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FIG. 6. – Posterior distributions of key fisheries parameters estimated using the robust method (RM) for the four data sets defined in Table 1.



CPUE data. Thus, according to the NM, with the
increase of data biases the stock was changed to a
stock with a larger virgin biomass but a smaller
growth rate. However, for the RM, both the carrying

capacity K and intrinsic growth rate r decreased with
the increased biases in data (Table 2). Both the mean
and the median of r estimated using the RM were
higher than those estimated using the NM. For all
the model parameters (i.e. K, r, q1, q2, and q3) esti-
mated using the RM, DI measuring differences in
posterior distributions between non-biased data and
biased data (Equation 8) were smaller than those for
parameters estimated using the NM (Table 3). How-
ever, the differences between two methods were
rather small. The DI’s for current stock biomass and
MSY estimated using the RM, however, tended to
have larger values than those estimated using the
NM (Table 3). This indicates that the RM is less sen-
sitive to biased errors in estimating model parame-
ters while the NM is less sensitive to biased errors in
estimating management parameters. 
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TABLE 4. – Comparison indices (CIndex as defined in equation 9) in
posterior distributions of parameters estimated for data set I using 

the normal and robust methods. 

Parameter Difference between normal and robust methods

K 7.2
R 7.2
Bcur 20.0
MSY 19.4
Ratio 14.6
q1 68.0
q2 39.8
q3 25.0

FIG. 7. – Posterior distributions of key fisheries parameters estimated using normal and robust methods for data with and without outliers.



For data without outliers, virgin biomass K esti-
mated using the NM had a right-skewed posterior
distribution (Fig. 7). The mode of the distribution
was about 5500 tons. The posterior distribution for
K estimated using the RM was similar to that esti-
mated using the NM (Fig. 7), suggesting small dif-
ferences in posterior distributions estimated using
the NM and RM in the absence of outliers in data. 

The variations of the posterior distribution of K
estimated using the NM were similar for data with
and without outliers. However, the locations of the
two posterior distributions differed greatly (Fig. 7).
The mode of the posterior distribution of K estimat-
ed using the NM for data with outliers was 7000
tons, 1500 tons higher than that estimated using the
NM in the absence of outliers. Thus, the posterior
distribution of K shifted substantially to the right
after the inclusion of outliers with the use of the NM
(Fig. 7). This suggests that a posterior distribution
estimated with the NM is sensitive to outliers. The
posterior distributions of K estimated using the RM
for data with or without outliers were virtually iden-
tical and similar to that estimated using the NM in
the absence of outliers (Fig. 7). This suggests that
the posterior distribution of K estimated using the
RM is not sensitive to outliers. Similar conclusions
could be drawn by comparing the differences in pos-
terior distributions estimated for other four parame-
ters (i.e. intrinsic growth rate r, current stock bio-
mass B1997, MSY, and depletion) considered in this
study (Fig. 7) for the NM and RM. Outliers in data
tended to result in a more optimistic evaluation of
the fishery when the NM was used, with a lower
level of depletion and high level of maximum sus-
tainable yield. Impacts of outliers on the RM-esti-
mated posterior distributions were minimal (Fig. 7). 

DISCUSSION

The errors induced by large biased errors in
catch and CPUE data were surprisingly small. This
may result from influence of priors and existence of
a large number of unbiased estimations of catch and
CPUE data collected in the early years of fishery.
This indicates the importance of the quantity of
fisheries data. With a large set of data, even if some
data are subject to biased errors, the results will
probably be less affected. This study also suggests
the importance of good prior knowledge on key
fisheries parameters in Bayesian stock assessment.
It confirms the previous finding that an informative

and well-defined prior distribution for key parame-
ters can reduce the impacts of errors in data (Chen
and Fournier, 1999). This shows an advantage of
the Bayesian approach if good information on key
parameters can be obtained from other independent
ecological or biological studies. Such information
can reduce the negative impacts of various errors
commonly associated with fisheries data on stock
assessment.

The posterior distributions for q1 estimated using
NM were similar to the uniform distribution
assumed for its prior (Fig. 5), and probability was
not zero close to the upper boundary (i.e. 0.3). This
may suggest a need to increase the upper boundary
value, and data is not informative in deriving the
posterior distribution for this parameter. A sensitive
analysis was run with upper boundary value of q1

being 0.6, and no great changes were observed.
Because q is defined as the proportion of stock bio-
mass that can be removed by one unit of fishing
effort, 0.3 was thought to be a reasonable upper
boundary value, which implies our belief that one
fishing vessel (unit of fishing effort) will not be able
to remove 30% of stock biomass. 

Errors associated with different data were shown
to have different impacts on stock assessment mod-
elling in this study. Stock assessment modelling was
found to be less affected by non-random errors in
CPUE than those in catch although the magnitudes
and nature of the errors in the two types of data were
both determined by the RAt in equation (5). It would
be interesting to evaluate differences in the impacts
of errors of CPUE and catch data on stock assess-
ment modelling with other fisheries that have differ-
ent temporal patterns of CPUE and catch and differ-
ent types of errors to those of this fishery. Such a
study may provide us with knowledge on the relative
importance of the quality of catch and CPUE data.
Given that CPUE data are likely to have larger errors
than catch data (Hilborn and Walters 1992), such
studies may help us identify priorities in allocating
sampling efforts.

The magnitudes of errors resulting from non-ran-
dom errors in data differed in estimating different
parameters with different estimation methods. This
study suggests that the model parameters (K, r, and
q’s) estimated using the RM tended to have smaller
errors than those estimated using the NM, while
MSY and current stock biomass calculated from
combinations of model parameters estimated using
the NM had smaller errors than those estimated
using the RM. Such a comparison study may help us
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identify an optimal method for estimating parame-
ters of interest. For the NM method, the estimate of
model parameter K becomes smaller due to non-ran-
dom errors in data, which results in an increase in
model parameter r because of negative correlation
between these two parameters estimated using the
NM (Hilborn and Walters, 1992). Because manage-
ment parameters are often calculated from two or
more of these model parameters (e.g. MSY =
0.5rK), the negative bias in r and the positive bias in
K (or positive bias in r and negative bias in K) result
in a small bias in estimating management parame-
ters. For the RM method, because the estimates of
model parameters (i.e. K and r) are not necessarily
correlated (Chen and Montgomery, 1999), a positive
bias in K resulting from biased data is less likely to
lead to a negative bias in r or vice-versa than those
estimated using the NM. This may explain why,
when the RM was used for parameter estimation, the
biased data tended to result in small errors in the
model parameters, but large errors in the manage-
ment parameters. This study suggests that the
impacts of the quality of fisheries data on parameter
estimation differ among different parameters for a
given estimation method and differ between differ-
ent estimation methods for a given parameter. Thus,
it is important to identify an appropriate estimation
method in estimating parameters of interest. A com-
parative study among different estimation methods
with some realistic error structures for data is likely
to be of help in identifying a suitable method for
estimating certain parameters of interest. 

Large biases may arise in estimating vital fish-
eries stock/management parameters if the NM is
used in formulating the likelihood function for data
with outliers. The use of the RM methods can sub-
stantially reduce the bias caused by the existence of
outliers in data. Different outliers exist in data, some
arising due to measurement errors and some arising
due to abnormal environmental variations or other
process errors. For the first type of outliers, using the
robust method can effectively reduce their impacts
on stock assessment. For the second type of outliers,
however, many people believe they reflect the true
variations in fisheries and should be included in the
estimation of uncertainty associated with fisheries
stock/management parameters. In this case, if a
robust method is used, such a variation is not includ-
ed in the estimation of uncertainty because the
robust method effectively reduces the impact of the
outliers on parameter estimation. It is thus important
to identify the nature of an outlier, but before this

can be done, we need to identify whether there are
outliers in the data.

Because a robust method and a normal-distribu-
tion-based method tend to yield similar results in the
absence of outliers, we may be able to identify
whether there are outliers by comparing the differ-
ences in parameter estimates derived using a robust
method and using a normal-distribution-based
method. If there is a small difference, we may con-
clude that there are no outliers. If large differences
are observed, we may conclude that outliers exist. In
this case, the next step should be to examine all
observations carefully to see which observations
may be outliers, and with the help of background
information regarding how the data are collected
and environmental variations (e.g. some rare events)
we may then identify the nature of the outliers. This
approach to identifying possible outliers is qualita-
tive. To be more precise in identifying outliers, a
quantitative approach that defines quantitative crite-
ria for outlier identification needs to be developed
(Rousseeuw and Leroy, 1987).

This study demonstrates the importance of eval-
uating the quality of input data and identifying and
applying an approach that is insensitive to the qual-
ity of fisheries data in stock assessment. Consider-
ing the likelihood of fisheries data that may be
affected by errors of different natures, I suggest that
the robustness of a stock assessment be evaluated
with respect to data quality in fisheries stock assess-
ment.
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