Scientia Marina 86 (3)
September 2022, e039
ISSN: 0214-8358, eISSN: 1886-8134
https://doi.org/10.3989/scimar.05265.039

Decapod crustacean assemblages on trawlable grounds in the northern Alboran Sea and Gulf of Vera

Asociaciones de crustáceos decápodos en fondos arrastrables del norte del mar de Alborán y golfo de Vera

Cristina Ciércoles

Universidad de Málaga (UMA), Campus de Teatinos s/n, 29071 Málaga, Spain.
Instituto Español de Oceanografía, Centro Oceanográfico de Málaga, (CN IEO-CSIC).

https://orcid.org/0000-0002-6196-8133

Cristina García-Ruíz

Instituto Español de Oceanografía, Centro Oceanográfico de Málaga, (CN IEO-CSIC).

https://orcid.org/0000-0003-2767-4200

Pere Abelló

Institut de Ciències del Mar-CSIC, Barcelona, Spain.

https://orcid.org/0000-0001-6034-2465

Manuel Hidalgo

Centro Oceanográfico de Baleares, Instituto Español de Oceanografía (CN IEO-CSIC), Palma, Spain.

https://orcid.org/0000-0002-3494-9658

Pedro Torres

Instituto Español de Oceanografía, Centro Oceanográfico de Málaga, (CN IEO-CSIC).

https://orcid.org/0000-0002-7076-6023

María González

Instituto Español de Oceanografía, Centro Oceanográfico de Málaga, (CN IEO-CSIC).

https://orcid.org/0000-0003-4248-1765

Ángel Mateo-Ramírez

Instituto Español de Oceanografía, Centro Oceanográfico de Málaga, (CN IEO-CSIC).

https://orcid.org/0000-0002-3825-3279

José Luis Rueda

Instituto Español de Oceanografía, Centro Oceanográfico de Málaga, (CN IEO-CSIC).

https://orcid.org/0000-0003-4632-1523

Summary

This study analyses the samples collected annually (2012 to 2018) on circalittoral and bathyal soft bottoms (30 to 800 m) by the MEDITS surveys in the northern Alboran Sea (including Alboran Island) and the Gulf of Vera to determine the composition, structure and distribution of decapod crustacean assemblages. A total of 94 decapod crustacean species were identified. Non-metric multidimensional scaling showed depth to be the main factor for distinguishing four main decapod assemblages: the inner shelf (30-100 m depth), outer shelf (101-200 m), upper slope (201-500 m) and middle slope (501-800 m). PERMANOVA analyses revealed further significant depth-related differences between three established geographical sectors of the study area (northern Alboran Sea, Gulf of Vera and Alboran Island). Generalized additive model analyses were used to assess the bathymetrical, geographical and environmental effects on the ecological indices of each assemblage. Results showed that depth and the geographical effect were the main drivers in all cases. Decreases in abundance and increases in species richness, Shannon-Wiener diversity and Pielou’s evenness indices with depth were detected. This study shows the primacy of depth and geographical effect on the distribution of decapod species in the study area, in alignment with findings from other parts of the Mediterranean Sea.

Keywords: 
Alboran Sea; crustaceans; decapods; assemblages; GAM; circalittoral; bathyal; biodiversity
Resumen

En este estudio se analizan muestras obtenidas anualmente (2012 al 2018) en fondos blandos circalitorales y batiales (30 a 800 m) del norte del mar de Alborán (incluida la Isla de Alborán) y golfo de Vera durante siete campañas de arrastre de fondo, MEDITS, con el fin de determinar la composición, estructura y distribución de las asociaciones de crustáceos decápodos. En total se identificaron 94 especies de decápodos. El escalamiento multidimensional no métrico indicó la profundidad como factor principal en la diferenciación de cuatro asociaciones de decápodos: plataforma interna (30-100 m de profundidad), plataforma externa (101-200 m), talud superior (201-500 m) y talud medio (501-800 m). Los análisis PERMANOVA revelaron diferencias significativas relacionadas con la profundidad entre los tres sectores geográficos establecidos en el área de estudio (norte del mar de Alborán, golfo de Vera e Isla de Alborán). Los modelos aditivos generalizados se utilizaron para evaluar los efectos batimétricos, geográficos y ambientales sobre los índices ecológicos de cada una de las asociaciones encontradas. Los resultados mostraron la profundidad y el efecto geográfico como los principales factores en todos los casos. Se detectó una disminución de la abundancia con la profundidad mientras que la riqueza de especies, el índice de diversidad de Shannon-Wiener y el índice de equidad de Pielou aumentaron. Este estudio muestra la importancia de la profundidad y el efecto geográfico en la distribución de las especies en el área de estudio en consonancia con lo descrito en otras áreas del mar Mediterráneo.

Palabras clave: 
mar de Alborán; crustáceos; decápodos; asociaciones; GAM; circalitoral, batial, biodiversidad

Received: January 12, 2022. Accepted: June 9, 2022. Published: August  23,  2022

Editor: J. Templado.

Citation/Cómo citar este artículo: Ciércoles C., García-Ruíz C., Abelló P., Hidalgo M., Torres P., González M., Mateo-Ramírez A., Rueda J.L. 2022. Decapod crustacean assemblages on trawlable grounds in the northern Alboran Sea and Gulf of Vera. Sci. Mar. 86(3): e039. https://doi.org/10.3989/scimar.05265.039

CONTENT

INTRODUCTION

 

The Alboran Sea, located in the westernmost part of the Mediterranean Sea, is a transitional area between the Atlantic Ocean and the Mediterranean Sea that has been reported as a self-standing ecoregion harbouring a large marine biodiversity and a wide variety of habitats (Spalding et al. 2007Spalding M., Fox H., Allen G., et al. 2007. Marine Ecoregions of the World: A Bioregionalization of Coastal and Shelf Areas. BioScience. 57: 573-583. https://doi.org/10.1641/B570707 , Rueda et al. 2021Rueda J.L., Gofas S., Aguilar R., et al. 2021. Chapter 9: Benthic fauna of littoral and deep-sea habitats of the Alboran Sea: A hotspot of biodiversity. In: Báez J.C., Vázquez J.T., et al. (eds), Alboran Sea - Ecosystems and Marine Resources. Springer Nature Switzerland AG, pp. 285-358. https://doi.org/10.1007/978-3-030-65516-7_9 , Templado et al. 2021Templado J., Luque A.A., Moreno D., et al. 2021. Chapter 10: Invertebrates: The realm of diversity. In: Báez J.C., Vázquez J.T., Camiñas J.A., Malouli M. (eds), Alboran Sea - Ecosystems and Marine Resources. Springer Nature Switzerland AG, pp. 359-430. https://doi.org/10.1007/978-3-030-65516-7_10 ). Because of its distinctive geomorphological and oceanographical features, the Alboran Sea has been identified as a specific biogeographical sector for several marine groups (Real et al. 2021Real R., Gofas S., Altamarino M., et al. 2021. Chapter 11: Biogeographical and Macroecological context of the Alboran Sea. In: Báez J.C., Vázquez J.T., Camiñas J.A., Malouli M. (eds), Alboran Sea - Ecosystems and Marine Resources. Springer Nature Switzerland AG, pp. 431-457. https://doi.org/10.1007/978-3-030-65516-7_11 ), including demersal fish (Gaertner et al. 2005Gaertner J.C., Bertrand J.A, Gil de Sola L., et al. 2005. Large spatial scale variation of demersal fish assemblage structure on the continental shelf of the NW Mediterranean Sea. Mar. Ecol. Prog. Ser. 297: 245-257. https://doi.org/10.3354/meps297245 , González et al. 2021González M., García-Ruiz C., García J., et al. 2021. Chapter: 18: Demersal Resources. In: Báez J.C., Vázquez J.T., et al. (eds), Alboran Sea - Ecosystems and Marine Resources. Springer Nature Switzerland AG, pp. 589-628. https://doi.org/10.1007/978-3-030-65516-7_18 ), molluscs (Gofas et al. 2011Gofas S., Moreno D., Salas C. 2011. Moluscos marinos de Andalucía. Volúmenes I y II. Servicio de Publicaciones e Intercambio Científico, Universidad de Málaga, Málaga, 798 pp., Ciércoles et al. 2018Ciércoles C., García-Ruiz C., González M., et al. 2018. Molluscs collected with otter trawl in the northern Alboran Sea: main assemblages, spatial distribution and environmental linkage. Mediterr. Mar. Sci. 19: 209-222. https://doi.org/10.12681/mms.2124 ) and crustaceans (Abelló et al. 2002Abelló P., Carbonell A., Torres P. 2002. Biogeography of epibenthic crustaceans on the shelf and upper slope off the Iberian Peninsula Mediterranean coasts: implications for the establishment of natural management areas. Sci. Mar. 66 (Suppl. 2): 183-198. https://doi.org/10.3989/scimar.2002.66s2183 ).

Crustaceans are one of the most morphologically diverse taxonomic groups of the aquatic ecosystems, where they are one of the top dominant groups (Martin and Davis 2001Martin J.W., Davis G.E. 2001. An updated classification of the Recent Crustacea. Natural History Museum of Los Angeles County, Los Angeles, 124 pp.). Within the crustaceans, the order Decapoda constitutes a dominant component of Mediterranean benthic and demersal communities of both the continental shelf and slope (Maynou and Cartes 2000Maynou F., Cartes E.J. 2000. Community structure of bathyal decapods crustaceans off south-west Balearic Islands (western Mediterranean): seasonality and regional patterns in zonation. J. Mar. Biol. Ass. U.K. 80: 789-798. https://doi.org/10.1017/S0025315400002769 , Guijarro 2012Guijarro B. 2012. Population dynamics and assessment of exploited deep water decapods off Balearic Islands (western Mediterranean): from single to multi-species approach. Ph. D. thesis, Balearic Islands Univ. Balearic Islands, 257 pp. https://doi.org/10.1007/s10750-011-0670-z ). Their relative importance in the Mediterranean Sea has been hypothesized because of their very high competitive trophic strategy (Cartes and Sardà 1992Cartes J.E., Sardà F. 1992. Abundance and diversity of decapods crustaceans in the deep-Catalan Sea (Western Mediterranean). J. Nat. Hist. 26: 1305-1323. https://doi.org/10.1080/00222939200770741 , Maynou and Cartes 2000Maynou F., Cartes E.J. 2000. Community structure of bathyal decapods crustaceans off south-west Balearic Islands (western Mediterranean): seasonality and regional patterns in zonation. J. Mar. Biol. Ass. U.K. 80: 789-798. https://doi.org/10.1017/S0025315400002769 ). Moreover, decapods are a key taxon linking lower and higher trophic levels (Cartes 1998Cartes J.E. 1998. Feeding strategies and partition of food resources in Deep-Water Decapod Crustacean (400-2300 m). J. Mar. Biol. Ass. U.K. 78: 509-524. https://doi.org/10.1017/S002531540004159X , Fanelli 2007Fanelli E., Colloca F., Ardizzone G. 2007. Decapod crustacean assemblages off the West coast of central Italy (western Mediterranean). Sci. Mar. 71: 19-28. https://doi.org/10.3989/scimar.2007.71n119 ). Several decapod species are of commercial interest and form an important component of the catches of the bottom trawl fishery in the Alboran Sea and the Gulf of Vera. In fact, some decapod species, such as the deep-water rose shrimp, Parapenaeus longirostris, the Norway lobster, Nephrops norvegicus, and the red shrimp Aristeus antennatus are economically valuable target species in demersal fisheries, so their populations are regularly assessed in the Alboran Sea (González et al. 2021González M., García-Ruiz C., García J., et al. 2021. Chapter: 18: Demersal Resources. In: Báez J.C., Vázquez J.T., et al. (eds), Alboran Sea - Ecosystems and Marine Resources. Springer Nature Switzerland AG, pp. 589-628. https://doi.org/10.1007/978-3-030-65516-7_18 ), as well as in other parts of the Mediterranean Sea (Guijarro 2012Guijarro B. 2012. Population dynamics and assessment of exploited deep water decapods off Balearic Islands (western Mediterranean): from single to multi-species approach. Ph. D. thesis, Balearic Islands Univ. Balearic Islands, 257 pp. https://doi.org/10.1007/s10750-011-0670-z ; Regulation (EU) 2019/1022). Knowledge of the distribution and abundance of species along environmental gradients has traditionally been important to characterize and understand the role of biological communities in aquatic systems (Wenner and Boesch 1979Wenner E. L., Boesch D. F. 1979. Distribution patterns of epibenthic decapod Crustacea along the shelf-slope coenocline, middle Atlantic Bight, U.S.A. Bull. Biol. Soc. Wash. 3: 106-133. https://doi.org/10.1175/1520-0485(1991)021<0811:MDAVMI>2.0.CO;2 ). Studies of biological communities are also essential tools for understanding the dynamics of exploited species from an ecosystem point of view, which is a key element in considering separate management units (Abelló et al. 2002Abelló P., Carbonell A., Torres P. 2002. Biogeography of epibenthic crustaceans on the shelf and upper slope off the Iberian Peninsula Mediterranean coasts: implications for the establishment of natural management areas. Sci. Mar. 66 (Suppl. 2): 183-198. https://doi.org/10.3989/scimar.2002.66s2183 ). Additionally, species-specific studies on decapod species have revealed geographical variability patterns throughout the Mediterranean Sea, reflecting the importance of studies at a small-scale geographical level. This approach has been shown to be more efficient for the management of certain species in contrast to large regional approaches (Gaertner et al. 2005Gaertner J.C., Bertrand J.A, Gil de Sola L., et al. 2005. Large spatial scale variation of demersal fish assemblage structure on the continental shelf of the NW Mediterranean Sea. Mar. Ecol. Prog. Ser. 297: 245-257. https://doi.org/10.3354/meps297245 , Guijarro et al. 2019Guijarro B., Bitetto I., D’Onghia G., et al. 2019. Spatial and temporal patterns in the Mediterranean populations of Aristaeomorpha foliacea and Aristeus antennatus (Crustacea: Decapoda: Aristeidae) based on the MEDITS surveys. Sci. Mar. 83: 57-70. https://doi.org/10.3989/scimar.05012.04A ) and it is particularly important for scientifically sustaining spatial management. The Alboran Sea, together with the Gulf of Vera, can be considered a transition zone between the Mediterranean and Atlantic biota of crustaceans, since it also constitutes a semipermeable barrier for genetic population exchanges between the Mediterranean Sea and the Atlantic Ocean (Abelló et al. 2002Abelló P., Carbonell A., Torres P. 2002. Biogeography of epibenthic crustaceans on the shelf and upper slope off the Iberian Peninsula Mediterranean coasts: implications for the establishment of natural management areas. Sci. Mar. 66 (Suppl. 2): 183-198. https://doi.org/10.3989/scimar.2002.66s2183 , Mateo-Ramírez et al. 2015Mateo-Ramírez Á., Farias C., Gallardo Roldán H., et al. 2015. Asociaciones de decápodos de fondos blandos circalitorales y batiales del mar de Alborán. In: Díaz del Rio V., Bárcenas P., et al. (eds), Volumen de Comunicaciones presentadas en el VII Simposio sobre el Margen Ibérico Atlántico. Sia Graf, Málaga, pp. 433-436., Pascual et al. 2016Pascual M., Palero F., García-Merchán VH., et al. 2016. Temporal and spatial genetic differentiation in the crab Liocarcinus depurator across the Atlantic-Mediterranean transition. Sci. Rep. 6: 29892: 1-10. https://doi.org/10.1038/srep29892 ).

Several studies on decapod assemblages have been carried out in different habitats of the Alboran Sea, particularly those of the infralittoral zone (soft bottoms, García Muñoz et al. 2008García Muñoz J.E., Manjón Cabeza M.E., García Raso J.E. 2008. Decapod crustacean assemblages from littoral bottoms of the Alborán Sea (Spain, west Mediterranean Sea): spatial and temporal variability. Sci. Mar. 72: 437-449. https://doi.org/10.3989/scimar.2008.72n3437 ; seagrass meadows, García-Raso 1990García Raso J.E. 1990. Study of a Crustacea Decapoda Taxocoenosis of Posidonia beds from the Southeast of Spain. Marine Ecology, PSZN 11: 309-326. https://doi.org/10.1111/j.1439-0485.1990.tb00386.x , García Raso et al. 2006García Raso J.E., Martín M.J., Díaz V., et al. 2006. Diel and seasonal changes in the structure of a Decapod (Crustacea: Decapoda) community of Cymodocea nodosa from Southeastern Spain (West Mediterranean Sea). Hydrobiologia 557: 59-68. https://doi.org/10.1007/1-4020-4756-8_8 , Mateo-Ramírez et al. 2016Mateo-Ramírez Á., Urra J., Marina Ureña P., et al. 2016. Crustacean decapod assemblages associated with fragmented Posidonia oceanica meadows in the Alboran Sea (Western Mediterranean Sea): composition, temporal dynamics and influence of meadow structure. Mar. Ecol. 37: 344-358. https://doi.org/10.1111/maec.12284 ; macroalgal communities, Mateo-Ramírez et al. 2018Mateo-Ramírez Á., Urra J., Rueda J.L., et al. 2018. Decapod assemblages associated with shallow macroalgal communities in the northwestern Alboran Sea: Microhabitat use and temporal variability. J. Sea Res. 135: 84-94. https://doi.org/10.1016/j.seares.2018.02.009 ). However, despite their ecological and economical interest, few studies of decapod assemblages in circalittoral and bathyal soft bottoms have been carried out in the Alboran Sea using beam-trawl samples (Mateo-Ramírez et al. 2015Mateo-Ramírez Á., Farias C., Gallardo Roldán H., et al. 2015. Asociaciones de decápodos de fondos blandos circalitorales y batiales del mar de Alborán. In: Díaz del Rio V., Bárcenas P., et al. (eds), Volumen de Comunicaciones presentadas en el VII Simposio sobre el Margen Ibérico Atlántico. Sia Graf, Málaga, pp. 433-436.) or including the Alboran Sea as part of studies with a wider scope covering the Spanish Mediterranean waters (Abelló et al. 2002Abelló P., Carbonell A., Torres P. 2002. Biogeography of epibenthic crustaceans on the shelf and upper slope off the Iberian Peninsula Mediterranean coasts: implications for the establishment of natural management areas. Sci. Mar. 66 (Suppl. 2): 183-198. https://doi.org/10.3989/scimar.2002.66s2183 ).

The aims of this study were to (1) update faunistic inventories of decapod crustacean species in the Alboran Sea and the adjacent Gulf of Vera; (2) identify and characterize the main decapod assemblages; (3) analyse significant differences between assemblages in the ecological indices considered as community descriptors (decapod abundance, species richness, Pielou’s evenness and the Shannon-Wiener diversity index) in order to study the spatial and temporal changes of the composition and structure of the decapod assemblages; and (4) model spatio-temporal trends of ecological indices in terms of potential environmental driving.

MATERIALS AND METHODS

 

Study area

 

The study area covers approximate 12753 km2 and encompasses the northern Alboran Sea and Gulf of Vera, from Punta Europa (Strait of Gibraltar) to Cabo de Palos (Cartagena), including also the Alboran Island (Fig. 1). The main hydrological characteristics of this area are the mixture of Atlantic and Mediterranean water masses with (1) Atlantic surficial water masses entering the Mediterranean Sea and extending from the surface to 200 m depth; (2) Intermediate Levantine water masses from the Mediterranean Sea, flowing towards the Atlantic Ocean and usually extending from 200 to 600 m depth; and (3) deep water masses extending below the Levantine water masses to the sea bottom (Parrilla et al. 1986Parrilla G., Kinder T., Preller R. 1986. Deep and Intermediate Mediterranean Water in the western Alboran Sea. Deep Sea Res. Part A. Ocenographic Research Papers 33: 55-88. https://doi.org/10.1016/0198-0149(86)90108-1 , Vargas-Yáñez et al. 2017Vargas-Yáñez M., García-Martínez M.C., Moya F., et al. 2017. Updating temperature and salinity mean values and trend in the Western Mediterranean: The RADMED Project. Prog. Oceanogr. 157: 27-46. https://doi.org/10.1016/j.pocean.2017.09.004 ). The different physico-chemical characteristics of these water masses, together with the density contrast and the geomorphology of the Alboran basin, are responsible for the complex hydrodynamic processes that take place in the area, along with the presence of the Alboran Gyre and nutrient-rich coastal upwellings (Tintoré et al. 1991Tintoré J., Gomis D., Alonso S. 1991. Mesoscale Dynamics and Vertical Motion in the Alborán Sea. J. Phys. Oceanogr. 21: 811-823. https://doi.org/10.1175/1520-0485(1991)021<0811:MDAVMI>2.0.CO;2 , Vargas-Yáñez et al. 2010Vargas-Yáñez M., García-Martínez M.C., Moya F., et al. 2010. Cambio climático en el Mediterráneo español. Instituto Español de Oceanografía, Ministerio de Ciencia e Innovación, Madrid, 176 pp., 2021Vargas-Yáñez M., García-Martínez M.C., Moya F., et al. 2021. Chapter 4: The Oceanographic and Climatic Context. In: Báez J.C., Vázquez J.T., et al. eds), Alboran Sea - Ecosystems and Marine Resources. Springer Nature Switzerland AG, pp. 85-109. https://doi.org/10.1007/978-3-030-65516-7_4 ). The seafloor of the study area has a high geomorphological complexity with a wide variety of reliefs, such as depressions, banks, ridges and canyons (Parrilla and Kinder 1987Parrilla G., Kinder T. 1987. The Physical Oceanography of the Alboran Sea. NORDA Report 184, 26 pp., Ercilla et al. 1992Ercilla G., Alonso B., Baraza J. 1992. Sedimentary evolution of the northwestern Alboran Sea during the Quaternary. Geo-Mar. Let. 12: 144-149. https://doi.org/10.1007/BF02084925 , 2021Ercilla G., Vázquez J.T., Alonso B., et al. 2021. Chapter 6: Seafloor Morphology and Processes in the Alboran Sea. In: Báez J.C., Vázquez J.T., et al. (eds), Alboran Sea - Ecosystems and Marine Resources. Springer Nature Switzerland AG, pp. 157-205. https://doi.org/10.1007/978-3-030-65516-7_6 ). The northern Alboran Sea and the Gulf of Vera are both characterized by a very narrow continental shelf with alternating predominance of sands and muds, while the continental slope is mainly composed of very fine sediments (Rey and Medialdea 1989Rey J., Medialdea T. 1989. Los sedimentos cuaternarios superficiales del Margen Continental Español. Publicaciones especiales Instituto Español de Oceanografía. 3, Madrid, 36 pp., Ercilla et al. 2021Ercilla G., Vázquez J.T., Alonso B., et al. 2021. Chapter 6: Seafloor Morphology and Processes in the Alboran Sea. In: Báez J.C., Vázquez J.T., et al. (eds), Alboran Sea - Ecosystems and Marine Resources. Springer Nature Switzerland AG, pp. 157-205. https://doi.org/10.1007/978-3-030-65516-7_6 ). In addition, the Alboran Sea, together with the Gulf of Lion and the mouth of different rivers (e.g. the Ebro River on the northeastern Spanish Mediterranean coast), is one of the areas with the highest primary production in the western Mediterranean (Vargas-Yáñez et al. 2010Vargas-Yáñez M., García-Martínez M.C., Moya F., et al. 2010. Cambio climático en el Mediterráneo español. Instituto Español de Oceanografía, Ministerio de Ciencia e Innovación, Madrid, 176 pp.). This is due to several processes (e.g. nutrient flows from rivers and nutrient-rich coastal upwelling) that favour the injection of nutrients into the photophilous zone of the water column (Báez et al. 2021Báez J.C., Vázquez J.T., Camiñas J.A., Idrissi M.M (eds). 2021. Alboran Sea -Ecosystems and Marine Resources. Springer Nature Switzerland AG, 956 pp. https://doi.org/10.1007/978-3-030-65516-7 ). The Gulf of Vera is also a strategic location in the western Mediterranean since it is adjacent to the Almería-Oran front, which forms a semi-permanent hydrographic barrier and a transition zone between the Alboran Sea (an area with greater Atlantic water influence) and the rest of the western Mediterranean basin (Tintoré et al. 1988Tintoré J., La Violette P.E., Blade I., Cruzado A. 1988. A study of an Intense Density Front in the Eastern Alboran Sea: The Almeria-Oran Front. J. Phys. Oceanogr. 18: 1384-1397. https://doi.org/10.1175/1520-0485(1988)018<1384:ASOAID>2.0.CO;2 , Millot 1999Millot C. 1999. Circulation in the Western Mediterranean Sea. J. Mar. Syst. 20: 423-442. https://doi.org/10.1016/S0924-7963(98)00078-5 ). The meridional sector of the Alboran Sea is characterized by the presence of an old volcanic ridge oriented SW-NE, on which Alboran Island is located (Vázquez 2005Vázquez J.T. 2005. El margen continental del Mar de Alborán. In: Martín-Serrano A. (ed.), Mapa Geomorfológico de España y del margen continental. Instituto Geológico y Minero de España, pp. 191-198.). This island is affected by the circulation of the water masses present in the Alboran basin and has been described as an anticyclonic area located between two geostrophic gyres of the incoming Atlantic surface water. These peculiar hydrological characteristics result in the singularity and extraordinary biodiversity of the benthic communities of the Alboran Island (Gofas et al. 2014Gofas S., Goutayer J., Luque Á.A., et al. 2014. Espacio Marino de Alborán. Proyecto LIFE+ INDEMARES. Fundación Biodiversidad del Ministerio de Agricultura, Alimentación y Medio Ambiente, Madrid, 129 pp.), as well as of the Alboran Sea (Rueda et al. 2021Rueda J.L., Gofas S., Aguilar R., et al. 2021. Chapter 9: Benthic fauna of littoral and deep-sea habitats of the Alboran Sea: A hotspot of biodiversity. In: Báez J.C., Vázquez J.T., et al. (eds), Alboran Sea - Ecosystems and Marine Resources. Springer Nature Switzerland AG, pp. 285-358. https://doi.org/10.1007/978-3-030-65516-7_9 ). This high diversity promoted the protection of the Alboran Island and its surrounding bottoms through protection measures such as a Marine and Fishing Reserve, a Site of Community Importance and a Specially Protected Area of Mediterranean Importance (Mateo-Ramírez et al. 2021Mateo-Ramírez, Á., Marina, P., Moreno, D., et al. 2021. Marine Protected Areas and Key Biodiversity Areas of the Alboran Sea and Adjacent Areas. Alboran Sea - Ecosyst. Mar. Resour. 819-923. https://doi.org/10.1007/978-3-030-65516-7_25 ).

medium/medium-SCIMAR-86-03-e039-gf1.png
Fig. 1.  - Map of the study area showing the sampling stations (black points) used during MEDITS surveys (2012 to 2018) and the sectors considered.

Sampling

 

The data for this study were obtained from 413 hauls performed on circalittoral and bathyal soft bottoms (30-800 m depth) of the northern Alboran Sea and the Gulf of Vera during seven MEDITS surveys (International Trawl Surveys in the Mediterranean Sea) between 2012 and 2018 (Bertrand et al. 2002Bertrand J.A., Gil de Sola L., Papaconstantinou C., et al. 2002. The general specifications of the MEDITS surveys. Sci. Mar. 66(Suppl. 2): 9-17. https://doi.org/10.3989/scimar.2002.66s29 , Spedicato et al. 2019Spedicato M.T., Massutí E., Bastien M., et al. 2019. The MEDITS trawl survey specifications in an ecosystem approach to fishery management. In: Mediterranean demersal resources and ecosystems: 25 years of MEDITS trawl surveys. Spedicato M.T., Tserpes G., Mérigot B., Massutí E. (eds). Sci. Mar. 83S1: 9-20. https://doi.org/10.3989/scimar.04915.11X ), which are carried out annually in spring (Fig. 1). A stratified random sampling design was applied in the surveys, with the following bathymetric strata: 30-50, 51-100, 101-200, 201-500 and 501-800 m depth. No samples could be obtained at depths shallower than 100 m at Alboran Island as the depths shallower than 100 m around the island are a Marine and Fishing Reserve where trawling is not allowed (see study area section). Haul duration was a function of depth, with 30-minute duration for stations located at less than 200 m (continental shelf) and a 60-minute duration for those located at more than 200 m depth (continental slope) (Bertrand et al. 2002Bertrand J.A., Gil de Sola L., Papaconstantinou C., et al. 2002. The general specifications of the MEDITS surveys. Sci. Mar. 66(Suppl. 2): 9-17. https://doi.org/10.3989/scimar.2002.66s29 , Spedicato et al. 2019Spedicato M.T., Massutí E., Bastien M., et al. 2019. The MEDITS trawl survey specifications in an ecosystem approach to fishery management. In: Mediterranean demersal resources and ecosystems: 25 years of MEDITS trawl surveys. Spedicato M.T., Tserpes G., Mérigot B., Massutí E. (eds). Sci. Mar. 83S1: 9-20. https://doi.org/10.3989/scimar.04915.11X ). According to the MEDITS protocol, the number of sampling stations (hauls) in each stratum is proportional to the area of these strata (MEDITS-Handbook 2017MEDITS-Handbook. Version no. 9. 2017. MEDITS Working Group, pp. 106. https://www.sibm.it/MEDITS%202011/principalemedits.htm ). Except for unusual problems (damage noted in previous years, etc.), the hauls are made at the same sampling stations from year to year. In the present study the number of hauls in each of the three established geographical sectors were 309 for the northern Alboran Sea sector, 51 for the Alboran Island sector and 53 for the Gulf of Vera sector.

The geographical position of each haul was recorded using the global positioning system of the research vessel. Haul performance and gear geometry were monitored using SCANMAR and, more recently, MARPORT sensors. The sampling device was a bottom trawl gear (GOC-73) with a cod-end mesh size of 20 mm, an average horizontal opening of 21.5 m and an average vertical opening of 2.5 m (Fiorentini et al. 1999Fiorentini L., Dremière P.Y., Leonori I., et al. 1999. Efficiency of the bottom trawl used for the Mediterranean international trawl survey (MEDITS). Aquat. Living Resour. 12: 187-205. https://doi.org/10.1016/S0990-7440(00)88470-3 ). Temperature and salinity were recorded close to the bottom using a CTD SBE-37 coupled to the net. Every specimen caught was identified to the lowest possible taxonomic level. Finally, specimens of each species were counted and weighed on board. Scientific names for species followed the nomenclature of the World Register of Marine Species (WoRMS 17/02/2021WoRMS Editorial Board, 2017. World Register of Marine Species. http://www.marinespecies.org (Accessed 17 February 2021).).

Data analysis

 

The swept area from each haul was estimated by monitoring the horizontal opening of the gear and the distance covered during the haul. These values were used to standardize catches in the trawled area, in order to obtain an estimation of abundance as the number of individuals per square km (ind. km-2). The frequency index (%F, percentage of hauls in which the species was present in relation to the total hauls carried out) and the dominance index based on abundance (%DN, percentage of individuals caught of a species over the total number of caught species in the total hauls of the study) were estimated for each species.

In order to analyse the potential differences in assemblages over the study area, three geographical sectors were assessed according to their different oceanographic characteristics (Sarhan et al. 2000Sarhan T., García-Lafuente J., Vargas J.M., Plaza F. 2000. Upwelling mechanisms in the northwestern Alboran Sea. J. Mar. Syst. 23: 317-331. https://doi.org/10.1016/S0924-7963(99)00068-8 , Vargas-Yáñez et al. 2010Vargas-Yáñez M., García-Martínez M.C., Moya F., et al. 2010. Cambio climático en el Mediterráneo español. Instituto Español de Oceanografía, Ministerio de Ciencia e Innovación, Madrid, 176 pp.): (1) northern Alboran Sea (from Gibraltar to Cabo de Gata), characterized by a high Atlantic influence and the presence of permanent nutrient-rich coastal upwellings; (2) Gulf of Vera (from Cabo de Gata to Cabo de Palos), with a higher influence of the typical western Mediterranean conditions; and (3) Alboran Island, an insular area located at the top of the Alboran Ridge, which is far away from the continental margin and influenced to a certain extent by the eastern anticyclonic gyre of the Alboran Sea.

The decapod crustacean assemblages were identified using non-parametric multivariate classification (cluster) and ordination (non-metric multidimensional scaling, nMDS) techniques (Clarke 1993Clarke K.R. 1993. Non-parametric multivariate analyses of changes in community structure. Austral. Ecol. 18: 117-143. https://doi.org/10.1111/j.1442-9993.1993.tb00438.x , Clarke and Warwick 2001Clarke K.R., Warwick R.M. 2001. Change in Marine Communities: An Approach to Statistical Analysis and Interpretation. 2nd Edition. Plymouth Marine Laboratory, Bournemouth, 164 pp.). The resemblance matrix was calculated using the Bray-Curtis similarity index, with a previous square root data transformation in order to reduce the differences in the abundance of highly dominant species (Clarke and Warwick 2001Clarke K.R., Warwick R.M. 2001. Change in Marine Communities: An Approach to Statistical Analysis and Interpretation. 2nd Edition. Plymouth Marine Laboratory, Bournemouth, 164 pp.). One-way SIMPER analysis was applied to determine the contribution of each species to the dissimilarity between the groupings of samples obtained in the cluster and nMDS analyses, which are defined as different assemblages (Clarke and Warwick 2001Clarke K.R., Warwick R.M. 2001. Change in Marine Communities: An Approach to Statistical Analysis and Interpretation. 2nd Edition. Plymouth Marine Laboratory, Bournemouth, 164 pp.). A distance-based permutational multivariate analysis of variance (PERMANOVA) (McArdle and Anderson 2001McArdle B., Anderson M. 2001. Fitting multivariate models to community data: a comment on distance-based redundancy analysis. Ecology 82: 290-297. https://doi.org/10.1890/0012-9658(2001)082[0290:FMMTCD]2.0.CO;2 ) based on the Bray-Curtis similarity matrix was used to test significant differences between the obtained assemblages (except for shallowest depths), with sector (fixed factor, three levels) and depth (fixed factor, three levels) as a source of variation. The PERMANOVA routine performs a partitioning of the total sum of squares according to the full experimental design, calculating an appropriated distance-based pseudo-F statistic for each term in the model, based on the expectations of mean squares. P-values are obtained using a permutation procedure (a permutation of residuals under a reduced model in our analysis) (Anderson et al. 2008Anderson M.J., Gorley R.N., Clarke K.R. 2008. PERMANOVA + for PRIMER: Guide to Software and Statistical Methods. PRIMER-E: Plymouth, U.K.). All these multivariate analyses were performed using PRIMER v6.0 & PERMANOVA+ software.

The abundance (N, ind. km-2), species richness (S), Shannon-Wiener diversity index (H’) and Pielou’s evenness index (J’) were calculated for the crustacean decapods of each haul using PRIMER 6.0 software, and mean values were calculated for the main assemblages obtained after the multivariate analyses. The differences between assemblages were tested using the non-parametric Kruskal-Wallis test (Kruskal and Wallis 1952Kruskal W.H., Wallis W.A. 1952. Use of ranks in one-criterion variance analysis. J. Am. Stat. Assoc. 47: 583-621. https://doi.org/10.2307/2280779 ) because the data did not fit the conditions for parametric analyses (e.g. ANOVA). These analyses were carried out using SPSS v15.0 software.

Generalized additive modelling (GAM, Hastie and Tibshirani 1990Hastie T.J., Tibshirani R.J. 1990: Generalized Additive Models. Chapman and Hall, London, 335 pp. https://doi.org/10.1002/sim.4780110717 ) was used to test the relationships of abundance, species richness, Shannon-Wiener diversity index and Pielou’s evenness index with depth, geographic location and environmental variables: chlorophyll a (Chl a) concentration (Chl-a; mg m-3), nitrate (NO3), phosphate (PO4), sea bottom temperature (SBT; ºC), sea bottom salinity (SBS; psu) and the annual NAO index. Year was considered as a factor in these analyses. Data of Chl a, NO3 and PO4 were obtained from satellite-data with a monthly time resolution developed within the Copernicus Programme (http://marine.copernicus.eu). Temperature and salinity were obtained from the CTD SBE 37 placed on the net. The North Atlantic Oscillation climate annual index (NAO) was obtained from https://climatedataguide.ucar.edu/climate-data/hurrell-north-atlantic-oscillation-nao-index-station-based. A Pearson correlation test was previously performed and environmental variables that had a high correlation (more than 0.9) were eliminated. A two-dimensional smoother was used by combining latitude and longitude to account for the geographical effect, representing the remaining spatially structured variance once the effect of the rest of covariates was removed. A one-dimensional smoother was used to investigate the geographical and environmental effects. The logarithmically transformed values (log[x+1]) of abundance were used to ensure a Gaussian distribution of the residuals. We adopted a backwards stepwise produced from an initial GAM model including all the variables, removing one non-significant covariate at time. The selection of the best model for each variable was based on the minimization of the Akaike information criterion in models with all covariates statistically significant (i.e. p<0.05). For all GAM analyses, residual plots were checked and the assumptions of variance homogeneity and normal distribution were confirmed. The mgcv package in R (http://www.r-project.org) was used in the GAM analyses (Wood 2017Wood S. 2017. Generalized Additive Models: An Introduction with R. Chapman and Hall, London, 496 pp. https://doi.org/10.1201/9781315370279 ).

RESULTS

 

Composition and structure of decapod crustaceans

 

A total of 94 decapod species were collected. The families showing the largest number of species were the Pandalida (epibenthic caridean shrimps), with nine spp., followed by the Inachidae (Brachyuran crabs) and the Paguridae (Anomuran hermit crabs) (with eight spp. each of them), and the Crangonidae (benthic caridean shrimps) (5 spp.) (Table 1).

Table 1.  - Decapod crustacean species caught with bottom trawl during MEDITS surveys (2012-2018) in circalittoral and bathyal soft bottoms of the northern Alboran Sea, Alboran Island and the Gulf of Vera. Depth range for collected specimens (metres); Nt , total abundance (individuals); %DN, dominance index of abundance expressed as a percentage; %F, frequency of occurrence expressed as a %. Systematic and taxonomical classification according to WoRMS.
Depth range Nt %DN %F
Family Acanthephyridae
Acanthephyra pelagica (Risso, 1816) 449-794 27 <0.01 3.39
Family Alpheidae
Alpheus dentipes Guérin, 1832 93 30 <0.01 0.24
Alpheus glaber (Olivi, 1792) 40-668 795 0.18 30.51
Alpheus platydactylus Coutière, 1897 641 1 <0.01 0.24
Synalpheus gambarelloides (Nardo, 1847) 154 4 <0.01 0.24
Family Aristeidae
Aristaeomorpha foliacea (Risso, 1827) 554 1 <0.01 0.24
Aristeus antennatus (Risso, 1816) 393-879 2993 0.67 13.32
Family Atelecyclidae
Atelecyclus rotundatus (Olivi, 1792) 43-362 20 <0.01 3.63
Family Axiidae
Calocarides coronatus (Trybom, 1904) 667 1 <0.01 0.24
Calocaris macandreae Bell, 1846 363-869 198 0.04 12.11
Family Benthesicymidae
Gennadas elegans (Smith, 1882) 431-794 11 <0.01 1.94
Family Calappidae
Calappa granulata (Linnaeus, 1758) 43-529 25 <0.01 1.94
Family Crangonidae
Aegaeon cataphractus (Olivi, 1792) 43-86 44 0.01 5.33
Aegaeon lacazei (Gourret, 1887) 119-762 98 0.02 13.32
Philocheras echinulatus (M. Sars, 1862) 135-554 123 0.02 9.69
Philocheras sculptus (Bell, 1847) 135 2 <0.01 0.24
Pontophilus spinosus (Leach, 1816) 78-538 494 0.11 17.43
Family Diogenidae
Dardanus arrosor (Herbst, 1796) 40-839 10975 2.49 79.42
Paguristes eremita (Linnaeus, 1767) 74 1 <0.01 0.24
Family Dorippidae
Medorippe lanata (Linnaeus, 1767) 49-573 31 <0.01 5.08
Family Dromiidae
Dromia personata (Linnaeus, 1758) 54 1 <0.01 0.24
Family Epialtidae
Lissa chiragra (Fabricius, 1775) 56 1 <0.01 0.24
Pisa armata (Latreille, 1803) 46-86 104 0.02 2.42
Scyramathia carpenteri (C. W. Thomson, 1873) 329-879 232 0.05 16.71
Family Ethusidae
Ethusa mascarone (Herbst, 1785) 46 1 <0.01 0.24
Family Galatheidae
Galathea dispersa Bate, 1859 59-249 34 <0.01 3.63
Galathea intermedia Lilljeborg, 1851 40-327 17 <0.01 3.39
Galathea strigosa (Linnaeus, 1761) 61 3 <0.01 0.24
Family Geryonidae
Geryon longipes A. Milne-Edwards, 1882 440-869 259 0.05 14.77
Family Goneplacidae
Goneplax rhomboides (Linnaeus, 1758) 40-766 600 0.13 30.51
Family Homolidae
Homola barbata (Fabricius, 1793) 74-288 7 <0.01 1.21
Paromola cuvieri (Risso, 1816) 654 1 <0.01 0.24
Family Inachidae
Dorhynchus thomsoni C. W. Thomson, 1873 329-808 32 <0.01 4.60
Inachus aguiarii Brito Capello, 1876 116 1 <0.01 0.24
Inachus communissimus Rizza, 1839 43-132 25 <0.01 3.87
Inachus dorsettensis (Pennant, 1777) 42-540 238 0.05 12.59
Inachus thoracicus P. Roux, 1830 [in P. Roux, 1828-1830] 46-118 27 <0.01 1.21
Macropodia linaresi Forest & Zariquiey Álvarez, 1964 42-95 73 0.01 2.91
Macropodia tenuirostris (A. Milne-Edwards & Bouvier, 1899) 40-774 2335 0.53 57.38
Macropodia rostrata (Linnaeus, 1761) 43-123 102 0.02 3.63
Family Leucosiidae
Ebalia nux A. Milne-Edwards, 1883 554 1 <0.01 0.24
Family Lysmatidae
Ligur ensiferus (Risso, 1816) 357-668 3 <0.01 0.73
Family Majidae
Eurynome aspera (Pennant, 1777) 45-117 5 <0.01 1.21
Family Munididae
Munida intermedia A. Milne-Edwards & Bouvier, 1899 121-664 52 0.01 5.08
Munida rugosa (Fabricius, 1775) 122 1 <0.01 0.24
Munida speciosa von Martens, 1878 85-554 457 0.10 11.14
Munida perarmata Sars, 1872 374-779 5 <0.01 0.97
Family Nephropidae
Nephrops norvegicus (Linnaeus, 1758) 143-852 1301 0.29 30.51
Family Oregoniidae
Ergasticus clouei A. Milne-Edwards, 1882 362-774 42 0.01 4.36
Family Paguridae
Anapagurus bicorniger A. Milne-Edwards & Bouvier, 1892 249 1 <0.01 0.24
Anapagurus laevis (Bell, 1845) 49-424 9 <0.01 1.69
Pagurus alatus Fabricius, 1775 329-879 2252 0.51 32.20
Pagurus anachoretus Risso, 1827 54 1 <0.01 0.24
Pagurus cuanensis Bell, 1845 44-118 8 <0.01 1.45
Pagurus excavatus (Herbst, 1791) 40-529 119 0.02 16.71
Pagurus mbizi (Forest, 1955) 50-361 42 0.01 5.81
Pagurus prideaux Leach, 1815 40-831 8459 1.91 32.69
Family Palaemonidae
Ascidonia flavomaculata (Heller, 1864) 62 1 <0.01 0.24
Periclimenes granulatus Holthuis, 1950 301 1 <0.01 0.24
Family Palinuridae
Palinurus elephas (Fabricius, 1787) 114-118 3 <0.01 0.73
Palinurus mauritanicus Gruvel, 1911 251-664 21 <0.01 3.63
Family Pandalidae
Chlorotocus crassicornis (A. Costa, 1871) 74-441 356 0.08 8.96
Pandalina profunda Holthuis, 1946 256-296 3 <0.01 0.48
Plesionika acanthonotus (Smith, 1882) 424-879 3903 0.88 29.30
Plesionika antigai Zariquiey Álvarez, 1955 79-534 1590 0.36 8.72
Plesionika edwardsii (J.F. Brandt in von Middendorf, 1851) 256-585 9756 2.21 12.83
Plesionika gigliolii (Senna, 1902) 117-650 3269 0.74 23.00
Plesionika heterocarpus (A. Costa, 1871) 56-764 309314 70.1 40.44
Plesionika martia (A. Milne-Edwards, 1883) 161-879 17740 4.02 42.37
Plesionika narval (Fabricius, 1787) 247-362 3955 0.89 0.73
Family Parthenopidae
Spinolambrus macrochelos (Herbst, 1790) 251-424 3 <0.01 0.73
Parthenopoides massena (P. Roux, 1830 ) 65-331 2 <0.01 0.48
Family Pasiphaeidae
Pasiphaea multidentata Esmark, 1866 336-879 1044 0.23 28.33
Pasiphaea sivado (Risso, 1816) 58-779 26473 6.00 24.46
Family Penaeidae
Parapenaeus longirostris (Lucas, 1846) 61-688 8716 1.97 34.38
Penaeopsis serrata Spence Bate, 1881 586 1 <0.01 0.24
Family Pilumnidae
Pilumnus hirtellus (Linnaeus, 1761) 43 1 <0.01 0.24
Pilumnus spinifer H. Milne-Edwards, 1834 43-394 104 0.02 8.72
Family Pinnotheridae
Pinnotheres pisum (Linnaeus, 1767) 46-47 9 <0.01 0.48
Pinnotheres bicristatus Garcia Raso & Cuesta, 2019 63 1 <0.01 0.24
Family Polybiidae
Bathynectes maravigna (Prestandrea, 1839) 329-840 200 0.04 14.29
Liocarcinus depurator (Linnaeus, 1758) 40-773 6974 1.58 42.86
Macropipus tuberculatus (P. Roux, 1830) 65-766 782 0.17 20.34
Polybius henslowii Leach, 1820 116 1 <0.01 0.24
Family Polychelidae
Polycheles typhlops Heller, 1862 288-879 1198 0.27 30.27
Family Porcellanidae
Pisidia longicornis (Linnaeus, 1767) 44-120 31 <0.01 3.39
Family Processidae
Processa canaliculata Leach, 1815 74-688 400 0.09 19.61
Processa nouveli Al-Adhub & Williamson, 1975 43-527 171 0.03 8.72
Family Sergestidae
Deosergestes arachnipodus (Cocco, 1832) 541-831 1044 0.23 8.72
Eusergestes arcticus (Krøyer, 1855) 291-644 3791 0.86 5.08
Robustosergia robusta (Smith, 1882) 95-879 2276 0.51 32.20
Family Solenoceridae
Solenocera membranacea (Risso, 1816) 61-679 4605 1.04 42.37
Family Stenopodidae
Richardina fredericii Lo Bianco, 1903 311-431 2 <0.01 0.48
Family Xanthidae
Monodaeus couchii (Couch, 1851) 66-879 346 0.07 29.30

The most abundant species were Plesionika heterocarpus (13094.81±10812 ind. km-2, mean per haul±standard error) (%DN: 70) followed by Pasiphea sivado (635.92±403.65 ind. km-2) (%DN: 6) and Dardanus arrosor (547.59±153.90 ind. km-2) (%DN: 2.49). Other dominant decapods were P. martia (%DN: 4.02), Pagurus prideaux (%DN: 1.91), Liocarcinus depurator (%DN: 1.58) and P. longirostris (%DN: 1.97). The most frequently captured species were D. arrosor (%F: 79), which also displayed the widest depth range (40-839 m), followed by Macropodia longipes (%F: 57), L. depurator (%F: 43), P. martia (%F: 42), and Solenocera membranacea (%F: 42). A total of 27 species (29% of the total decapods) were only recorded in one or two hauls, such as Polybius henslowii, Alpheus platydactylus, Ebalia nux and Calocarides coronatus (Table 1).

Of the 94 decapod species collected, 28 were only recorded in the northern Alboran Sea; 5 in the Alboran Island and 2 in the Gulf of Vera. Overall, 43 species were collected in each of the three geographical sectors (Table 2).

Table 2.  Abundance (ind. km-2) of each decapod species caught during MEDITS surveys (2012-2018) in each geographical sector (See Fig 1. for location of the geographical sectors).
Species Northern Alboran Alboran Island Gulf of Vera
Acanthephyra pelagica 68.77 85.45 99.93
Aegaeon cataphractus 898.01 0.00 66.92
Aegaeon lacazei 689.11 38.36 206.73
Alpheus dentipes 0.00 0.00 583.23
Alpheus glaber 12434.05 19.75 299.92
Alpheus platydactylus 10.44 0.00 0.00
Anapagurus bicorniger 8.53 0.00 0.00
Anapagurus laevis 172.21 0.00 0.00
Aristaeomorpha foliacea 8.51 0.00 0.00
Aristeus antennatus 5352.82 10198.05 13400.08
Ascidonia flavomaculata 25.51 0.00 0.00
Atelecyclus rotundatus 353.73 74.90 0.00
Bathynectes maravigna 557.31 1297.15 27.20
Calappa granulata 96.15 192.73 29.67
Calocarides coronatus 8.89 0.00 0.00
Calocaris macandreae 1910.65 79.56 0.00
Chlorotocus crassicornis 2786.01 98.91 834.97
Dardanus arrosor 194955.77 21378.80 9820.69
Deosergestes arachnipodus 9729.64 269.66 165.71
Dorhynchus thomsoni 233.26 82.45 0.00
Dromia personata 22.09 0.00 0.00
Ebalia nux 0.00 8.83 0.00
Ergasticus clouei 107.79 314.10 0.00
Ethusa mascarone 20.32 0.00 0.00
Eurynome aspera 96.83 22.67 0.00
Eusergestes arcticus 35430.99 0.00 1135.72
Galathea dispersa 696.09 0.00 0.00
Galathea intermedia 350.71 0.00 0.00
Galathea strigosa 75.04 0.00 0.00
Gennadas elegans 76.34 23.04 8.13
Geryon longipes 1257.82 983.33 263.06
Goneplax rhomboides 10731.09 0.00 859.18
Homola barbata 23.57 0.00 114.61
Inachus aguiarii 0.00 24.19 0.00
Inachus communissimus 575.34 0.00 0.00
Inachus dorsettensis 4983.92 74.91 182.96
Inachus thoracicus 573.32 38.46 0.00
Ligur ensiferus 29.57 0.00 0.00
Liocarcinus depurator 158769.15 566.18 594.13
Lissa chiragra 23.85 0.00 0.00
Macropipus tuberculatus 5736.43 3446.73 1948.39
Macropodia linaresi 1709.79 0.00 23.93
Macropodia tenuirostris 42188.56 298.78 766.04
Macropodia rostrata 2246.16 0.00 0.00
Medorippe lanata 223.37 52.87 108.70
Monodaeus couchii 3015.45 256.68 251.24
Munida intermedia 260.07 274.12 20.68
Munida rugosa 19.39 0.00 0.00
Munida speciosa 5289.25 8.87 1066.52
Munida perarmata 10.14 0.00 39.21
Nephrops norvegicus 7186.43 920.90 4001.20
Paguristes eremita 23.57 0.00 0.00
Pagurus alatus 14597.01 6349.94 607.52
Pagurus anachoretus 28.71 0.00 0.00
Pagurus cuanensis 142.57 0.00 47.42
Pagurus excavatus 1806.95 10.71 108.70
Pagurus mbizi 856.28 0.00 0.00
Pagurus prideaux 117912.81 35838.64 11569.99
Palinurus elephas 0.00 62.89 0.00
Palinurus mauritanicus 30.98 147.74 30.45
Pandalina profunda 9.34 0.00 18.97
Parapenaeus longirostris 72582.60 6830.78 13401.46
Paromola cuvieri 10.62 0.00 0.00
Spinolambrus macrochelos 10.41 11.34 9.86
Parthenopoides massena 20.95 10.28 0.00
Pasiphaea multidentata 3676.74 2128.73 4074.06
Pasiphaea sivado 235411.79 11.34 27214.36
Penaeopsis serrata 0.00 10.82 0.00
Periclimenes granulatus 10.38 0.00 0.00
Philocheras echinulatus 1247.97 32.14 25.77
Philocheras sculptus 47.49 0.00 0.00
Pilumnus hirtellus 21.80 0.00 0.00
Pilumnus spinifer 2012.36 0.00 350.42
Pinnotheres pisum 196.44 0.00 0.00
Pinnotheres bicristatus. 22.36 0.00 0.00
Pisa armata 2196.13 0.00 0.00
Pisidia longicornis 712.28 0.00 0.00
Plesionika acanthonotus 23724.90 9813.55 3268.71
Plesionika antigai 2420.22 9241.23 3740.36
Plesionika edwardsii 23044.95 5302.86 61761.50
Plesionika gigliolii 4569.02 46.49 26194.99
Plesionika heterocarpus 5221700.78 43885.18 142573.02
Plesionika martia 122055.52 27724.52 17985.68
Plesionika narval 0.00 10.71 45811.89
Polybius henslowii 0.00 24.19 0.00
Polycheles typhlops 10118.58 867.70 367.17
Pontophilus spinosus 5357.67 10.71 95.65
Processa canaliculata 5310.32 112.49 203.37
Processa nouveli 712.73 21.42 957.59
Richardina fredericii 19.12 0.00 0.00
Scyramathia carpenteri 1841.02 236.72 52.22
Robustosergia robusta 6561.02 13732.13 1930.25
Solenocera membranacea 44110.91 365.55 2139.31
Synalpheus gambarelloides 0.00 0.00 100.42
Number of species present 86 55 54

Affinity between samples

 

Cluster and nMDS analyses performed on abundance data revealed four groups of samples (interpreted as different decapod assemblages) that were mainly related to depth: the first group corresponded to an inner/shallow shelf (IS) assemblage at 30 to 100 m depth; the second group corresponded to an outer shelf (OS) assemblage at 101 to 200 m depth; the third corresponded to an upper slope (US) assemblage at 201 to 500 m depth and the fourth corresponded to a middle slope (MS) assemblage to 501 to 800 m depth (Fig. 2). SIMPER analyses showed that the decapods D. arrosor, L. depurator, M. longipes and P. prideaux characterized the IS assemblage, whereas P. heterocarpus, D. arrosor, P. prideaux and M. longipes characterized the OS assemblage. The US assemblage was characterized by P. heterocarpus, P. longirostris, S. membranacea and D. arrosor, and the MS assemblage was characterized by P. martia, P. acanthonotus, Pagurus alatus and Sergia robusta (Table 3). The largest differences were observed between the shelf assemblages (IS and OS) and the MS assemblage (av. diss. >96%). These differences were mainly due to the higher abundance of D. arrosor and L. depurator in the IS assemblage, P. heterocarpus and P. prideaux in the OS assemblage, P. longirostris and S. membranacea in the US assemblage, and P. martia, P. acanthonotus, P. alatus and S. robusta in the MS assemblage.

medium/medium-SCIMAR-86-03-e039-gf2.png
Fig. 2.  - Results of the nMDS analysis performed on samples using the Bray-Curtis similarity index based on decapod abundance data (square-root transformed) during MEDITS surveys (2012-2018). IS, inner shelf assemblage; OS, outer shelf assemblage; US, upper slope assemblage; MS, middle slope assemblage.
Table 3.  - Results of the SIMPER analyses displaying the species contribution to the similarity of each detected decapod assemblage using multivariate methods. Av. Abund, average abundance; Contrib%, percentage contribution to the similarity; Cum%, cumulative percentage of species contribution, up to ca. 90%.
Inner shelf: 30-100 m Average similarity: 33.11 Outer shelf: 101-200 m Average similarity: 29.64
species Av.Abund Contrib% Cum%   species Av.Abund Contrib% Cum%
Dardanus arrosor 25.1 49.53 49.53 Plesionika heterocarpus 132.44 41.88 41.88
Liocarcinus depurator 20.16 20.35 69.88 Dardanus arrosor 24.55 28.31 70.19
Macropodia longipes 10.93 14.97 84.85 Pagurus prideaux 19.84 12.37 82.56
Pagurus prideaux 10.24 6.6 91.45 Macropodia longipes 8.29 8.26 90.82
Upper Slope: 201-500 m average similarity: 32.49   Middle Slope: 501-800 m average similarity: 51.81
species Av.Abund Contrib% Cum% species Av.Abund Contrib% Cum%
Plesionika heterocarpus 48.92 27.53 27.53   Plesionika martia 26.28 1.79 28.11
Parapenaeus longirostris 18.81 15.15 42.68 Plesionika acanthonotus 15.65 1.81 46.04
Solenocera membranacea 12.85 9.25 51.92 Pagurus alatus 11.27 1.68 57.8
Dardanus arrosor 8.2 8.43 60.35 Sergia robusta 10.58 1.57 68.22
Plesionika martia 12.66 6.49 66.84 Polycheles typhlops 7.96 1.31 76.72
Pasiphaea sivado 21.03 6.43 73.27 Pasiphaea multidentata 7.02 7.02 83.74
Nephrops norvegicus 5.83 3.99 77.26 Aristeus antennatus 8.45 3.57 87.32
Macropodia longipes 4.87 3.64 80.89 Rochinia carpenteri 2.76 1.97 89.29
Plesionika gigliolii 7.92 3.38 84.27 Solenocera membranacea 3.39 1.91 91.19
Macropipus tuberculatus 3.56 1.72 85.99
Liocarcinus depurator 3.97 1.71 87.7
Alpheus glaber 3.28 1.5 89.2
Processa canaliculata 2.78 1.48 90.69          

The PERMANOVA test revealed significant differences between geographical sectors of the study area (Table 4). Pairwise comparisons after PERMANOVA analyses showed that: significant differences for the OS assemblage were detected between the Alboran Island-northern Alboran Sea and Alboran Island-Gulf of Vera sectors (p<0.05), while significant differences for the US and the MS assemblages were detected between the three sectors (p<0.05 in all cases). As mentioned previously, this analysis was not carried out for the IS assemblage since this bathymetric stratum could not be sampled in Alboran Island.

Table 4.  - Results of the PERMANOVA analyses testing differences between three of the four detected assemblages (OS, US, MS) and the three considered sectors (northern Alboran Sea, Gulf of Vera and Alboran Island).
Source df MS Pseudo-F p
Assemblages (AS) 2 98888 56.56 0.001
Sector (SE) 2 22716 12.99 0.001
ASxSE** 4 10419 5.95 0.001
Res 292 1748.4
Total 300

Ecological indices

 

Significant differences were found between assemblages for all ecological indices tested. With regard to the mean abundance data, the significant maximum values were for the OS and US assemblages, while the minimum ones were detected for the MS assemblage, followed by the IS assemblage (Kruskal-Wallis test: c2=92.6; p<0.01) (Fig. 3A). Mean species richness showed significant maximum values in the US and MS assemblages and minimum ones in the IS assemblage (Kruskal-Wallis test: c2=187.6; p<0.01) (Fig. 3B). The mean Shannon-Wiener diversity index displayed significant maximum values in the deepest assemblages (US and MS) and minimum ones in the OS assemblage (Kruskal-Wallis test: c2=190.5; p<0.01) (Fig. 3C). The mean Pielou’s evenness index displayed significant maximum values in the MS and IS assemblages and minimum ones in the OS assemblage (Kruskal-Wallis test: c2=58.80; p<0.01) (Fig. 3D).

medium/medium-SCIMAR-86-03-e039-gf3.png
Fig. 3.  - Mean values of the ecological indices: (A) abundance (ind. km-2); (B) species richness; (C) Shannon-Wiener diversity index; (D) Pielou’s evenness index for each decapod assemblages detected in multivariate analyses. Mean±SE. Letters above error bars display the results of Kruskal-Wallis pairwise test: different letters distinguish significantly different means at p<0.01.

GAM models for testing spatio-temporal variability of ecological indices

 

For all ecological indices, GAM analyses showed a statistically significant effect of depth and the latitude-longitude bivariate smoother (hereafter referred to as the geographical effect). The best models included depth and the geographical effect, together with year as a factor, and explained 46.2% of the deviance (DE) for abundance, 64.6% for species richness, 49.6% for Shannon-Wiener diversity index and 34.4% for Pielou’s evenness index (Table 5) (Appendix 1 and 2). No significant effect was found for the selected environmental variables of this study, including the NAO index. The depth influence was related to (1) a peak of abundance at 200 m with a progressive decrease with depth (Fig. 4A); (2) a continuous increase in species richness with a peak at 400 m followed by a slight decrease (Fig. 4B); and (3) a minimum value at 200 m with two peaks at 400 and 600 m depth for the Shannon-Wiener diversity and Pielou’s evenness index (Fig. 4C, D). The geographical effect was related to (1) maximum abundance values in the westernmost part of the study area and at Cabo de Gata (Fig. 4A); (2) maximum species richness in the westernmost and easternmost parts of the study area (Fig. 4B); (3) maximum Shannon-Wiener diversity index values in the Gulf of Vera (Fig. 4C); and (4) a similar and high Pielou’s evenness index throughout the study area (Fig. 4D). Regarding the factor “year”, abundance and species richness showed similar temporal patterns with a slight trend to decrease over successive years and with maximum values in 2012 and 2018 (Fig. 4A, B). For the Shannon-Wiener diversity index, the highest value was recorded in 2012, but no clear temporal trend was detected, as observed for Pielou’s evenness index, which showed similar values throughout the time series (Fig. 4C, D) (Appendices 1 and 2).

Table 5.  - Results of generalized additive models (GAM) for the ecological indices analysed. N, abundance (log transformed); S, species richness; H’, Shannon-Wiener diversity index; J’, Pielou’s evenness index. Lat and long, latitude and longitude for geographical effect; Chl a, chlorophyll a concentration (mg·m-3); SBT, sea bottom temperature; SBS, sea bottom salinity. Values refer to the edf (degrees of freedom). DE(%), percentage of variance explained. ns, Non-significant effect. Asterisks denote significance levels: ***, p<0.001; **, p<0.01; *, p<0.05.
Model Depth Lat and long NAO Chl a NO3 SBT SBS DE(%)
N 5.40** 23.38*** ns ns ns ns ns 46.2
S 5.76*** 18.50*** ns ns ns ns ns 64.6
H’ 8.01*** 19.93** ns ns ns ns ns 49.6
J’ 6.48*** 20.81** ns ns ns ns ns 34.4
medium/medium-SCIMAR-86-03-e039-gf4.png
Fig. 4.  - Partial effects of year (left column), depth (middle column), and geographic distribution (combination of longitude and latitude) (right column) for (A) abundance (ind. km-2) (log-transformed), (B) species richness, (C) Shannon-Wiener diversity index and (D) Pielou’s evenness index. The colour gradient of the geographical effect ranges from low values (darker-blue colours) to high values (lighter-green colours).

DISCUSSION

 

The present study reports a high number of decapod species on circalittoral and bathyal soft bottoms of the northern Alboran Sea, including Alboran Island and the Gulf of Vera, and increases the number of previously recorded species for these sedimentary habitats (15 additional species to those reported by Abelló et al. 2002Abelló P., Carbonell A., Torres P. 2002. Biogeography of epibenthic crustaceans on the shelf and upper slope off the Iberian Peninsula Mediterranean coasts: implications for the establishment of natural management areas. Sci. Mar. 66 (Suppl. 2): 183-198. https://doi.org/10.3989/scimar.2002.66s2183 ). Nevertheless, all the species detected in the present study were previously listed in the Alboran Sea by Marco-Herrero et al. (2017) and García-Raso et al. (2018)García Raso J.E., García Muñoz J.E., Mateo-Ramírez A., et al. 2018. Decapod crustaceans Eucalliacidae in chemoautotrophic bathyal bottoms of the Gulf of Cadiz (Atlantic Ocean), environmental characteristics and associated communities. J. Mar. Biol. Assoc. U.K. 99: 437-444. https://doi.org/10.1017/S0025315418000280 in a bibliographic compilation of marine decapod crustaceans from the Iberian Peninsula. A high decapod richness for the Alboran Sea was already reported by García Muñoz et al. (2008)García Muñoz J.E., Manjón Cabeza M.E., García Raso J.E. 2008. Decapod crustacean assemblages from littoral bottoms of the Alborán Sea (Spain, west Mediterranean Sea): spatial and temporal variability. Sci. Mar. 72: 437-449. https://doi.org/10.3989/scimar.2008.72n3437 in infralittoral sedimentary habitats, and this was related to a high diversity of bottom and habitat types and the confluence of Atlantic and Mediterranean waters and organisms. Abelló et al. (2002)Abelló P., Carbonell A., Torres P. 2002. Biogeography of epibenthic crustaceans on the shelf and upper slope off the Iberian Peninsula Mediterranean coasts: implications for the establishment of natural management areas. Sci. Mar. 66 (Suppl. 2): 183-198. https://doi.org/10.3989/scimar.2002.66s2183 highlighted that the exceptional and highly diverse decapod assemblages of the shelf and slope of the northern Alboran Sea, with a biogeographical boundary around Cabo de Palos, made this area very different from other western Mediterranean areas.

Comparing the geographical sectors of the study area, the highest number of species was detected in the northern Alboran Sea (86 spp.), whereas the lowest number was found at Alboran Island and in the Gulf of Vera (55 and 54 spp., respectively). It is important here to reiterate that no sampling could be carried out at depths shallower than 100 m around Alboran Island because it is a Marine and Fishing Reserve and bottom trawling is not allowed because of the occurrence of vulnerable marine ecosystems (Mateo-Ramírez et al. 2021Mateo-Ramírez, Á., Marina, P., Moreno, D., et al. 2021. Marine Protected Areas and Key Biodiversity Areas of the Alboran Sea and Adjacent Areas. Alboran Sea - Ecosyst. Mar. Resour. 819-923. https://doi.org/10.1007/978-3-030-65516-7_25 ). Species with Atlantic affinities, most of them with a low frequency of occurrence (F<0.73%) (such as P. henslowii, Ergasticus clouei, and Pagurus mbizi), were recorded in the northern Alboran Sea and/or Alboran Island sectors but not in the Gulf of Vera sector, in agreement with Abelló et al. (2002)Abelló P., Carbonell A., Torres P. 2002. Biogeography of epibenthic crustaceans on the shelf and upper slope off the Iberian Peninsula Mediterranean coasts: implications for the establishment of natural management areas. Sci. Mar. 66 (Suppl. 2): 183-198. https://doi.org/10.3989/scimar.2002.66s2183 . This could be due to the effect of the semi-permanent Almeria-Oran oceanographic front that acts as an effective barrier for gene flow and/or species dispersion for these species, as has also been detected for some other decapod species (García Raso et al. 2014García Raso J.E., Salmeron F., Baro J., et al. 2014. The tropical African hermit crab Pagurus mbizi (Crustacea, Decapoda, Paguridae) in the Western Mediterranean Sea: a new alien species or filling gaps in the knowledge of the distribution?. Meditter. Mar. Sci. 15:172-178 https://doi.org/10.12681/mms.530 , García Lafuente et al. 2021García Lafuente J., Sanchez-Garrido J.C., Garcia A., et al. 2021. Chapter 12: Biophysical Processes Determining the Connectivity of the Alboran Sea Fish Populations. In: Báez J.C., Vázquez JT., et al. (eds). Alboran Sea - Ecosystems and Marine Resources. Springer Nature Switzerland AG, pp. 459-487. https://doi.org/10.1007/978-3-030-65516-7_12 ). It is worth mentioning the occurrence of the subtropical Atlantic hermit crab P. mbizi (Forest 1955). It was initially reported in 2014 in the westernmost sector of the northern Alboran Sea (an exclusive occurrence in European waters and the Mediterranean Sea) by García Raso et al. (2014)García Raso J.E., Salmeron F., Baro J., et al. 2014. The tropical African hermit crab Pagurus mbizi (Crustacea, Decapoda, Paguridae) in the Western Mediterranean Sea: a new alien species or filling gaps in the knowledge of the distribution?. Meditter. Mar. Sci. 15:172-178 https://doi.org/10.12681/mms.530 in a depth range of 50 to 150 m. In the present study, specimens of P. mbizi were collected in the central and eastern parts of the northern Alboran Sea over a wider bathymetric range (50-361 m), showing a similar depth range to that recorded in Atlantic waters (30 -650 m) (Forest 1961Forest J. 1961. Pagurides de l’Afrique occidentale. Atlantide Report, 6: 203-250.). However, P. mbizi was absent in the Gulf of Vera, so its expansion is so far restricted to the Alboran Sea. On the other hand, the crab Scyramathia carpenteri (previously known as Rochinia carpenteri) was first recorded in the northern Alboran Sea sector (Abelló et al. 2002Abelló P., Carbonell A., Torres P. 2002. Biogeography of epibenthic crustaceans on the shelf and upper slope off the Iberian Peninsula Mediterranean coasts: implications for the establishment of natural management areas. Sci. Mar. 66 (Suppl. 2): 183-198. https://doi.org/10.3989/scimar.2002.66s2183 ), but the present study provides records for the Gulf of Vera sector, thus suggesting a possible expansion to other western Mediterranean areas. The presence and, in some cases, potential eastward expansion of typical Atlantic species (e.g. S. carpenteri) and African species (e.g. P. mbizi) through the Alboran Sea could be a result of climate change effects, favouring a northwards expansion of thermophilic Atlantic species along the Atlantic coasts and into the Mediterranean Sea (i.e. meridionalization) (García Raso et al. 2014García Raso J.E., Salmeron F., Baro J., et al. 2014. The tropical African hermit crab Pagurus mbizi (Crustacea, Decapoda, Paguridae) in the Western Mediterranean Sea: a new alien species or filling gaps in the knowledge of the distribution?. Meditter. Mar. Sci. 15:172-178 https://doi.org/10.12681/mms.530 , 2018García Raso J.E., Cuesta J.A., Abelló P., Macpherson E. 2018. Updating changes in the Iberian decapod crustacean fauna (excluding crabs) after 50 years. Sci. Mar. 82: 207-229. https://doi.org/10.3989/scimar.04831.04A ), once they manage to surpass the colder waters of the Alboran Sea.

Marine species distribution is generally related to dynamic environmental variables such as temperature and other variables such as food availability (Snelgrove and Butman 1994Snelgrove P.V., Butman C.A. 1994. Animal-sediment relationships revisited: Causes versus effect. Oceanogr.Mar. Biol. 32: 111-177., Cartes et al. 2004Cartes J.E., Maynou F., Moranta J., et al. 2004. Patterns of bathymetric distribution among deep-sea fauna at local spatial scale: comparison of mainland vs. insular areas. Prog. Oceanogr. 60: 29-45. https://doi.org/10.1016/j.pocean.2004.02.001 , Martins et al. 2014Martins R., Sampaio L., Quintino V., Rodrigues A.M. 2014. Diversity, distribution and ecology of benthic molluscan communities on the Portuguese continental shelf. J. Sea Res. 93: 75-89. https://doi.org/10.1016/j.seares.2013.11.006 ), but it is also related to structural properties such as depth and the substrate type of the seabed. As in previous studies (Cartes and Sardà 1993Cartes J.E., Sardà F. 1993. Zonation of deep-sea decapod fauna in the Catalan Sea (Western Mediterranean). Mar. Ecol. Prog. Ser. 94: 27-34. https://doi.org/10.3354/meps094027 , Follesa et al. 2009Follesa M.C., Porcu C., Gastoni A., et al. 2009. Community structure of bathyal decapod crustaceans off South-Eastern Sardinian deep-waters (Central-Western Mediterraenan). Mar. Ecol. 30: 188-199. https://doi.org/10.1111/j.1439-0485.2009.00323.x , Deval et al. 2017Deval M., Yilmaz S., Kapiris K. 2017. Spatio Temporal Variations in Decapod Crustacean Assemblages of Bathyal Ground in the Antalya Bay (Eastern Mediterranean). Turkish J. Fish. Aquat. Sci. 17: 967-979. https://doi.org/10.4194/1303-2712-v17_5_12 , among others), depth was the main structuring factor for decapod crustacean distribution in the present study, probably because of a combination of other depth-related factors such as light, temperature and food availability (Cartes et al. 2004Cartes J.E., Maynou F., Moranta J., et al. 2004. Patterns of bathymetric distribution among deep-sea fauna at local spatial scale: comparison of mainland vs. insular areas. Prog. Oceanogr. 60: 29-45. https://doi.org/10.1016/j.pocean.2004.02.001 ). In the present study, four decapod assemblages were detected in relation to depth, in agreement with previous studies on the northern Alboran Sea (Mateo-Ramírez et al. 2015Mateo-Ramírez Á., Farias C., Gallardo Roldán H., et al. 2015. Asociaciones de decápodos de fondos blandos circalitorales y batiales del mar de Alborán. In: Díaz del Rio V., Bárcenas P., et al. (eds), Volumen de Comunicaciones presentadas en el VII Simposio sobre el Margen Ibérico Atlántico. Sia Graf, Málaga, pp. 433-436.), adjacent Mediterranean areas (Abelló et al. 2002Abelló P., Carbonell A., Torres P. 2002. Biogeography of epibenthic crustaceans on the shelf and upper slope off the Iberian Peninsula Mediterranean coasts: implications for the establishment of natural management areas. Sci. Mar. 66 (Suppl. 2): 183-198. https://doi.org/10.3989/scimar.2002.66s2183 , García-Rodríguez et al. 2011García Rodríguez M., Abelló P., Fernández A., Esteban A. 2011. Demersal Assemblages on the Soft Bottoms off the Catalan-Levante Coast of the Spanish Mediterranean. J. Mar. Biol. 2011: 1-16. https://doi.org/10.1155/2011/976396 , Deval et al. 2017Deval M., Yilmaz S., Kapiris K. 2017. Spatio Temporal Variations in Decapod Crustacean Assemblages of Bathyal Ground in the Antalya Bay (Eastern Mediterranean). Turkish J. Fish. Aquat. Sci. 17: 967-979. https://doi.org/10.4194/1303-2712-v17_5_12 , among others) and adjacent Atlantic waters (López de la Rosa 1997López de la Rosa I. 1997. Crustáceos decápodos capturados durante las campañas del IEO ARSA 0393 y ARSA 1093 en el golfo de Cádiz: distribución batimétrica. Publ. Espec. Inst. Esp. Oceanogr. 23: 199-206., Muñoz et al. 2012Muñoz I., García-Isarch E., Sobrino I., et al. 2012. Distribution, abundance and assemblages of decapod crustaceans in waters off Guinea-Bissau (north-west Africa). J. Mar. Biolog. Assoc. U.K. 92: 475-494. https://doi.org/10.1017/S0025315411001895 , Castillo et al. 2014Castillo S., de Matos Pita S.S., Ramil F. 2014. Decapods assemblages in deep Mauritanian waters. Simposio Internacional de Ciéncias del Mar.). A similar segregation has also been detected for cephalopods (Quetglas et al. 2000Quetglas A., Carbonella A., Sánchez P. 2000. Demersal Continental Shelf and Upper Slope Cephalopod Assemblages from the Balearic Sea (North-Western Mediterranean). Biological Aspects of Some Deep-Sea Species. Estuar. Coast. Shelf Sci. 50: 739-749. https://doi.org/10.1006/ecss.1999.0603 , González and Sánchez 2002González M., Sánchez P. 2002. Cephalopod assemblages caught by trawling along the Iberian Peninsula Mediterranean coast. Sci. Mar. 66: 199-208. https://doi.org/10.3989/scimar.2002.66s2199 , Ciércoles et al. 2018Ciércoles C., García-Ruiz C., González M., et al. 2018. Molluscs collected with otter trawl in the northern Alboran Sea: main assemblages, spatial distribution and environmental linkage. Mediterr. Mar. Sci. 19: 209-222. https://doi.org/10.12681/mms.2124 ), fish (Gouraguine et al. 2011Gouraguine A., Hidalgo M., Moranta J., et al. 2011. Elasmobranch spatial segregation in the western Mediterranean. Sci. Mar. 75: 653-664. https://doi.org/10.3989/scimar.2011.75n4653 , García-Ruiz et al. 2015García-Ruiz C., Lloris D., Rueda J.L., et al. 2015. Spatial distribution of ichthyofauna in the northern Alboran Sea (western Mediterranean). J. Nat. Hist. 49: 1191-1224. https://doi.org/10.1080/00222933.2014.1001457 , Ramírez-Amaro et al. 2015Ramírez-Amaro S., Ordines F., Terrasa B., et al. 2015. Demersal chondrichthyans in the western Mediterranean: assemblages and biological parameters of their main species. Mar. Freshw. Res. 67: 636-652. https://doi.org/10.1071/MF15093 ) and megabenthic fauna (Abad et al. 2007Abad E., Preciado I., Serrano A., Baro J. 2007. Demersal and epibenthic assemblages of trawlable grounds in the northern Alboran Sea (western Mediterranean). Sci. Mar. 71: 513-524. https://doi.org/10.3989/scimar.2007.71n3513 ), highlighting the importance of depth as a structuring factor in marine communities of the Mediterranean Sea.

The continental shelf assemblages (IS and OS) showed a high level of overlap between each other because they shared the most dominant species, but the two slope assemblages (US and MS) displayed marked differences and different dominant species. These greater differences in the slope assemblages could be attributed to some hydrological differences between the two depth strata (Abelló et al. 1988Abelló P., Valladares F.J., Castellón A. 1988. Analysis of the structure of decapod crustacean assemblages off the Catalan coast (North-West Mediterranean). Mar. Biol. 98: 39-49. https://doi.org/10.1007/BF00392657 ). Although a thermally stable environment can be assumed below 200 m in the Mediterranean Sea (Hopkins 1985Hopkins T.S. 1985. Physics of the sea. In: Margalef R. (ed), Key environments: Western Mediterranean. Pergamon Press, pp. 100-125.), small changes in some environmental parameters (such as salinity) must be present at the species level, affecting their distribution and abundance, as shown in other studies (García-Rodríguez et al. 2011García Rodríguez M., Abelló P., Fernández A., Esteban A. 2011. Demersal Assemblages on the Soft Bottoms off the Catalan-Levante Coast of the Spanish Mediterranean. J. Mar. Biol. 2011: 1-16. https://doi.org/10.1155/2011/976396 , Keller et al. 2017Keller S., Hidalgo M., Álvarez-Berastegui D., et al. 2017. Demersal cephalopod communities in the Mediterranean: a large-scale analysis. Mar. Ecol. Prog. Ser. 584: 105-118. https://doi.org/10.3354/meps12342 , Quattrocchi et al. 2020Quattrocchi F., Fiorentino F., Valentina L., Garofalo G. 2020. The increasing temperature as driving force for spatial distribution patterns of Parapenaeus longirostris (Lucas 1846) in the Strait of Sicily (Central Mediterranean Sea). J. Sea Res. 158: 101871. https://doi.org/10.1016/j.seares.2020.101871 ). Additionally, the dominant decapod species in each detected assemblage were similar to those found in the same area with the same sampling gear (Abelló et al. 2002Abelló P., Carbonell A., Torres P. 2002. Biogeography of epibenthic crustaceans on the shelf and upper slope off the Iberian Peninsula Mediterranean coasts: implications for the establishment of natural management areas. Sci. Mar. 66 (Suppl. 2): 183-198. https://doi.org/10.3989/scimar.2002.66s2183 ). This similarity could be related to the stability of the demersal structures over time, as shown by other authors in the Mediterranean Sea (Gaertner et al. 2005Gaertner J.C., Bertrand J.A, Gil de Sola L., et al. 2005. Large spatial scale variation of demersal fish assemblage structure on the continental shelf of the NW Mediterranean Sea. Mar. Ecol. Prog. Ser. 297: 245-257. https://doi.org/10.3354/meps297245 ).

The decapod assemblages displayed geographical differences in composition and structure between the sectors of the study area. Although sampling effort was different between sectors, the annual repeat of the same sampling stations and the long temporal database reinforce the idea that the differences between these sectors are mainly driven by differences in the composition and structure of decapod assemblages between sectors. The main differences were due to the pandalid shrimp P. heterocarpus, which was dominant in the OS assemblage of the northern Alboran Sea and Gulf of Vera sectors, but not at Alboran Island. Also, P. heterocarpus was far less abundant in the Alboran Island sector, and seemed to have a deeper and more restricted bathymetric range (328 to 566 m depth). This may be related to the influence of the nutrient-rich coastal upwellings present along the northern Alboran Sea sector, which allow the species to reach shallower waters (Carbonell et al. 2003Carbonell A., Palmer M., Abelló P., et al. 2003. Mesoscale geographical patterns in the distribution of pandalid shrimps Plesionika spp. in the Western Mediterranean. Mar. Ecol. Prog. Ser. 247: 151-158. https://doi.org/10.3354/meps247151 ). In contrast, P. edwardsii was more abundant in the US assemblage of the Gulf of Vera than in the same assemblage of other sectors, in agreement with García-Rodríguez et al. (2000)García Rodríguez M., Esteban A., Pérez Gil J. L. 2000. Considerations on the biology of Plesionika edwardsi (Brandt, 1851) (Decapoda, Caridea, Pandalidae) from experimental trap catches in the Spanish western Mediterranean. Sea. Sci. Mar. 64: 369-379. https://doi.org/10.3989/scimar.2000.64n4369 . Finally, a higher abundance of A. antennatus was detected in the MS assemblages of the Alboran Island and Gulf of Vera, probably because of the greater presence of submarine canyons in both sectors, which are a preferred habitat for this species (Martínez-Baños 1997Martínez-Baños P. 1997. Dinámica de poblaciones de la gamba Aristeus antennatus (Crustacea, Decapoda) en las zonas de Murcia, Almería e Ibiza. Análisis global en el Mediterráneo Español. PhD thesis, Univ. Murcia, 291 pp.). In fact, the presence of populations of A. antennatus attracts a large deep-water trawling fishery to Alboran Island, the northeastern part of the Alboran Sea and the Gulf of Vera (Sardà et al. 2004Sardà F., Calafat A., Flexas M. M., et al. 2004. An introduction to Mediterranean deep-sea biology. Sci. Mar. 68: 7-38 https://doi.org/10.3989/scimar.2004.68s37 ; García-Rodríguez 2003García Rodríguez M. 2003. La gamba roja Aristeus antennatus (Risso, 1816) (Crustacea, Decapoda): distribución, demografía, crecimiento, reproducción y explotación en el Golfo de Alicante, Canal de Ibiza y Golfo de Vera. Ph.D. thesis, Univ. Complutense de Madrid, 298 pp., Fernandez-Arcaya et al. 2019Fernandez-Arcaya U., Bitetto I., Esteban A., et al. 2019. Large-scale distribution of a deep-sea megafauna community along Mediterranean trawlable grounds. Sci. Mar. 83S1: 175-187. https://doi.org/10.3989/scimar.04852.14A ).

Although no sampling could be carried out in the present study at depths shallower than 100 m around Alboran Island (owing to the presence of a marine reserve), when we compared the fauna from shallow depths around the island (<100 m depth) with those in other geographical sectors found in other studies based on beam-trawl samples (Gofas et al. 2014Gofas S., Goutayer J., Luque Á.A., et al. 2014. Espacio Marino de Alborán. Proyecto LIFE+ INDEMARES. Fundación Biodiversidad del Ministerio de Agricultura, Alimentación y Medio Ambiente, Madrid, 129 pp.), we observed that the hermit crab D. arrosor is the only dominant species shared by all three sectors. The rest of the dominants decapods in the shallow sedimentary habitats around the island, such as Scyllarus pygmaeus, the hermit crab Paguristes eremita and several species of crabs of the genus Pisa, were absent or displayed low abundances on the continental shelf of the northern Alboran Sea. These differences in the dominant species are probably due to the fact that the sedimentary habitats in the island are mainly composed of bioclastic and coarse sands and rhodoliths, which are less common on the continental shelf, where muddier bottoms generally occur (Gofas et al. 2014Gofas S., Goutayer J., Luque Á.A., et al. 2014. Espacio Marino de Alborán. Proyecto LIFE+ INDEMARES. Fundación Biodiversidad del Ministerio de Agricultura, Alimentación y Medio Ambiente, Madrid, 129 pp.).

In the present study, the composition of the decapod assemblages of the shallowest strata (shelf) of the Alboran Sea is similar to those of other parts of the Mediterranean Sea and adjacent Atlantic waters. Similar dominant species (but with a different percentage of contribution) were found for the shelf (IS, OS) and US assemblages of the Alboran Sean in comparison with other Mediterranean areas (Abelló et al. 1988Abelló P., Valladares F.J., Castellón A. 1988. Analysis of the structure of decapod crustacean assemblages off the Catalan coast (North-West Mediterranean). Mar. Biol. 98: 39-49. https://doi.org/10.1007/BF00392657 , 2002Abelló P., Carbonell A., Torres P. 2002. Biogeography of epibenthic crustaceans on the shelf and upper slope off the Iberian Peninsula Mediterranean coasts: implications for the establishment of natural management areas. Sci. Mar. 66 (Suppl. 2): 183-198. https://doi.org/10.3989/scimar.2002.66s2183 , García-Rodríguez et al. 2011García Rodríguez M., Abelló P., Fernández A., Esteban A. 2011. Demersal Assemblages on the Soft Bottoms off the Catalan-Levante Coast of the Spanish Mediterranean. J. Mar. Biol. 2011: 1-16. https://doi.org/10.1155/2011/976396 , Deval et al. 2017Deval M., Yilmaz S., Kapiris K. 2017. Spatio Temporal Variations in Decapod Crustacean Assemblages of Bathyal Ground in the Antalya Bay (Eastern Mediterranean). Turkish J. Fish. Aquat. Sci. 17: 967-979. https://doi.org/10.4194/1303-2712-v17_5_12 ). One exception was detected in those of the Italian margin of the Tyrrhenian sea, where D. arrosor was scarce or not recorded at all (Fanelli et al. 2007Fanelli E., Colloca F., Ardizzone G. 2007. Decapod crustacean assemblages off the West coast of central Italy (western Mediterranean). Sci. Mar. 71: 19-28. https://doi.org/10.3989/scimar.2007.71n119 ). Moreover, it is worth mentioning that P. longirostris showed a different bathymetric range between the Alboran Sea and the Tyrrhenian Sea, being more abundant in shallower waters characterizing the OS assemblages (<200 m) in the latter (Fanelli et al. 2007Fanelli E., Colloca F., Ardizzone G. 2007. Decapod crustacean assemblages off the West coast of central Italy (western Mediterranean). Sci. Mar. 71: 19-28. https://doi.org/10.3989/scimar.2007.71n119 ). Some authors have suggested that the main drivers of high abundances of P. longirostris are the increase in water temperature (Quattrocchi et al. 2020Quattrocchi F., Fiorentino F., Valentina L., Garofalo G. 2020. The increasing temperature as driving force for spatial distribution patterns of Parapenaeus longirostris (Lucas 1846) in the Strait of Sicily (Central Mediterranean Sea). J. Sea Res. 158: 101871. https://doi.org/10.1016/j.seares.2020.101871 ), the interaction between wind and current circulations (Ligas et al. 2011Ligas A., Sartor P., Colloca F. 2011. Trends in population dynamics and fishery of Parapenaeus longirostris and Nephrops norvegicus in the Tyrrhenian Sea (NW Mediterranean): the relative importance of fishery and environmental variables. Mar. Ecol. 32: 25-35. https://doi.org/10.1111/j.1439-0485.2011.00440.x ), high salinity (Benchoucha et al. 2008Benchoucha S., Berraho A., Bazari H., Katara I., et al. 2008. Salinity and temperature as factors controlling the spawning and catch of Parapenaeus longirostris along the Moroccan Atlantic Ocean. Hydrobiologia 612: 109-123. https://doi.org/10.1007/s10750-008-9485-y ) and high primary productivity (Colloca et al. 2004Colloca F., Carpentieri P., Balestri E., Ardizzone G.D. 2004. A critical habitat for Mediterranean fish resources: shelf-break areas with Leptometra phalangium (Echinodermata: Crinoidea). Mar, Biol. 145: 1129-1142. https://doi.org/10.1007/s00227-004-1405-8 ). Regarding the deepest assemblages, differences were detected between those of the northern Alboran Sea and others parts of the Mediterranean and adjacent Atlantic water. The dominant species in the deepest assemblage (MS) of the present study were mostly different from those of the central and eastern Mediterranean Sea, where A. antennatus, N. norvegicus, Aristaeomorpha foliacea and P. martia are dominant (Fanelli et al. 2007Fanelli E., Colloca F., Ardizzone G. 2007. Decapod crustacean assemblages off the West coast of central Italy (western Mediterranean). Sci. Mar. 71: 19-28. https://doi.org/10.3989/scimar.2007.71n119 , Deval et al. 2017Deval M., Yilmaz S., Kapiris K. 2017. Spatio Temporal Variations in Decapod Crustacean Assemblages of Bathyal Ground in the Antalya Bay (Eastern Mediterranean). Turkish J. Fish. Aquat. Sci. 17: 967-979. https://doi.org/10.4194/1303-2712-v17_5_12 , Fernandez-Arcaya et al. 2019Fernandez-Arcaya U., Bitetto I., Esteban A., et al. 2019. Large-scale distribution of a deep-sea megafauna community along Mediterranean trawlable grounds. Sci. Mar. 83S1: 175-187. https://doi.org/10.3989/scimar.04852.14A ). This fact contributes to the faunistic differentiation of the Alboran Sea, which is important for fisheries management. The rare presence of A. foliacea in the Alboran Sea, with only one individual captured in the present study, is noteworthy and similar to the observations made in the southern Alboran Sea, where just one record was observed some decades ago (Maurin 1962Maurin C. 1962. Etude des fonds chalutables de la Mediterranee occidentale (ecologie et peche) «Président-Théodore-Tissier» 1957 à 1960 et «Thalassa» 1960 et 1961. Rev. Trav.’Inst. Pêches Mari. (0035-2276) (ISTPM), 1962-06 26: 163-218.). The small populations of A. foliacea in the study area could be related to environmental drivers because its abundance declines with temperature and salinity rises, as detected in the western Mediterranean basin (Balearic Basin) (Cartes et al. 2011Cartes J. E., Maynou F., Abelló P., et al. 2011. Long-term changes in the abundance and deepening of the deep-sea shrimp Aristaeomorpha foliacea in the Balearic Basin: relationships with hydrographic changes at the Levantine Intermediate Water. J. Mar. Syst. 88: 516-525. https://doi.org/10.1016/j.jmarsys.2011.07.001 , 2014Cartes J. E., Fanelli E., Kapiris K., et al. 2014. Spatial variability in the trophic ecology and biology of the deep-sea shrimp Aristaeomorpha foliacea in the Mediterranean Sea. Deep-Sea Res. Part I: Oceanogr. Res. Pap. 87: 1-13. https://doi.org/10.1016/j.dsr.2014.01.006 ). The continental slope decapod assemblages of the northern Alboran Sea are also well differentiated from those in adjacent areas of the Atlantic Ocean. Only one decapod, S. membranacea, was shared with the slope assemblages of southern Spain (Gulf of Cádiz), which are dominated by N. norvegicus, Philocheras echinulatus, S. membranacea, Processa canaliculata and P. sivado (López de la Rosa 1997López de la Rosa I. 1997. Crustáceos decápodos capturados durante las campañas del IEO ARSA 0393 y ARSA 1093 en el golfo de Cádiz: distribución batimétrica. Publ. Espec. Inst. Esp. Oceanogr. 23: 199-206.). In the Atlantic waters of northwest Africa, the slope assemblages (200-500 m depth) displayed a lower contribution of P. longirostris and P. heterocarpus than those found in the present study (Muñoz et al. 2012Muñoz I., García-Isarch E., Sobrino I., et al. 2012. Distribution, abundance and assemblages of decapod crustaceans in waters off Guinea-Bissau (north-west Africa). J. Mar. Biolog. Assoc. U.K. 92: 475-494. https://doi.org/10.1017/S0025315411001895 ). Moreover, two dominant species, P. narval and D. arrosor, were shown to share the US assemblages and another two (P. martia and Polycheles typhlops) share the MS assemblage in the Canary Islands (González-Pajuelo et al. 2006González-Pajuelo J., González J.A., Lorenzo J.M., et al. 2006. Assemblages of the bathyal decapod crustaceans community in the Canary Islands. XIV Simposio Ibérico de Estudios de Biología Marina (SIEBM). Barcelona, 2 pp.).

Regarding ecological indices, GAM analyses showed clear depth trends for the four ecological indices: abundance, species richness, Shannon-Wiener diversity and Pielou’s evenness. Decapod abundance increased with depth, peaking around 200 m, which is related to the high abundance of some gregarious dominant species, such as P. heterocarpus. Species richness also increased with depth, peaking at 400 to 500 m, thus making the US assemblage a transition zone with the coexistence of characteristic species from adjacent shallow and deep assemblages, in agreement with the findings for other faunal groups in the northern Alboran Sea, such as molluscs (Ciércoles et al. 2018Ciércoles C., García-Ruiz C., González M., et al. 2018. Molluscs collected with otter trawl in the northern Alboran Sea: main assemblages, spatial distribution and environmental linkage. Mediterr. Mar. Sci. 19: 209-222. https://doi.org/10.12681/mms.2124 ). However, Shannon-Wiener diversity and Pielou’s evenness decreased with depth, with a minimum at 200 m, but increased afterwards. These results could be related to the fact that the OS assemblage was characterized by few, very abundant species, while the slope assemblages showed a higher number of species which were less dominant. Similar results were found by Mateo-Ramírez et al. (2015)Mateo-Ramírez Á., Farias C., Gallardo Roldán H., et al. 2015. Asociaciones de decápodos de fondos blandos circalitorales y batiales del mar de Alborán. In: Díaz del Rio V., Bárcenas P., et al. (eds), Volumen de Comunicaciones presentadas en el VII Simposio sobre el Margen Ibérico Atlántico. Sia Graf, Málaga, pp. 433-436. in the northern Alboran Sea, by Cartes and Sardà (1992)Cartes J.E., Sardà F. 1992. Abundance and diversity of decapods crustaceans in the deep-Catalan Sea (Western Mediterranean). J. Nat. Hist. 26: 1305-1323. https://doi.org/10.1080/00222939200770741 and Fanelli et al. (2007)Fanelli E., Colloca F., Ardizzone G. 2007. Decapod crustacean assemblages off the West coast of central Italy (western Mediterranean). Sci. Mar. 71: 19-28. https://doi.org/10.3989/scimar.2007.71n119 in the western and Central Mediterranean Sea, and by López de la Rosa (1997)López de la Rosa I. 1997. Crustáceos decápodos capturados durante las campañas del IEO ARSA 0393 y ARSA 1093 en el golfo de Cádiz: distribución batimétrica. Publ. Espec. Inst. Esp. Oceanogr. 23: 199-206. and Muñoz et al. (2012)Muñoz I., García-Isarch E., Sobrino I., et al. 2012. Distribution, abundance and assemblages of decapod crustaceans in waters off Guinea-Bissau (north-west Africa). J. Mar. Biolog. Assoc. U.K. 92: 475-494. https://doi.org/10.1017/S0025315411001895 in Atlantic waters. The increased environmental stability of the deep areas is likely to be a potential explanation for a high diversity (Sanders and Hessler 1969Sanders H. L., Hessler R. R. 1969. Ecology of the deep-sea benthos. Science 163:1419-1424. https://doi.org/10.1126/science.163.3874.1419 , Rex 1973Rex M.A. 1973. Deep-sea species diversity: decreased gasteropod diversity at abyssal depths. Science 181: 1051-1053. https://doi.org/10.1126/science.181.4104.1051 ), which may allow the development of a more mature and complex assemblage, as indicated by Abelló et al. (1988)Abelló P., Valladares F.J., Castellón A. 1988. Analysis of the structure of decapod crustacean assemblages off the Catalan coast (North-West Mediterranean). Mar. Biol. 98: 39-49. https://doi.org/10.1007/BF00392657 .

The four GAM models also revealed geographical effects (a combination of longitude and latitude), with a greater abundance, species richness and Shannon diversity index in the westernmost part of the Alboran Sea, probably related to the high productivity associated with the major nutrient-rich coastal upwellings in this area (Rubín et al. 1997Rubín J. P., Cano N., Rodríguez V., et al. 1997. Relaciones del ictioplancton con la hidrología, biomasa fitoplanctónica, oxígeno disuelto y nutrientes, en el mar de Alborán y estrecho de Gibraltar (julio de 1993). Publ. Espec. Inst. Esp. Oceanogr. 24: 75-84., Sarhan et al. 2000Sarhan T., García-Lafuente J., Vargas J.M., Plaza F. 2000. Upwelling mechanisms in the northwestern Alboran Sea. J. Mar. Syst. 23: 317-331. https://doi.org/10.1016/S0924-7963(99)00068-8 ), the nutrient-rich water transport through the strait of Gibraltar, and the cyclonic vorticity that accumulates nutrients and produces permanent fertilization in the westernmost part of the Alboran Sea (Skliris and Beckers 2009Skliris N., Beckers J.M. 2009: Modelling the Gibraltar Strait/Western Alboran Sea ecohydrodynamics. Ocean Dyn. 59: 489-508. https://doi.org/10.1007/s10236-009-0185-6 , Vargas-Yáñez et al. 2019Vargas-Yáñez M., García-Martínez M.C., Moya, F., et al. 2019. The present state of marine ecosystems in the Spanish Mediterranean in a climate change context. Grupo Mediterráneo de Cambio Climático. 185 pp.). Similarly, a high diversity was detected in the easternmost part, which is a transition area with the coexistence of Mediterranean and Atlantic species. Slight temporal patterns were found for abundance and species richness. However, the present study showed the absence of consistent temporal trends and the presence of annual oscillations of the decapod assemblages in the study area. Temporary changes in the abundance of benthic and demersal species could be the result of biological processes, such as recruitment, mortality and predation, in addition to variations in the fishing impact (increased or decreased fishing effort) in some commercial decapod species or even in commercial species feeding on decapods (Snelgrove and Butman 1994Snelgrove P.V., Butman C.A. 1994. Animal-sediment relationships revisited: Causes versus effect. Oceanogr.Mar. Biol. 32: 111-177., Ólafsson et al. 1994Ólafsson E. B., Peterson C. H., Ambrose Jr W. G. 1994. Does recruitment limitation structure populations and communities of macro-invertebrates in marine soft sediments: the relative significance of pre-and post-settlement processes. Oceanogr. Mar. Biol. Ann. Rev. 32:65-109.).

The results of the present study improve knowledge of the decapod assemblages inhabiting the trawlable bottoms of a specific part of the European margin and the western Mediterranean Sea. The study area corresponds to the geographical subareas GSA01 and GSA02 established by the General Fisheries Commission for the Mediterranean (GFCM) for fishing management. Faunistic studies are an essential tool in managing fisheries, especially because both fisheries management and conservation policies apply to an ecosystem-based approach (Pikitch et al. 2004Pikitch E.K., Santora C., Babcock E.A., et al. 2004. Ecosystem-Based Fishery Management. Science 305: 346-347. https://doi.org/10.1126/science.1098222 , Bellido et al. 2011Bellido J.M., Santos M.B., Grazia M., Valeiras X., Pierce J.G. 2011. Fishery discards and bycatch: solutions for an ecosystem approach to fisheries management? Hydrobiologia 670: 317-333. https://doi.org/10.1007/s10750-011-0721-5 ). Moreover, this study provides a baseline for characterizing specific components (decapod crustaceans in this case) of benthic and demersal communities on sedimentary habitats under the framework of the Marine Strategy Framework Directive (MSFD, 2008/56/EC). This is especially important in areas with a high marine diversity that are regarded as self-standing ecoregions, such as the Alboran Sea (Abelló et al. 2002Abelló P., Carbonell A., Torres P. 2002. Biogeography of epibenthic crustaceans on the shelf and upper slope off the Iberian Peninsula Mediterranean coasts: implications for the establishment of natural management areas. Sci. Mar. 66 (Suppl. 2): 183-198. https://doi.org/10.3989/scimar.2002.66s2183 , Spalding et al. 2007Spalding M., Fox H., Allen G., et al. 2007. Marine Ecoregions of the World: A Bioregionalization of Coastal and Shelf Areas. BioScience. 57: 573-583. https://doi.org/10.1641/B570707 , Coll et al. 2010Coll M., Piroddi C., Steenbeek J., et al. 2010. The Biodiversity of the Mediterranean Sea: Estimates, Patterns and Threats. PloS ONE 5:e11842. https://doi.org/10.1371/journal.pone.0011842 ).

ACKNOWLEDGEMENTS

 

The authors thank all the participants in the MEDITS surveys. MEDITS surveys, in the study area, are carried out in the framework of the DEMALBORAN project. This project has been funded by the Spanish Institute of Oceanography and the EU through the European Maritime and Fisheries Fund (EMFF) within the National Programme of collection, management and use of data in the fisheries sector and support for scientific advice regarding the Common Fisheries Policy. We also thank Timothy Dobinson for his revision of the English grammar of the present study. PA acknowledges partial support from the Severo Ochoa Centre of Excellence accreditation (CEX2019-000928-S) to the Institut de Ciències del Mar (ICM-CSIC) and the project CLIFISH CTM2015-66-400-C3-3-R, MINECO/FEDER. JLRR acknowledges partial support from the 18-ESMARES2-CIRCA project of the Instituto Español de Oceanografía (IEO-CSIC), under the framework of the tasks comissioned to the IEO by the Ministerio de Transición Ecológica y Reto Demográfico (MITERD) of the Spanish government for the application of the Marine Strategy Framework Directive (MSFD) in Spanish waters.

REFERENCES

 

Abad E., Preciado I., Serrano A., Baro J. 2007. Demersal and epibenthic assemblages of trawlable grounds in the northern Alboran Sea (western Mediterranean). Sci. Mar. 71: 513-524. https://doi.org/10.3989/scimar.2007.71n3513

Abelló P., Valladares F.J., Castellón A. 1988. Analysis of the structure of decapod crustacean assemblages off the Catalan coast (North-West Mediterranean). Mar. Biol. 98: 39-49. https://doi.org/10.1007/BF00392657

Abelló P., Carbonell A., Torres P. 2002. Biogeography of epibenthic crustaceans on the shelf and upper slope off the Iberian Peninsula Mediterranean coasts: implications for the establishment of natural management areas. Sci. Mar. 66 (Suppl. 2): 183-198. https://doi.org/10.3989/scimar.2002.66s2183

Anderson M.J., Gorley R.N., Clarke K.R. 2008. PERMANOVA + for PRIMER: Guide to Software and Statistical Methods. PRIMER-E: Plymouth, U.K.

Báez J.C., Vázquez J.T., Camiñas J.A., Idrissi M.M (eds). 2021. Alboran Sea -Ecosystems and Marine Resources. Springer Nature Switzerland AG, 956 pp. https://doi.org/10.1007/978-3-030-65516-7

Bellido J.M., Santos M.B., Grazia M., Valeiras X., Pierce J.G. 2011. Fishery discards and bycatch: solutions for an ecosystem approach to fisheries management? Hydrobiologia 670: 317-333. https://doi.org/10.1007/s10750-011-0721-5

Benchoucha S., Berraho A., Bazari H., Katara I., et al. 2008. Salinity and temperature as factors controlling the spawning and catch of Parapenaeus longirostris along the Moroccan Atlantic Ocean. Hydrobiologia 612: 109-123. https://doi.org/10.1007/s10750-008-9485-y

Bertrand J.A., Gil de Sola L., Papaconstantinou C., et al. 2002. The general specifications of the MEDITS surveys. Sci. Mar. 66(Suppl. 2): 9-17. https://doi.org/10.3989/scimar.2002.66s29

Carbonell A., Palmer M., Abelló P., et al. 2003. Mesoscale geographical patterns in the distribution of pandalid shrimps Plesionika spp. in the Western Mediterranean. Mar. Ecol. Prog. Ser. 247: 151-158. https://doi.org/10.3354/meps247151

Cartes J.E. 1998. Feeding strategies and partition of food resources in Deep-Water Decapod Crustacean (400-2300 m). J. Mar. Biol. Ass. U.K. 78: 509-524. https://doi.org/10.1017/S002531540004159X

Cartes J.E., Sardà F. 1992. Abundance and diversity of decapods crustaceans in the deep-Catalan Sea (Western Mediterranean). J. Nat. Hist. 26: 1305-1323. https://doi.org/10.1080/00222939200770741

Cartes J.E., Sardà F. 1993. Zonation of deep-sea decapod fauna in the Catalan Sea (Western Mediterranean). Mar. Ecol. Prog. Ser. 94: 27-34. https://doi.org/10.3354/meps094027

Cartes J.E., Maynou F., Moranta J., et al. 2004. Patterns of bathymetric distribution among deep-sea fauna at local spatial scale: comparison of mainland vs. insular areas. Prog. Oceanogr. 60: 29-45. https://doi.org/10.1016/j.pocean.2004.02.001

Cartes J. E., Maynou F., Abelló P., et al. 2011. Long-term changes in the abundance and deepening of the deep-sea shrimp Aristaeomorpha foliacea in the Balearic Basin: relationships with hydrographic changes at the Levantine Intermediate Water. J. Mar. Syst. 88: 516-525. https://doi.org/10.1016/j.jmarsys.2011.07.001

Cartes J. E., Fanelli E., Kapiris K., et al. 2014. Spatial variability in the trophic ecology and biology of the deep-sea shrimp Aristaeomorpha foliacea in the Mediterranean Sea. Deep-Sea Res. Part I: Oceanogr. Res. Pap. 87: 1-13. https://doi.org/10.1016/j.dsr.2014.01.006

Castillo S., de Matos Pita S.S., Ramil F. 2014. Decapods assemblages in deep Mauritanian waters. Simposio Internacional de Ciéncias del Mar.

Ciércoles C., García-Ruiz C., González M., et al. 2018. Molluscs collected with otter trawl in the northern Alboran Sea: main assemblages, spatial distribution and environmental linkage. Mediterr. Mar. Sci. 19: 209-222. https://doi.org/10.12681/mms.2124

Clarke K.R. 1993. Non-parametric multivariate analyses of changes in community structure. Austral. Ecol. 18: 117-143. https://doi.org/10.1111/j.1442-9993.1993.tb00438.x

Clarke K.R., Warwick R.M. 2001. Change in Marine Communities: An Approach to Statistical Analysis and Interpretation. 2nd Edition. Plymouth Marine Laboratory, Bournemouth, 164 pp.

Coll M., Piroddi C., Steenbeek J., et al. 2010. The Biodiversity of the Mediterranean Sea: Estimates, Patterns and Threats. PloS ONE 5:e11842. https://doi.org/10.1371/journal.pone.0011842

Colloca F., Carpentieri P., Balestri E., Ardizzone G.D. 2004. A critical habitat for Mediterranean fish resources: shelf-break areas with Leptometra phalangium (Echinodermata: Crinoidea). Mar, Biol. 145: 1129-1142. https://doi.org/10.1007/s00227-004-1405-8

Deval M., Yilmaz S., Kapiris K. 2017. Spatio Temporal Variations in Decapod Crustacean Assemblages of Bathyal Ground in the Antalya Bay (Eastern Mediterranean). Turkish J. Fish. Aquat. Sci. 17: 967-979. https://doi.org/10.4194/1303-2712-v17_5_12

Ercilla G., Alonso B., Baraza J. 1992. Sedimentary evolution of the northwestern Alboran Sea during the Quaternary. Geo-Mar. Let. 12: 144-149. https://doi.org/10.1007/BF02084925

Ercilla G., Vázquez J.T., Alonso B., et al. 2021. Chapter 6: Seafloor Morphology and Processes in the Alboran Sea. In: Báez J.C., Vázquez J.T., et al. (eds), Alboran Sea - Ecosystems and Marine Resources. Springer Nature Switzerland AG, pp. 157-205. https://doi.org/10.1007/978-3-030-65516-7_6

Fanelli E., Colloca F., Ardizzone G. 2007. Decapod crustacean assemblages off the West coast of central Italy (western Mediterranean). Sci. Mar. 71: 19-28. https://doi.org/10.3989/scimar.2007.71n119

Fernandez-Arcaya U., Bitetto I., Esteban A., et al. 2019. Large-scale distribution of a deep-sea megafauna community along Mediterranean trawlable grounds. Sci. Mar. 83S1: 175-187. https://doi.org/10.3989/scimar.04852.14A

Fiorentini L., Dremière P.Y., Leonori I., et al. 1999. Efficiency of the bottom trawl used for the Mediterranean international trawl survey (MEDITS). Aquat. Living Resour. 12: 187-205. https://doi.org/10.1016/S0990-7440(00)88470-3

Follesa M.C., Porcu C., Gastoni A., et al. 2009. Community structure of bathyal decapod crustaceans off South-Eastern Sardinian deep-waters (Central-Western Mediterraenan). Mar. Ecol. 30: 188-199. https://doi.org/10.1111/j.1439-0485.2009.00323.x

Forest J. 1961. Pagurides de l’Afrique occidentale. Atlantide Report, 6: 203-250.

Gaertner J.C., Bertrand J.A, Gil de Sola L., et al. 2005. Large spatial scale variation of demersal fish assemblage structure on the continental shelf of the NW Mediterranean Sea. Mar. Ecol. Prog. Ser. 297: 245-257. https://doi.org/10.3354/meps297245

García Lafuente J., Sanchez-Garrido J.C., Garcia A., et al. 2021. Chapter 12: Biophysical Processes Determining the Connectivity of the Alboran Sea Fish Populations. In: Báez J.C., Vázquez JT., et al. (eds). Alboran Sea - Ecosystems and Marine Resources. Springer Nature Switzerland AG, pp. 459-487. https://doi.org/10.1007/978-3-030-65516-7_12

García Muñoz J.E., Manjón Cabeza M.E., García Raso J.E. 2008. Decapod crustacean assemblages from littoral bottoms of the Alborán Sea (Spain, west Mediterranean Sea): spatial and temporal variability. Sci. Mar. 72: 437-449. https://doi.org/10.3989/scimar.2008.72n3437

García Raso J.E. 1990. Study of a Crustacea Decapoda Taxocoenosis of Posidonia beds from the Southeast of Spain. Marine Ecology, PSZN 11: 309-326. https://doi.org/10.1111/j.1439-0485.1990.tb00386.x

García Raso J.E., Martín M.J., Díaz V., et al. 2006. Diel and seasonal changes in the structure of a Decapod (Crustacea: Decapoda) community of Cymodocea nodosa from Southeastern Spain (West Mediterranean Sea). Hydrobiologia 557: 59-68. https://doi.org/10.1007/1-4020-4756-8_8

García Raso J.E., Salmeron F., Baro J., et al. 2014. The tropical African hermit crab Pagurus mbizi (Crustacea, Decapoda, Paguridae) in the Western Mediterranean Sea: a new alien species or filling gaps in the knowledge of the distribution?. Meditter. Mar. Sci. 15:172-178 https://doi.org/10.12681/mms.530

García Raso J.E., Cuesta J.A., Abelló P., Macpherson E. 2018. Updating changes in the Iberian decapod crustacean fauna (excluding crabs) after 50 years. Sci. Mar. 82: 207-229. https://doi.org/10.3989/scimar.04831.04A

García Raso J.E., García Muñoz J.E., Mateo-Ramírez A., et al. 2018. Decapod crustaceans Eucalliacidae in chemoautotrophic bathyal bottoms of the Gulf of Cadiz (Atlantic Ocean), environmental characteristics and associated communities. J. Mar. Biol. Assoc. U.K. 99: 437-444. https://doi.org/10.1017/S0025315418000280

García Rodríguez M. 2003. La gamba roja Aristeus antennatus (Risso, 1816) (Crustacea, Decapoda): distribución, demografía, crecimiento, reproducción y explotación en el Golfo de Alicante, Canal de Ibiza y Golfo de Vera. Ph.D. thesis, Univ. Complutense de Madrid, 298 pp.

García Rodríguez M., Esteban A., Pérez Gil J. L. 2000. Considerations on the biology of Plesionika edwardsi (Brandt, 1851) (Decapoda, Caridea, Pandalidae) from experimental trap catches in the Spanish western Mediterranean. Sea. Sci. Mar. 64: 369-379. https://doi.org/10.3989/scimar.2000.64n4369

García Rodríguez M., Abelló P., Fernández A., Esteban A. 2011. Demersal Assemblages on the Soft Bottoms off the Catalan-Levante Coast of the Spanish Mediterranean. J. Mar. Biol. 2011: 1-16. https://doi.org/10.1155/2011/976396

García-Ruiz C., Lloris D., Rueda J.L., et al. 2015. Spatial distribution of ichthyofauna in the northern Alboran Sea (western Mediterranean). J. Nat. Hist. 49: 1191-1224. https://doi.org/10.1080/00222933.2014.1001457

Gofas S., Moreno D., Salas C. 2011. Moluscos marinos de Andalucía. Volúmenes I y II. Servicio de Publicaciones e Intercambio Científico, Universidad de Málaga, Málaga, 798 pp.

Gofas S., Goutayer J., Luque Á.A., et al. 2014. Espacio Marino de Alborán. Proyecto LIFE+ INDEMARES. Fundación Biodiversidad del Ministerio de Agricultura, Alimentación y Medio Ambiente, Madrid, 129 pp.

González M., Sánchez P. 2002. Cephalopod assemblages caught by trawling along the Iberian Peninsula Mediterranean coast. Sci. Mar. 66: 199-208. https://doi.org/10.3989/scimar.2002.66s2199

González M., García-Ruiz C., García J., et al. 2021. Chapter: 18: Demersal Resources. In: Báez J.C., Vázquez J.T., et al. (eds), Alboran Sea - Ecosystems and Marine Resources. Springer Nature Switzerland AG, pp. 589-628. https://doi.org/10.1007/978-3-030-65516-7_18

González-Pajuelo J., González J.A., Lorenzo J.M., et al. 2006. Assemblages of the bathyal decapod crustaceans community in the Canary Islands. XIV Simposio Ibérico de Estudios de Biología Marina (SIEBM). Barcelona, 2 pp.

Gouraguine A., Hidalgo M., Moranta J., et al. 2011. Elasmobranch spatial segregation in the western Mediterranean. Sci. Mar. 75: 653-664. https://doi.org/10.3989/scimar.2011.75n4653

Guijarro B. 2012. Population dynamics and assessment of exploited deep water decapods off Balearic Islands (western Mediterranean): from single to multi-species approach. Ph. D. thesis, Balearic Islands Univ. Balearic Islands, 257 pp. https://doi.org/10.1007/s10750-011-0670-z

Guijarro B., Bitetto I., D’Onghia G., et al. 2019. Spatial and temporal patterns in the Mediterranean populations of Aristaeomorpha foliacea and Aristeus antennatus (Crustacea: Decapoda: Aristeidae) based on the MEDITS surveys. Sci. Mar. 83: 57-70. https://doi.org/10.3989/scimar.05012.04A

Hastie T.J., Tibshirani R.J. 1990: Generalized Additive Models. Chapman and Hall, London, 335 pp. https://doi.org/10.1002/sim.4780110717

Hopkins T.S. 1985. Physics of the sea. In: Margalef R. (ed), Key environments: Western Mediterranean. Pergamon Press, pp. 100-125.

Keller S., Hidalgo M., Álvarez-Berastegui D., et al. 2017. Demersal cephalopod communities in the Mediterranean: a large-scale analysis. Mar. Ecol. Prog. Ser. 584: 105-118. https://doi.org/10.3354/meps12342

Kruskal W.H., Wallis W.A. 1952. Use of ranks in one-criterion variance analysis. J. Am. Stat. Assoc. 47: 583-621. https://doi.org/10.2307/2280779

Ligas A., Sartor P., Colloca F. 2011. Trends in population dynamics and fishery of Parapenaeus longirostris and Nephrops norvegicus in the Tyrrhenian Sea (NW Mediterranean): the relative importance of fishery and environmental variables. Mar. Ecol. 32: 25-35. https://doi.org/10.1111/j.1439-0485.2011.00440.x

López de la Rosa I. 1997. Crustáceos decápodos capturados durante las campañas del IEO ARSA 0393 y ARSA 1093 en el golfo de Cádiz: distribución batimétrica. Publ. Espec. Inst. Esp. Oceanogr. 23: 199-206.

Marco-Herrero E., Abelló P., Drake P., et al. 2015. Annotated checklist of brachyuran crabs (Crustacea, Decapoda) of the Iberian Peninsula (SW Europe). Sci. Mar. 79: 243-256. https://doi.org/10.3989/scimar.04161.27A

Martin J.W., Davis G.E. 2001. An updated classification of the Recent Crustacea. Natural History Museum of Los Angeles County, Los Angeles, 124 pp.

Martínez-Baños P. 1997. Dinámica de poblaciones de la gamba Aristeus antennatus (Crustacea, Decapoda) en las zonas de Murcia, Almería e Ibiza. Análisis global en el Mediterráneo Español. PhD thesis, Univ. Murcia, 291 pp.

Martins R., Sampaio L., Quintino V., Rodrigues A.M. 2014. Diversity, distribution and ecology of benthic molluscan communities on the Portuguese continental shelf. J. Sea Res. 93: 75-89. https://doi.org/10.1016/j.seares.2013.11.006

Mateo-Ramírez Á., Farias C., Gallardo Roldán H., et al. 2015. Asociaciones de decápodos de fondos blandos circalitorales y batiales del mar de Alborán. In: Díaz del Rio V., Bárcenas P., et al. (eds), Volumen de Comunicaciones presentadas en el VII Simposio sobre el Margen Ibérico Atlántico. Sia Graf, Málaga, pp. 433-436.

Mateo-Ramírez Á., Urra J., Marina Ureña P., et al. 2016. Crustacean decapod assemblages associated with fragmented Posidonia oceanica meadows in the Alboran Sea (Western Mediterranean Sea): composition, temporal dynamics and influence of meadow structure. Mar. Ecol. 37: 344-358. https://doi.org/10.1111/maec.12284

Mateo-Ramírez Á., Urra J., Rueda J.L., et al. 2018. Decapod assemblages associated with shallow macroalgal communities in the northwestern Alboran Sea: Microhabitat use and temporal variability. J. Sea Res. 135: 84-94. https://doi.org/10.1016/j.seares.2018.02.009

Mateo-Ramírez, Á., Marina, P., Moreno, D., et al. 2021. Marine Protected Areas and Key Biodiversity Areas of the Alboran Sea and Adjacent Areas. Alboran Sea - Ecosyst. Mar. Resour. 819-923. https://doi.org/10.1007/978-3-030-65516-7_25

Maurin C. 1962. Etude des fonds chalutables de la Mediterranee occidentale (ecologie et peche) «Président-Théodore-Tissier» 1957 à 1960 et «Thalassa» 1960 et 1961. Rev. Trav.’Inst. Pêches Mari. (0035-2276) (ISTPM), 1962-06 26: 163-218.

Maynou F., Cartes E.J. 2000. Community structure of bathyal decapods crustaceans off south-west Balearic Islands (western Mediterranean): seasonality and regional patterns in zonation. J. Mar. Biol. Ass. U.K. 80: 789-798. https://doi.org/10.1017/S0025315400002769

McArdle B., Anderson M. 2001. Fitting multivariate models to community data: a comment on distance-based redundancy analysis. Ecology 82: 290-297. https://doi.org/10.1890/0012-9658(2001)082[0290:FMMTCD]2.0.CO;2

MEDITS-Handbook. Version no. 9. 2017. MEDITS Working Group, pp. 106. https://www.sibm.it/MEDITS%202011/principalemedits.htm

Millot C. 1999. Circulation in the Western Mediterranean Sea. J. Mar. Syst. 20: 423-442. https://doi.org/10.1016/S0924-7963(98)00078-5

Muñoz I., García-Isarch E., Sobrino I., et al. 2012. Distribution, abundance and assemblages of decapod crustaceans in waters off Guinea-Bissau (north-west Africa). J. Mar. Biolog. Assoc. U.K. 92: 475-494. https://doi.org/10.1017/S0025315411001895

Ólafsson E. B., Peterson C. H., Ambrose Jr W. G. 1994. Does recruitment limitation structure populations and communities of macro-invertebrates in marine soft sediments: the relative significance of pre-and post-settlement processes. Oceanogr. Mar. Biol. Ann. Rev. 32:65-109.

Parrilla G., Kinder T. 1987. The Physical Oceanography of the Alboran Sea. NORDA Report 184, 26 pp.

Parrilla G., Kinder T., Preller R. 1986. Deep and Intermediate Mediterranean Water in the western Alboran Sea. Deep Sea Res. Part A. Ocenographic Research Papers 33: 55-88. https://doi.org/10.1016/0198-0149(86)90108-1

Pascual M., Palero F., García-Merchán VH., et al. 2016. Temporal and spatial genetic differentiation in the crab Liocarcinus depurator across the Atlantic-Mediterranean transition. Sci. Rep. 6: 29892: 1-10. https://doi.org/10.1038/srep29892

Pikitch E.K., Santora C., Babcock E.A., et al. 2004. Ecosystem-Based Fishery Management. Science 305: 346-347. https://doi.org/10.1126/science.1098222

Quattrocchi F., Fiorentino F., Valentina L., Garofalo G. 2020. The increasing temperature as driving force for spatial distribution patterns of Parapenaeus longirostris (Lucas 1846) in the Strait of Sicily (Central Mediterranean Sea). J. Sea Res. 158: 101871. https://doi.org/10.1016/j.seares.2020.101871

Quetglas A., Carbonella A., Sánchez P. 2000. Demersal Continental Shelf and Upper Slope Cephalopod Assemblages from the Balearic Sea (North-Western Mediterranean). Biological Aspects of Some Deep-Sea Species. Estuar. Coast. Shelf Sci. 50: 739-749. https://doi.org/10.1006/ecss.1999.0603

Ramírez-Amaro S., Ordines F., Terrasa B., et al. 2015. Demersal chondrichthyans in the western Mediterranean: assemblages and biological parameters of their main species. Mar. Freshw. Res. 67: 636-652. https://doi.org/10.1071/MF15093

Real R., Gofas S., Altamarino M., et al. 2021. Chapter 11: Biogeographical and Macroecological context of the Alboran Sea. In: Báez J.C., Vázquez J.T., Camiñas J.A., Malouli M. (eds), Alboran Sea - Ecosystems and Marine Resources. Springer Nature Switzerland AG, pp. 431-457. https://doi.org/10.1007/978-3-030-65516-7_11

Rex M.A. 1973. Deep-sea species diversity: decreased gasteropod diversity at abyssal depths. Science 181: 1051-1053. https://doi.org/10.1126/science.181.4104.1051

Rey J., Medialdea T. 1989. Los sedimentos cuaternarios superficiales del Margen Continental Español. Publicaciones especiales Instituto Español de Oceanografía. 3, Madrid, 36 pp.

Rubín J. P., Cano N., Rodríguez V., et al. 1997. Relaciones del ictioplancton con la hidrología, biomasa fitoplanctónica, oxígeno disuelto y nutrientes, en el mar de Alborán y estrecho de Gibraltar (julio de 1993). Publ. Espec. Inst. Esp. Oceanogr. 24: 75-84.

Rueda J.L., Gofas S., Aguilar R., et al. 2021. Chapter 9: Benthic fauna of littoral and deep-sea habitats of the Alboran Sea: A hotspot of biodiversity. In: Báez J.C., Vázquez J.T., et al. (eds), Alboran Sea - Ecosystems and Marine Resources. Springer Nature Switzerland AG, pp. 285-358. https://doi.org/10.1007/978-3-030-65516-7_9

Sanders H. L., Hessler R. R. 1969. Ecology of the deep-sea benthos. Science 163:1419-1424. https://doi.org/10.1126/science.163.3874.1419

Sardà F., Calafat A., Flexas M. M., et al. 2004. An introduction to Mediterranean deep-sea biology. Sci. Mar. 68: 7-38 https://doi.org/10.3989/scimar.2004.68s37

Sarhan T., García-Lafuente J., Vargas J.M., Plaza F. 2000. Upwelling mechanisms in the northwestern Alboran Sea. J. Mar. Syst. 23: 317-331. https://doi.org/10.1016/S0924-7963(99)00068-8

Skliris N., Beckers J.M. 2009: Modelling the Gibraltar Strait/Western Alboran Sea ecohydrodynamics. Ocean Dyn. 59: 489-508. https://doi.org/10.1007/s10236-009-0185-6

Snelgrove P.V., Butman C.A. 1994. Animal-sediment relationships revisited: Causes versus effect. Oceanogr.Mar. Biol. 32: 111-177.

Spalding M., Fox H., Allen G., et al. 2007. Marine Ecoregions of the World: A Bioregionalization of Coastal and Shelf Areas. BioScience. 57: 573-583. https://doi.org/10.1641/B570707

Spedicato M.T., Massutí E., Bastien M., et al. 2019. The MEDITS trawl survey specifications in an ecosystem approach to fishery management. In: Mediterranean demersal resources and ecosystems: 25 years of MEDITS trawl surveys. Spedicato M.T., Tserpes G., Mérigot B., Massutí E. (eds). Sci. Mar. 83S1: 9-20. https://doi.org/10.3989/scimar.04915.11X

Templado J., Luque A.A., Moreno D., et al. 2021. Chapter 10: Invertebrates: The realm of diversity. In: Báez J.C., Vázquez J.T., Camiñas J.A., Malouli M. (eds), Alboran Sea - Ecosystems and Marine Resources. Springer Nature Switzerland AG, pp. 359-430. https://doi.org/10.1007/978-3-030-65516-7_10

Tintoré J., La Violette P.E., Blade I., Cruzado A. 1988. A study of an Intense Density Front in the Eastern Alboran Sea: The Almeria-Oran Front. J. Phys. Oceanogr. 18: 1384-1397. https://doi.org/10.1175/1520-0485(1988)018<1384:ASOAID>2.0.CO;2

Tintoré J., Gomis D., Alonso S. 1991. Mesoscale Dynamics and Vertical Motion in the Alborán Sea. J. Phys. Oceanogr. 21: 811-823. https://doi.org/10.1175/1520-0485(1991)021<0811:MDAVMI>2.0.CO;2

Vargas-Yáñez M., García-Martínez M.C., Moya F., et al. 2010. Cambio climático en el Mediterráneo español. Instituto Español de Oceanografía, Ministerio de Ciencia e Innovación, Madrid, 176 pp.

Vargas-Yáñez M., García-Martínez M.C., Moya F., et al. 2017. Updating temperature and salinity mean values and trend in the Western Mediterranean: The RADMED Project. Prog. Oceanogr. 157: 27-46. https://doi.org/10.1016/j.pocean.2017.09.004

Vargas-Yáñez M., García-Martínez M.C., Moya, F., et al. 2019. The present state of marine ecosystems in the Spanish Mediterranean in a climate change context. Grupo Mediterráneo de Cambio Climático. 185 pp.

Vargas-Yáñez M., García-Martínez M.C., Moya F., et al. 2021. Chapter 4: The Oceanographic and Climatic Context. In: Báez J.C., Vázquez J.T., et al. eds), Alboran Sea - Ecosystems and Marine Resources. Springer Nature Switzerland AG, pp. 85-109. https://doi.org/10.1007/978-3-030-65516-7_4

Vázquez J.T. 2005. El margen continental del Mar de Alborán. In: Martín-Serrano A. (ed.), Mapa Geomorfológico de España y del margen continental. Instituto Geológico y Minero de España, pp. 191-198.

Wenner E. L., Boesch D. F. 1979. Distribution patterns of epibenthic decapod Crustacea along the shelf-slope coenocline, middle Atlantic Bight, U.S.A. Bull. Biol. Soc. Wash. 3: 106-133. https://doi.org/10.1175/1520-0485(1991)021<0811:MDAVMI>2.0.CO;2

Wood S. 2017. Generalized Additive Models: An Introduction with R. Chapman and Hall, London, 496 pp. https://doi.org/10.1201/9781315370279

WoRMS Editorial Board, 2017. World Register of Marine Species. http://www.marinespecies.org (Accessed 17 February 2021).

APPENDICES

 
Appendix 1. - Best-fit general additive models (GAMs) obtained for each ecological index analysed: abundance (N) (log-transformed); species richness (S); Shannon-Wiener diversity index (H’) and Pielou’s evenness index (J’) and results of each GAM model test. s, smoothing functions; Std. Error, Standard error; edf, degrees of freedom; Ref.df, reference degrees of freedom used in computing test statistic and the p-values; F, F-test values. Signif. codes: ***, p< 0; **, p<0.001; *, p< 0.01.
Abundance (LOGPONN)
(LOGPONN) ~ factor(Year) + s(Depth) + s(Longitude, Latitude)
Parametric coefficients Estimate Std. Error
(Intercept) 8.723 0.186
factor(Year)2013 -1.048 0.25
factor(Year)2014 -0.434 0.238
factor(Year)2015 -0.86 0.234
factor(Year)2016 -0.905 0.232
factor(Year)2017 -1.097 0.231
factor(Year)2018 -0.007 0.235
Smooth terms edf Ref.df F p-value
s(Depth) 5.402 6.448 17.92 <2e-16***
s(Longitude,Latitude) 23.382 26.919 3.84 1.32e-09***
R-sq.(adj)=0.412 Deviance explained= 46.2%
Species richness (S)
(S) ~ factor(Year) + s(Depth) + s(Longitude, Latitude)
Parametric coefficients Estimate Std. Error
(Intercept) 13.716 0.489
factor(Year)2013 -4.076 0.657
factor(Year)2014 -2.369 0.626
factor(Year)2015 -4.759 0.614
factor(Year)2016 -4.369 0.609
factor(Year)2017 -4.333 0.608
factor(Year)2018 -1.549 0.617
Smooth terms edf Ref.df F p-value
s(Depth) 5.76 6.821 44.246 <2e-16***
s(Longitude,Latitude) 18.5 22.935 2.345 0.000637***
R-sq.(adj)=0.618 Deviance explained= 64.6%
Shannon-Wiener diversity index (H)
(H) ~ factor(Year) + s(Depth) + s(Longitude, Latitude)
Parametric coefficients Estimate Std. Error    
(Intercept) 1.293 0.065
factor(Year)2013 -0.058 0.087
factor(Year)2014 -0.087 0.083
factor(Year)2015 -0.272 0.082
factor(Year)2016 -0.154 0.081
factor(Year)2017 -0.187 0.081
factor(Year)2018 0.097 0.082
Smooth terms edf Ref.df F p-value
s(Depth) 8.012 8.697 18.261 <2e-16***
s(Longitude,Latitude) 19.929 24.272 1.875 0.00752**
  R-sq.(adj)=0.45 Deviance explained= 49.6%
Pielou’s evenness index (J)
(J) ~ factor(Year) + s(Depth) + s(Longitude, Latitude)
Parametric coefficients Estimate Std. Error    
(Intercept) 0.498 0.03
factor(Year)2013 0.083 0.04
factor(Year)2014 0.015 0.038
factor(Year)2015 0.008 0.038
factor(Year)2016 0.035 0.037
factor(Year)2017 0.041 0.037
factor(Year)2018 0.002 0.038
Smooth terms edf Ref.df F p-value
s (Depth) 6.478 7.536 11.284 1.08e-13***
s (longitude,latitude) 20.811 25.008 2.121 0.00155**
  R-sq.(adj)=0.285 Deviance explained= 34.4%
Appendix 2- Basic residual plots for checking each generalized additive model fitting process. The upper left normal (Q-Q) plots close to a straight line, suggesting reasonable distributional assumption. The upper right, Residuals vs linear predictor plots suggest that variance is approximately constant as the mean increases. The histogram of residuals at the lower left appears consistent with normality. The lower right plot of response against fitted values shows a positive linear relation with a good deal of scatter: nothing problematic. Resids., residuals; pred., predictor; Q-Q, QuantilesQuantiles. N, abundance (LOGPONN); S, species richness, H’, Shannon-Wiener diversity index; J’, Pielou’s evenness index.
medium/medium-SCIMAR-86-03-e039-gfa1.png