Scientia Marina 86 (1)
March 2022, e024
ISSN: 0214-8358, eISSN: 1886-8134
https://doi.org/10.3989/scimar.05230.024

First insights into the meiofauna community of a maerl bed in the Bay of Brest (Brittany)

Primeros conocimientos sobre la comunidad meiofáunica del lecho de maerl en la bahía de Brest (Bretaña)

Federica Rebecchi

Laboratoire Environnement Profond, Institut Français de Recherche pour l’Exploitation de la Mer (IFREMER), Centre Brest, REM/EEP/LEP, ZI de la Pointe du Diable, CS10070, 29280, Plouzané, France.
Departement of Biology, University of Naples Federico II, MSA campus, Via Cinthia, 80126 Naples, Italy.
Laboratoire des Sciences de l’Environnement Marin (UMS 3113), Institut Universitaire Européen de la Mer/Université de Bretagne Occidentale, Technopôle Brest-Iroise, rue Dumont D’Urville, 29280 Plouzané, France.
Institute for Biological Resources and Marine Biotechnologies (IRBIM), Italian National Research Council (CNR), Largo Fiera della Pesca 2, 60125 Ancona, Italy.

https://orcid.org/0000-0003-4762-9263

Daniela Zeppilli

Laboratoire Environnement Profond, Institut Français de Recherche pour l’Exploitation de la Mer (IFREMER), Centre Brest, REM/EEP/LEP, ZI de la Pointe du Diable, CS10070, 29280, Plouzané, France.

https://orcid.org/0000-0002-0809-2566

Elisa Baldrighi

Laboratoire Environnement Profond, Institut Français de Recherche pour l’Exploitation de la Mer (IFREMER), Centre Brest, REM/EEP/LEP, ZI de la Pointe du Diable, CS10070, 29280, Plouzané, France.
Institute for Biological Resources and Marine Biotechnologies (IRBIM), Italian National Research Council (CNR), Largo Fiera della Pesca 2, 60125 Ancona, Italy.

https://orcid.org/0000-0003-3671-8471

Anna Di Cosmo

Departement of Biology, University of Naples Federico II, MSA campus, Via Cinthia, 80126 Naples, Italy.

https://orcid.org/0000-0002-1018-9957

Gianluca Polese

Departement of Biology, University of Naples Federico II, MSA campus, Via Cinthia, 80126 Naples, Italy.

https://orcid.org/0000-0002-6322-7769

Alessandro Pisaniello

Laboratoire Environnement Profond, Institut Français de Recherche pour l’Exploitation de la Mer (IFREMER), Centre Brest, REM/EEP/LEP, ZI de la Pointe du Diable, CS10070, 29280, Plouzané, France.
Departement of Biology, University of Naples Federico II, MSA campus, Via Cinthia, 80126 Naples, Italy.
Laboratoire des Sciences de l’Environnement Marin (UMS 3113), Institut Universitaire Européen de la Mer/Université de Bretagne Occidentale, Technopôle Brest-Iroise, rue Dumont D’Urville, 29280 Plouzané, France.
School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand.

https://orcid.org/0000-0003-1729-3797

Jacques Grall

Laboratoire des Sciences de l’Environnement Marin (UMS 3113), Institut Universitaire Européen de la Mer/Université de Bretagne Occidentale, Technopôle Brest-Iroise, rue Dumont D’Urville, 29280 Plouzané, France.

https://orcid.org/0000-0002-3107-6740

Summary

Maerl beds, particularly those of Brittany, are important, structurally complex biogenic coastal habitats that form a unique ecosystem with high benthic biodiversity. Although they are relatively well studied throughout Europe, several faunal groups of maerl beds, such as those belonging to the meiofauna, have received little attention. We investigated the meiofaunal abundance, distribution and community structure, with a focus on nematode biomass and diversity, in a maerl area in the Bay of Brest, Brittany, compared with that on a sandy beach (Anse de Dinan, Brittany). Meiofauna was five times more abundant on the maerl bed than on the sandy beach, and 1.5 times more diversified (12 vs. 8 taxa, respectively). Nematode diversity was more than three times higher on the maerl bed than on the sandy beach and showed a distinctive nematode community that was absent from the sandy beach. Maerl beds create more heterogeneous microhabitats and promote a higher diversification of meiofauna and nematode communities than sandy beaches.

Keywords: 
rhodolith beds; Bay of Brest; meiobenthos; Nematoda; biodiversity; taxonomy
Resumen

Los lechos de maerl y, en particular, los de Bretaña, son un importante hábitat costero biogénico y estructuralmente complejo, que forma un ecosistema único con una alta biodiversidad bentónica. A pesar de que varios grupos faunísticos son relativamente bien estudiados en toda Europa, aquellos pertenecientes a la meiofauna han recibido poca atención. Hemos investigado la abundancia, distribución y estructura de la comunidad de la meiofauna, con especial atención a la biomasa y diversidad de nematodos de un área de maerl en la bahía de Brest (Bretaña), en comparación con la de una playa de arena (Anse de Dinan, Bretaña). La meiofauna del maerl fue cinco veces más abundante que la de la playa arenosa, y 1,5 veces más diversificada (12 taxones frente a 8 respectivamente). La diversidad de nematodos del maerl fue más de tres veces mayor que la de la playa arenosa y mostró un único nematodo que, a su vez, resultó ausente en la playa arenosa. Los lechos de maerl crean microhábitats más heterogéneos y promueven una mayor diversificación de la meiofauna y las comunidades de nematodos que los hábitats de playas arenosas.

Palabras clave: 
lechos de rodolitos; bahía de Brest; meiobentos; Nematoda; biodiversidad; taxonomía

Received: August  26,  2021. Accepted: November  30,  2021. Published: March 17, 2022.

Editor: D. Martin.

Citation/Cómo citar este artículo: Rebecchi F., Zeppilli D., Baldrighi E., Di Cosmo A., Polese G., Pisaniello A., Grall J. 2022. First insights into the meiofauna community of a maerl bed in the Bay of Brest (Brittany). Sci. Mar. 86(1): e024. https://doi.org/10.3989/scimar.05230.024

CONTENT

INTRODUCTION

 

Maerl (or rhodolith) beds are formed by accumulations of living and dead non-geniculate unattached coralline algae (Foster et al. 2013Foster M.S., Amado Filho G.M., Kamenos N.A., et al. 2013. Rhodoliths and rhodolith beds. Smithsonian Contr. Mar. Sci. 39: 143-55.). They occur on a wide variety of bottoms, ranging from coarse sand to fine mud (Grall et al. 2006Grall J., Le Loc’h F., Guyonnet B., Riera P. 2006. Community structure and food web based on stable isotopes (δ15N and δ13C) analysis of a North Eastern Atlantic maerl bed. J. Exp. Mar. Biol. Ecol. 338: 1-15. https://doi.org/10.1016/j.jembe.2006.06.013 , Hall-Spencer et al. 2010Hall-Spencer J., Kelly J., Maggs C.A. 2010. Background document on maerl beds. OSPAR Commission, London.). Extensive beds occur on open coasts worldwide, either in tide-swept channels or in sheltered areas where wave action and bioturbation are strong enough to prevent sediment burial and anoxia from sedimentation and to move maerl thalli (Foster et al. 2013Foster M.S., Amado Filho G.M., Kamenos N.A., et al. 2013. Rhodoliths and rhodolith beds. Smithsonian Contr. Mar. Sci. 39: 143-55.). In Europe, maerl beds are reported in the Mediterranean Sea and all along the Atlantic Ocean coasts, from Portugal to Norway, but are rare in the English Channel, Irish Sea, North Sea and Baltic Sea (Grall et al. 2006Grall J., Le Loc’h F., Guyonnet B., Riera P. 2006. Community structure and food web based on stable isotopes (δ15N and δ13C) analysis of a North Eastern Atlantic maerl bed. J. Exp. Mar. Biol. Ecol. 338: 1-15. https://doi.org/10.1016/j.jembe.2006.06.013 ). Strictly depending on light penetration, they can be found down to 30 m depth in the northeast Atlantic, to 90-100 m depth in the western Mediterranean, and to 180 m depth in the eastern Mediterranean (BIOMAERL Team 2003BIOMAERL Team: Barbera J., Bordehore C., Borg J.A., et al. 2003. Conservation and management of northeast Atlantic and Mediterranean maerl beds. Aquat. Conserv. Mar. Fresh. Ecosyst. 13: 65-76. https://doi.org/10.1002/aqc.569 ).

Maerl beds have been less investigated than other marine ecosystems such as kelp forests and seagrass beds (BIOMAERL Team 2003BIOMAERL Team: Barbera J., Bordehore C., Borg J.A., et al. 2003. Conservation and management of northeast Atlantic and Mediterranean maerl beds. Aquat. Conserv. Mar. Fresh. Ecosyst. 13: 65-76. https://doi.org/10.1002/aqc.569 ). However, some of the best-studied maerl beds are located on the European coasts, particularly in Brittany (Hall-Spencer et al. 2010Hall-Spencer J., Kelly J., Maggs C.A. 2010. Background document on maerl beds. OSPAR Commission, London.), where they form a unique ecosystem with a complex three-dimensional matrix harbouring a higher benthic biodiversity than on other sublittoral bottoms (Grall et al. 2006Grall J., Le Loc’h F., Guyonnet B., Riera P. 2006. Community structure and food web based on stable isotopes (δ15N and δ13C) analysis of a North Eastern Atlantic maerl bed. J. Exp. Mar. Biol. Ecol. 338: 1-15. https://doi.org/10.1016/j.jembe.2006.06.013 ). The associated organisms can either live inside and on the nodules or burrow into the coarse gravel and fossil nodules lying beneath the top living layer (Foster et al. 2013Foster M.S., Amado Filho G.M., Kamenos N.A., et al. 2013. Rhodoliths and rhodolith beds. Smithsonian Contr. Mar. Sci. 39: 143-55.). Many of them are rare, highly specialized species that are mostly confined to this habitat (BIOMAERL Team 2003BIOMAERL Team: Barbera J., Bordehore C., Borg J.A., et al. 2003. Conservation and management of northeast Atlantic and Mediterranean maerl beds. Aquat. Conserv. Mar. Fresh. Ecosyst. 13: 65-76. https://doi.org/10.1002/aqc.569 ), but there are also juveniles of other organisms, including commercially important shellfish and fish (Hall-Spencer et al. 2010Hall-Spencer J., Kelly J., Maggs C.A. 2010. Background document on maerl beds. OSPAR Commission, London.).

Maerl beds are threatened by anthropogenic activities, such as large-scale commercial extraction for use as a soil conditioner, dredging, bottom trawling, pollution, eutrophication, aquaculture and invasion of alien species such as Crepidula fornicata Linnaeus, 1758Linnaeus C. 1758. Systema Naturae per regna tria naturae, secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis. Laurentius Salvius, Holmiae, 824 pp. https://doi.org/10.5962/bhl.title.542 (BIOMAERL Team 2003BIOMAERL Team: Barbera J., Bordehore C., Borg J.A., et al. 2003. Conservation and management of northeast Atlantic and Mediterranean maerl beds. Aquat. Conserv. Mar. Fresh. Ecosyst. 13: 65-76. https://doi.org/10.1002/aqc.569 ). Accordingly, since 1976 they have been included in EU and international conventions and strategies to preserve fragile marine ecosystems in Europe (BIOMAERL Team 2003BIOMAERL Team: Barbera J., Bordehore C., Borg J.A., et al. 2003. Conservation and management of northeast Atlantic and Mediterranean maerl beds. Aquat. Conserv. Mar. Fresh. Ecosyst. 13: 65-76. https://doi.org/10.1002/aqc.569 ). Furthermore, there are still some major gaps in the knowledge of benthic communities inhabiting maerl beds, one of them being meiofaunal studies (BIOMAERL Team 2003BIOMAERL Team: Barbera J., Bordehore C., Borg J.A., et al. 2003. Conservation and management of northeast Atlantic and Mediterranean maerl beds. Aquat. Conserv. Mar. Fresh. Ecosyst. 13: 65-76. https://doi.org/10.1002/aqc.569 ).

Meiofauna comprises microscopic protists and multicellular metazoans living in aquatic sediments that are retained between sieves with a standard mesh size of between 1000 and 32 µm (Giere 2009Giere O. 2009. Meiobenthology. The microscopic motile fauna of aquatic sediments. Springer-Verlag, Berlin 527 pp., Zeppilli et al. 2015aZeppilli D., Sarrazin J., Leduc D. Arbizu P.M., et al. 2015a. Is the meiofauna a good indicator for climate change and anthropogenic impacts? Mar. Biodivers. 45: 505-535. https://doi.org/10.1007/s12526-015-0359-z ). They play a fundamental role in the benthic food web and in ecosystem functioning because of their high diversity and abundance, widespread distribution, rapid generation time and fast metabolic rates (Zeppilli et al. 2015aZeppilli D., Sarrazin J., Leduc D. Arbizu P.M., et al. 2015a. Is the meiofauna a good indicator for climate change and anthropogenic impacts? Mar. Biodivers. 45: 505-535. https://doi.org/10.1007/s12526-015-0359-z and references therein). In particular, their short generation time and the lack of pelagic larval dispersion makes them highly sensitive to natural and anthropogenic environmental alterations (Zeppilli et al. 2015aZeppilli D., Sarrazin J., Leduc D. Arbizu P.M., et al. 2015a. Is the meiofauna a good indicator for climate change and anthropogenic impacts? Mar. Biodivers. 45: 505-535. https://doi.org/10.1007/s12526-015-0359-z ). Nematodes are among the most abundant and diverse meiofaunal metazoans, inhabiting all kind of sediments. They are widely used as indicators in biological monitoring (Semprucci et al. 2018Semprucci F., Balsamo M., Apolloni L., Sandulli R. 2018. Assessment of ecological quality status along the Apulian coasts (eastern Mediterranean Sea) based on meiobenthic and nematode assemblages. Mar. Biodivers. 48: 105-115. https://doi.org/10.1007/s12526-017-0745-9 ) and are key organisms in the trophic dynamics of coastal ecosystems, having positive effects on bacterial growth and nutrient recirculation and directly competing with macrofauna for food resources (Leduc and Probert 2009Leduc D., Probert P.K. 2009. The effect of bacterivorous nematodes on detritus incorporation by macrofaunal detritivores: A study using stable isotope and fatty acid analyses. J. Exp. Mar. Biol. Ecol. 37: 130-139. https://doi.org/10.1016/j.jembe.2009.01.011 ).

The few studies on meiofauna suggest that maerl beds support a high biodiversity, including a high diversity of bivalves compared with other substrata (Jackson et al. 2004Jackson C.M., Kamenos N.A., Moore P.G., Young M. 2004. Meiofaunal bivalves in maerl and other substrata; their diversity and community structure. Ophelia 58: 48-60. https://doi.org/10.1080/00785236.2004.10410212 ) and a new genus of Copepoda from the Irish west coast (McCormack 2006McCormack E. 2006. Carraroenia ruthae gen. et sp. nov. (Copepoda, Harpacticoida, Laophontidae) from maerl substrates of the Irish west coast. Zootaxa 1202: 39-52. https://doi.org/10.11646/zootaxa.1202.1.4 ). Furthermore, a high species richness of foraminifera on Scottish coasts has led maerl beds to become an important near-shore habitat in regional studies of benthic foraminiferal distribution/ecology (Austin and Cage 2010Austin W.E.N., Cage A.G. 2010. High benthic foraminiferal species counts in a Clyde Sea maerl bed, western Scotland. Geolog. Soc. London, Spec. Pub. 344: 83-88. https://doi.org/10.1144/SP344.8 ).

This study aims to characterize (1) the meiofaunal abundance, vertical distribution and community structure of a maerl site located in the Bay of Brest, Brittany, France; (2) the taxonomic and functional diversity of maerl nematode assemblages; and (3) the richness and diversity of the maerl meiofauna compared with those from a sandy beach area (Anse de Dinan, Brittany, France).

MATERIALS AND METHODS

 

Study site and sampling strategy

 

The studied maerl bed is located in the semi-enclosed Bay of Brest (Brittany, NW France), which has a total area of 180 km2, a maximum tidal amplitude of 8 m and an average depth of 8 m (Fig. 1). Water-exchange with the shelf waters (Iroise Sea) occurs through a narrow (2 km wide) and deep (40 m) channel (Grall et al. 2006Grall J., Le Loc’h F., Guyonnet B., Riera P. 2006. Community structure and food web based on stable isotopes (δ15N and δ13C) analysis of a North Eastern Atlantic maerl bed. J. Exp. Mar. Biol. Ecol. 338: 1-15. https://doi.org/10.1016/j.jembe.2006.06.013 ), and two rivers (the Aulne, with a catchment area of 1842 km2, and the Elorn, with a catchment area of 402 km2) contribute freshwater inputs (Grall et al. 2006Grall J., Le Loc’h F., Guyonnet B., Riera P. 2006. Community structure and food web based on stable isotopes (δ15N and δ13C) analysis of a North Eastern Atlantic maerl bed. J. Exp. Mar. Biol. Ecol. 338: 1-15. https://doi.org/10.1016/j.jembe.2006.06.013 ). Tidal action and regular wind-generated swell induce short-term variability in hydrological factors and enhance water mass mixing (Grall et al. 2006Grall J., Le Loc’h F., Guyonnet B., Riera P. 2006. Community structure and food web based on stable isotopes (δ15N and δ13C) analysis of a North Eastern Atlantic maerl bed. J. Exp. Mar. Biol. Ecol. 338: 1-15. https://doi.org/10.1016/j.jembe.2006.06.013 ). Local hydrodynamics influences the sediment composition, which ranges from muds to coarse gravels, but there are also rocky substrata (Grall et al. 2006Grall J., Le Loc’h F., Guyonnet B., Riera P. 2006. Community structure and food web based on stable isotopes (δ15N and δ13C) analysis of a North Eastern Atlantic maerl bed. J. Exp. Mar. Biol. Ecol. 338: 1-15. https://doi.org/10.1016/j.jembe.2006.06.013 ). Maerl beds cover 30% of the total surface area (Grall et al. 2006Grall J., Le Loc’h F., Guyonnet B., Riera P. 2006. Community structure and food web based on stable isotopes (δ15N and δ13C) analysis of a North Eastern Atlantic maerl bed. J. Exp. Mar. Biol. Ecol. 338: 1-15. https://doi.org/10.1016/j.jembe.2006.06.013 ).

medium/medium-SCIMAR-86-01-e024-gf1.png
Fig. 1.  Location of the sampling sites: maerl bed (Bay of Brest) and sandy beach (Anse de Dinan) in Brittany, France.

The sandy beach site is located in the Anse de Dinan, Bay of Douarnenez, France (Fig. 1) and is characterized by a median particle size ranging from 140 to 200 mm, a low silt content (0.2%) and a fraction of dead shells ranging from 2% to 9% (Baldrighi et al. 2019Baldrighi E., Grall J., Quillien N., et al. 2019. Meiofauna communities’ response to an anthropogenic pressure: The case study of green macroalgal bloom on sandy beach in Brittany. Est. Coast. Shelf Sci. 227: 106326. https://doi.org/10.1016/j.ecss.2019.106326 ).

Three replicate samples were collected by SCUBA divers in April 2012 at the maerl bed site (48°17.627′N, 4°26.470′W, 7 m depth, water temperature of 14°C and salinity of 33.9; Fig. 1) using Plexiglas corers (6 cm inner diameter) buried down to 5 cm depth. The sediment cores were sliced into five layers: Maerl Layer at the top (ML, including maerl without sediment), 0-1, 1-2, 2-3 and 3-4 cm. They were preserved in buffered 4% formalin solution and stained with Rose Bengal (0.5 g l-1). Samples collected below the maerl bed contained poorly sorted, very coarse sands with 3.5% of organic matter. At the sandy beach (48°14.109′N, 4°32.545′W, temperature of 14.4°C, salinity of 35.39; Fig 1), samples were collected in May 2012 at low tide in the intertidal, using Plexiglas corers (3.6 cm inner diameter). The samples consisted of three separates replicates of 15 cm depth cores and contained very well sorted fine sands with 1.5% of organic matter (see Carriço et al. 2013Carriço R., Zeppilli D., Quillien N., et al.2013. Can meiofauna be a good biological indicator of the impacts of eutrophication caused by green macroalgal blooms? An Aod. Cah. Nat. Obs. Mar. 2: 9-16. and Baldrighi et al. 2019Baldrighi E., Grall J., Quillien N., et al. 2019. Meiofauna communities’ response to an anthropogenic pressure: The case study of green macroalgal bloom on sandy beach in Brittany. Est. Coast. Shelf Sci. 227: 106326. https://doi.org/10.1016/j.ecss.2019.106326 for details). The authors are aware of the different sampling strategy adopted, i.e. a 5 cm sediment depth (maerl bed) vs. a 15 cm sediment depth (sandy beach). However, most meiofaunal organisms inhabit the top 5 cm of sediment (e.g. Ingels and Vanreusel 2013Ingels J., Vanreusel A. 2013. The importance of different spatial scales in determining structure and function of deep-sea infauna communities. Biogeosciences Discuss 10: C796-C807. https://doi.org/10.5194/bgd-10-195-2013 ), allowing us to assume that comparisons between the two environments would not be substantially affected.

Meiofaunal and nematode analyses

 

All samples were sieved through 1000 µm and 32 µm mesh sizes. Meiofaunal organisms were extracted by Ludox centrifugation following Danovaro (2010)Danovaro R. 2010. Methods for the Study of Deep-Sea Sediments, Their Functioning and Biodiversity. CRC Press Boca Raton, 458 pp. https://doi.org/10.1201/9781439811382 , counted and classified to the highest taxonomic level using a stereomicroscope. At least 100 nematodes from each replicate were picked out randomly and mounted on permanent slides after formalin-ethanol-glycerol treatment for identification to the genus level with an optical microscope according to Platt and Warwick (1988)Platt H.M., Warwick R.M. 1988. Free-living Marine Nematodes. Part II: British Chromadorids. Brill Academic Pub., 502 pp. and the recent literature available (NeMys database, Bezerra et al. 2021Bezerra T.N., Eisendle U., Hodda M., et al. 2021. Nemys: World Database of Nematodes. Accessed at http://nemys.ugent.be on 05/06/2021. https://doi.org/10.14284/366 ). Species richness (SR), expected number of genera (51) and diversity indices (Shannon, H’, Margalef D, Pielou evenness and J’) were calculated for both meiofauna and nematodes with the DIVERSE routine (PRIMER 6+; Clarke and Gorley 2006Clarke K.R., Gorley R.N. 2006. PRIMER V6: User Manual/Tutorial. PRIMER-E, Plymouth, 93 pp.). The nematodes were divided into four trophic groups following Wieser (1953)Wieser W. 1953. Die beziehung zwischen Mundhöhlengestalt, Ernährungsweise und vorkommen bei freilebenden marinen Nematoden. Ark. Zool. 4: 439-484.: (1A) selective (bacterial) feeders with no buccal cavity or a fine tubular one; (1B) non-selective deposit feeders with a large but unarmed buccal cavity; (2A) epistrate or epigrowth (diatom) feeders with a scraping tooth or teeth in the buccal cavity; and (2B) predators/omnivores with a buccal cavity with large jaws. The index of trophic diversity (ITD) was calculated considering the relative contribution of each trophic group to the total (Gambi et al. 2003Gambi C., Vanreusel A., Danovaro R. 2003. Biodiversity of nematode assemblages from deepsea sediments of the Atacama Slope and Trench (South Pacific Ocean). Deep Sea Res. I: Oceanogr. Res. Pap. 50: 103-117. https://doi.org/10.1016/S0967-0637(02)00143-7 ). Nematode biomass was calculated by biovolume, estimated from all specimens per replicate (Andrassy 1956Andrassy I. 1956. Die Rauminhalts-und Gewichtsbestimmung der Fadenwürmer (Nematoden). Acta. Zool. Hung. 2: 1-5.). Then, dry weight (µg DW) was estimated by multiplying each body volume by an average density (1.13 g cm-3), and finally the biomass was expressed as carbon content (µg of C/10 cm2), which was considered to be 40% of dry weight (Feller and Warwick 1988Feller R.J., Warwick R.M. 1988. “Energetics”. In: Higgin, R.P., Thiel, H. (eds), Introduction to the Study of Meiofauna. Washington, DC. Smithsonian Institution. pp. 181-196.).

Statistical analysis

 

Differences in total meiofaunal abundance, total nematode biomass, nematode diversity between layers, total meiofaunal abundance and total nematode biomass between the maerl bed and the sandy beach were assessed by one-way analyses of variance (ANOVA). Prior to the ANOVAs, the homogeneity of variances was assessed by the Anderson-Darling test and, when necessary, data were square-root transformed. Tukey’s HSD test was performed to assess significant between-level effects. The ANOVAs and Turkey’s test were performed using the STATISTICA V.10 software. A one-way analysis of similarities (ANOSIM) was used to assess between-layer differences in meiofauna community structure and nematode composition. The SIMPER routine (cut-off of 90%, on fourth-root transformed data) was used to determine the contribution of each meiofaunal taxon and nematode species to the total dissimilarity. ANOSIM and SIMPER analyses were performed using Primer 6+ (Clarke and Gorley 2006Clarke K.R., Gorley R.N. 2006. PRIMER V6: User Manual/Tutorial. PRIMER-E, Plymouth, 93 pp.).

RESULTS

 

Maerl meiofauna community

 

The total meiofaunal abundance was 1986±457 ind/10 cm2. The highest mean abundance occurred in layer 1-2 (748±466 ind/10 cm2) and decreased with increasing depth, being the lowest in layer 3-4 (179±25 ind/10 cm2) (Fig. 2A). The ML and layers 0-1 and 1-2 showed a significantly higher abundance than the deepest layer (ANOVA, p<0.05).

medium/medium-SCIMAR-86-01-e024-gf2.png
Fig. 2.  A, vertical distribution of total meiofaunal abundance in the maerl bed (ind/10 cm²). B, meiofaunal community structure in the maerl bed (as percentages of dominant higher taxa). Horizontal bars are standard deviations. ML, Maerl Layer at the top (including maerl without sediment).

A total of 12 (8±1) taxa characterized the maerl station, including Nematoda, Copepoda + nauplii, Polychaeta, Ostracoda, Kinorhyncha, Oligochaeta, Amphipoda, Cladocera, Gastropoda, Tardigrada, Isopoda and Foraminifera. From layer 0-1 to 3-4, Nematoda were the most abundant (82%-97%), followed by Copepoda (1%-9%) and their nauplii (1%-7%). Polychaeta accounted for 1% in layers 0-1 and 1-2 and Foraminifera for 1% in layer 0-1. In the ML, Copepoda (31%) with their nauplii (60%) were the most abundant (91%), followed by Nematoda (7%), Polychaeta (2%) and Ostracoda (1%) (Fig. 2B). Kinorhyncha, Oligochaeta, Amphipoda, Cladocera, Gastropoda, Tardigrada and Isopoda accounted for less than 1% of the total abundance at all layers and are together indicated as “other taxa”. The community structure differed significantly between sediment layers (ANOSIM, R=44%; P=0.012) (Table S1A), with the differences being mainly due to the increasing abundance of Nematoda and the decreasing abundance of Copepoda along the sediment profile (SIMPER, Table S2). The sediment layers showed dissimilarities ranging from 30% (0-1 vs. 1-2 cm) to 74% (2-3 vs. 3-4 cm) (SIMPER, Table S1A).

The maerl nematode community

 

The mean total nematode biomass was 108.2±41.9 µg of C/10 cm2. It increased along the sediment profile from 2.7±1.2 µg of C/10 cm2 in the ML to 40.3±10.9 µg of C/10 cm2 in layer 2-3 cm (Fig. 3A). There were 78 genera and 22 families of nematodes (Table S3). The expected number of genera (51) ranged from 15.2±0.5 in layer 3-4 to 20.5±4.9 in layer 0-1, showing a decreasing trend along the sediment profile (Fig. 3B, Table S4). The Shannon index ranged from 2.3±0.3 in layer 1-2 to 2.7±0.3 in the ML, and the Pielou index ranged from 0.7±0.1 in layers 0-1, 1-2 and 2-3 to 0.9±0 in the ML, indicating that all genera were equally represented (Table S4). There were no significant between-layer differences in any diversity index.

medium/medium-SCIMAR-86-01-e024-gf3.png
Fig. 3.  A. Vertical distribution of nematode biomass. B. Expected genus number (EG (51)). C. Most abundant nematode genera. D. Nematode trophic structure.

Linhomoeidae was the most abundant family (36%), followed by Desmodoridae (30%), Chromadoridae (9%), Comesomatidae (8%) and Xyalidae (4%). The most abundant genera were Terschellingia (21%). Spirinia (13%) Molgolaimus (14%), Metalinhomoeus (12%) and Sabatieria (7%). Molgolaimus was more abundant (39%) in layer 0-1 and decreased with depth to 1% in layer 3-4, and Spilophorella decreased with depth from 20% in the ML to 0% in layer 2-3. Terschellingia increased in abundance with depth from 1% in the ML to 35% in layer 3-4, and Sabatieria increased in abundance with depth from 1% in the ML to 16% in layer 2-3. Metalinhomoeus also increased in abundance with depth from 4% in the ML to 23% in layer 3-4. Spirinia increased in abundance from 2% in the ML to 28% in layer 1-2 and then dropped to 6% in layer 3-4 (Fig. 3C).

The nematode composition in the ML and layer 0-1 differed significantly from those at all other layers (ANOSIM, Global R=37%: p=0.004, Table S1B), mostly owing to the presence of Terschellingia, Spirinia and Perspiria at the deeper layers and Molgolaimus in the top 1 cm (SIMPER analysis, Table S5). The trophic structure of the nematode assemblage was 1A (40%), 2A (30%), 1B (25%), and 2B (5%), although the contribution of some trophic groups changed along the sediment profile. 1A were less abundant in the ML (18%) and reached the highest abundance in layer 0-1 (53%), while 1B and 2B did not change significantly across layers (Fig. 3D). On the other hand, 2A were dominant in the ML (58%), showing the highest biomass (38.4 µg of C/10 cm2). 1B and 2B showed biomasses of 26.1 and 27.0 µg of C/10 cm2, respectively, and 1A showed the lowest biomass (16.7 µg of C/10 cm2).

Maerl bed vs. sandy beach meiofauna

 

Total meiofaunal density in the maerl bed was five times higher than on the sandy beach (1.986±457 ind/10 cm2 vs. 384±16 ind/10 cm2, respectively; ANOVA, p<0.05) (Fig. 4). Twelve higher taxa were identified in the maerl bed vs. 8 on the sandy beach (Fig. 4), where Nematoda was the most abundant (96%), followed by Copepoda (3%). Cumacea, Gastrotricha, Isopoda, Ostracoda, Platyhelminthes and Tardigrada accounted for less than 1%. Total nematode biomass was significantly higher in the maerl bed than on the sandy beach (108.2±41.9 and 47.6±2.1 µg of C/10 cm2; ANOVA, p<0.05). Nematode diversity in the maerl bed was more than three times higher than on the sandy beach, where 11 families and 20 genera were identified (Fig. 4), including Richtersia (51%), Trileptum (9%), Daptonema and Omicronema (8% each) as the most abundant. Overall, 66 and 8 nematode genera were exclusive to the maerl bed and the sandy beach, respectively, with 12 being shared (Table S6). 1A dominated in the maerl bed (40%) and 1B on the sandy beach (72%). Overall, the maerl bed showed a lower ITD (0.32) than the sandy beach (0.62), indicating a greater trophic diversity in the maerl bed (Table S6).

medium/medium-SCIMAR-86-01-e024-gf4.png
Fig. 4.  Shannon index (H’), nematode biomass (μg of C/10 cm2), trophic diversity index (ITD) values, expected genus number (EG (51)), equitability evenness (J’), meiofaunal abundance and number of higher meiofauna (N° taxa). Vertical bars are standard deviations.

DISCUSSION

 

Maerl meiofaunal and nematode assemblages

 

The high maerl meiofaunal abundance recorded in the Bay of Brest was similar to that found in other structurally complex and perennial habitats such as seagrass beds (Novack 1989Novack R. 1989. Ecology of Nematodes in the Mediterranean Seagrass Posidonia oceanica (L.) Delile 1. General part and faunistics of the nematode community. Mar. Ecol. 10: 335-363. https://doi.org/10.1111/j.1439-0485.1989.tb00077.x , Pusceddu et al. 2014Pusceddu A., Gambi C., Corinaldesi C., Scopa M., Danovaro R. 2014. Relationships between Meiofaunal Biodiversity and Prokaryotic Heterotrophic Production in Different Tropical Habitats and Oceanic Regions. PLoS ONE 9: e91056. https://doi.org/10.1371/journal.pone.0091056 ) and similar micro-habitat rich environments such as coral sediments (Semprucci et al. 2013Semprucci F., Colantoni P., Baldelli G., et al. 2013. Meiofauna associated with coral sediments in the Maldivian subtidal habitats (Indian Ocean). Mar. Biodivers. 43: 189-198. https://doi.org/10.1007/s12526-013-0146-7 ). The highest meiofaunal abundance was found in layer 1-2, and it progressively decreased along the sediment profile. Conversely, meiofauna is often concentrated in the first few centimetres of sediment (Giere 2009Giere O. 2009. Meiobenthology. The microscopic motile fauna of aquatic sediments. Springer-Verlag, Berlin 527 pp.). In the maerl bed, the meiofauna distribution likely responds to its complex architecture, allowing a higher organic and oxygen content subsuperficially. This complexity also protects the sediment below, because meiofaunal organisms are less exposed to hydrodynamic perturbations. Indeed, the low erosion, combined with organic accumulation and dispersal lowering, may favour an increase in abundance subsuperficially. Conversely, taxa living on the surface or between the maerl thalli are less protected from current or wave actions (Martínez et al. 2021Martínez A., García-Gómez G., García-Herrero Á. et al. 2021. Habitat differences filter functional diversity of low dispersive microscopic animals (Acari, Halacaridae). Hydrobiologia 848: 2681-2698. https://doi.org/10.1007/s10750-021-04586-x ).

Among the 12 taxa identified, nematodes were the most abundant in all sediment layers except in the ML, where the community was dominated by Copepoda with their nauplii. Nematodes are well-known to penetrate deeply into sediments thanks to their specialized morphology and high tolerance to anaerobic conditions (Heip et al. 1985Heip C.H.R., Vincx M., Vranken G. 1985. The ecology of marine nematodes. Oceanogr. Mar. Biol. Ann. Rev. 23: 399-489.), while hydrodynamism can also contribute to the dispersal of the specimens into deeper layers (Zeppilli et al. 2014Zeppilli D., Bongiorni L., Santos R.S., Vanreusel A. 2014. Changes in Nematode Communities in Different Physiographic Sites of the Condor Seamount (North-East Atlantic Ocean) and Adjacent Sediments. PLoS ONE 9(12): e115601. https://doi.org/10.1371/journal.pone.0115601 ). Consequently, nematodes were less abundant in the ML, possibly because of the low shelter inherent to its particular architecture, but probably also to a higher predation pressure (Grall et al. 2006Grall J., Le Loc’h F., Guyonnet B., Riera P. 2006. Community structure and food web based on stable isotopes (δ15N and δ13C) analysis of a North Eastern Atlantic maerl bed. J. Exp. Mar. Biol. Ecol. 338: 1-15. https://doi.org/10.1016/j.jembe.2006.06.013 ).

Copepods and nauplii were particularly abundant in the ML, resembling coral sediment assemblages (Semprucci et al. 2013Semprucci F., Colantoni P., Baldelli G., et al. 2013. Meiofauna associated with coral sediments in the Maldivian subtidal habitats (Indian Ocean). Mar. Biodivers. 43: 189-198. https://doi.org/10.1007/s12526-013-0146-7 ). This could be related to the additional food resources (macroepiphytic algae and microphytobenthos production) associated with maerl beds (Grall et al. 2006Grall J., Le Loc’h F., Guyonnet B., Riera P. 2006. Community structure and food web based on stable isotopes (δ15N and δ13C) analysis of a North Eastern Atlantic maerl bed. J. Exp. Mar. Biol. Ecol. 338: 1-15. https://doi.org/10.1016/j.jembe.2006.06.013 ). In addition, the swimming ability of crustaceans, compared with other meiofaunal groups, allows them to speedily return to the seafloor after being resuspended in the water column by current or waves (e.g. Colangelo et al. 2001Colangelo M.A., Bertasi F., Dall’Olio P., Ceccherelli V. H. 2001. Meiofaunal biodiversity on hydrothermal seepage off Panarea (Aeolian islands, Tyrrhenian sea). In: Faranda F.M, Guglielmo L., Spezie G. (eds), Mediterranean Ecosystems: Structures and Processes. Springer Verlag, pp. 353-359. https://doi.org/10.1007/978-88-470-2105-1_46 , Zeppilli et al. 2015bZeppilli D., Vanreusel A., Pradillon F., et al. 2015b. Rapid colonisation by nematodes on organic and inorganic substrata deployed at the deep-sea Lucky Strike hydrothermal vent field (Mid-Atlantic Ridge). Mar. Biodivers. 45: 489-504. https://doi.org/10.1007/s12526-015-0348-2 ). However, their numbers decreased along the sediment profile, despite the coarse sediment that has been suggested to promote their presence (Colangelo et al. 2001Colangelo M.A., Bertasi F., Dall’Olio P., Ceccherelli V. H. 2001. Meiofaunal biodiversity on hydrothermal seepage off Panarea (Aeolian islands, Tyrrhenian sea). In: Faranda F.M, Guglielmo L., Spezie G. (eds), Mediterranean Ecosystems: Structures and Processes. Springer Verlag, pp. 353-359. https://doi.org/10.1007/978-88-470-2105-1_46 ), likely due to their high sensitivity to oxygen depletion or anoxia, unlike nematodes (Moodley et al. 2000Moodley L., Chen GT., Heip C., Vincx M. 2000. Vertical distribution of meiofauna in sediments from contrasting sites in the Adriatic Sea: clues to the role of abiotic versus biotic control. Ophelia 53: 203-212. https://doi.org/10.1080/00785326.2000.10409450 ).

Some genera of Chromadoridae are almost entirely restricted to upper sediment layers (Platt 1977Platt H.M. 1977. Vertical and horizontal distribution of free-living marine nematodes from Strangford Lough, Northern Ireland. Cah. Biol. Mar.18: 261-273.). Accordingly, the epistrate feeders Spilophorella and Spirinia showed high abundances in the ML and layer 1-2, respectively, and decreased along the sediment profile, probably because of lowering food availability (Pusceddu et al. 2009Pusceddu A., Dell’Anno A., Fabiano M., Danovaro, R. 2009. Quantity and bioavailability of sediment organic matter as signatures of benthic trophic status. Mar. Ecol. Progr. Ser. 375: 41-52. https://doi.org/10.3354/meps07735 ). Terschellingia and Sabatiera penetrated deep into the sediment, having their highest abundances in layers 3-4 and 2-3, respectively. Terschellingia, a selective deposit feeder, is usually found in anoxic sediments (Wieser 1960Wieser W. 1960. Benthic studies in Buzzards Bay. II. The meiofauna. Limnol. Oceanogr. 5: 121-137. https://doi.org/10.4319/lo.1960.5.2.0121 ). Sabatieria, a non-selective deposit feeder displaying a wide range of ecological preferences (Steyaert 1999Steyaert M., Garner N., Van Gansbeke D., Vincx M. 1999. Nematode communities from the North Sea: environmental controls on species diversity and vertical distribution within the sediment. J. Mar. Biol. Assoc. UK 79: 253-264. https://doi.org/10.1017/S0025315498000289 ), is also known to be a facultative anaerobic organism, a trait allowing it to inhabit suboxic or anoxic sediment layers, so it is thus a common deeper-living nematode (Jensen 1987Jensen P. 1987. Differences in microhabitat, abundance, biomass and body size between oxybiotic and thiobiotic free-living marine nematodes. Oecologia 71: 564-567. https://doi.org/10.1007/BF00379298 ). Metalinhomoeus was present in all sediment layers, but was particularly abundant in layer 3-4. This genus is known to be associated with subtidal silt or muddy sediments (Wieser 1960Wieser W. 1960. Benthic studies in Buzzards Bay. II. The meiofauna. Limnol. Oceanogr. 5: 121-137. https://doi.org/10.4319/lo.1960.5.2.0121 ), being frequent in sediments with low oxygen levels (Heip et al. 1985Heip C.H.R., Vincx M., Vranken G. 1985. The ecology of marine nematodes. Oceanogr. Mar. Biol. Ann. Rev. 23: 399-489.). It also has a body morphology that allows it to dig quickly up and down into the sediment, passing easily from reduced to well-oxygenated zones (Jensen 1987Jensen P. 1987. Differences in microhabitat, abundance, biomass and body size between oxybiotic and thiobiotic free-living marine nematodes. Oecologia 71: 564-567. https://doi.org/10.1007/BF00379298 ). Surprisingly, we found no families typically associated with 3D complex substrates, such as Epsilonematidae and Draconematidae from corals or hard substrates (Raes et al. 2008Raes M., Decraemer W., Vanreusel A. 2008. Walking with worms: coral-associated epifaunal nematodes. J. Biogeog. 35: 2207-2222. https://doi.org/10.1111/j.1365-2699.2008.01945.x , Zeppilli et al. 2015bZeppilli D., Vanreusel A., Pradillon F., et al. 2015b. Rapid colonisation by nematodes on organic and inorganic substrata deployed at the deep-sea Lucky Strike hydrothermal vent field (Mid-Atlantic Ridge). Mar. Biodivers. 45: 489-504. https://doi.org/10.1007/s12526-015-0348-2 ). Therefore, our data support the hypothesis that maerl nematodes benefit mainly from the sediments below the bed, instead of the 3D rhodoliths, which mainly act as a protective layer for the sediments and assemblages below. Moreover, all trophic groups were equally represented in all layers, allowing us to suggest possible differences in food sources along the sediment profile. This may well help reduce the number of competitive interactions, while allowing the different feeding groups to coexist in small sediment patches.

Maerl bed vs. sandy beach

 

Maerl beds are known to harbour higher macrofaunal biodiversity than bare sediments (Foster et al. 2013Foster M.S., Amado Filho G.M., Kamenos N.A., et al. 2013. Rhodoliths and rhodolith beds. Smithsonian Contr. Mar. Sci. 39: 143-55.), and meiofauna is no exception. In the maerl bed, its abundance was five times higher, and its taxa diversity 1.5 times higher than on the sandy beach. Obviously, nematodes were also more numerous (three times), as was the number of exclusive genera (66). The functional diversity (i.e. trophic diversity) was also higher in the maerl bed. All trophic groups were represented: bacterial and epistrate feeders (1A and 2A respectively) dominated in the maerl bed, while the non-selective deposit feeders (1B) dominated on the sandy beach. Thus, maerl beds seemed to host a rich meiofaunal community and a unique and peculiar nematode community, which is clearly distinguishable from those inhabiting sandy beach ecosystems. Accordingly, maerl beds seem to harbour a rich and specific meiofaunal community that may serve as potential prey for these predator/omnivore nematodes. The physical presence of complex maerl thalli, combined with the numerous resources provided, may explain the difference in meiofaunal diversity between these habitats. Moreover, the sandy beach samples were collected at low tide in the intertidal. This may have also affected the community composition and richness, since only well-adapted fauna can survive the extreme conditions arising from long-term exposure (e.g. higher radiation, salinity and oxygen availability variation) (Baldrighi et al. 2019Baldrighi E., Grall J., Quillien N., et al. 2019. Meiofauna communities’ response to an anthropogenic pressure: The case study of green macroalgal bloom on sandy beach in Brittany. Est. Coast. Shelf Sci. 227: 106326. https://doi.org/10.1016/j.ecss.2019.106326 and literature therein).

Our study documented novel findings on the abundance, structure and diversity of the meiofauna and nematode communities characterizing the maerl beds from the Bay of Brest. Our results suggest that maerl beds create a more heterogeneous environment, richer in microhabitats, that promotes highly diversified meiofaunal and nematode assemblages in the sediments below, which proved to be particularly rich when compared with more homogenous environments lacking the protective rhodolith layer (e.g. a sandy beach). Maerl beds, which have been largely neglected in meiofaunal studies, have been shown to harbour high meiofaunal assemblages with a very complex structure and a high functional diversity. Therefore, their protection may be crucial for marine biodiversity preservation.

FUNDING

 

This work was funded by the IMPECAPE (OFB CNRS Programme). FR was supported by the University of Naples Federico II and Compagnia di San Paolo scholarship.

ACKNOWLEDGEMENTS

 

We would like to thank the Albert Lucas crew as well as Erwan Amice, Thierry Lebec and Nolwenn Quillien for helping with sampling. We also thank Dr Carmen Ferrà for the Spanish translation.

REFERENCES

 

Andrassy I. 1956. Die Rauminhalts-und Gewichtsbestimmung der Fadenwürmer (Nematoden). Acta. Zool. Hung. 2: 1-5.

Austin W.E.N., Cage A.G. 2010. High benthic foraminiferal species counts in a Clyde Sea maerl bed, western Scotland. Geolog. Soc. London, Spec. Pub. 344: 83-88. https://doi.org/10.1144/SP344.8

BIOMAERL Team: Barbera J., Bordehore C., Borg J.A., et al. 2003. Conservation and management of northeast Atlantic and Mediterranean maerl beds. Aquat. Conserv. Mar. Fresh. Ecosyst. 13: 65-76. https://doi.org/10.1002/aqc.569

Baldrighi E., Grall J., Quillien N., et al. 2019. Meiofauna communities’ response to an anthropogenic pressure: The case study of green macroalgal bloom on sandy beach in Brittany. Est. Coast. Shelf Sci. 227: 106326. https://doi.org/10.1016/j.ecss.2019.106326

Bezerra T.N., Eisendle U., Hodda M., et al. 2021. Nemys: World Database of Nematodes. Accessed at http://nemys.ugent.be on 05/06/2021. https://doi.org/10.14284/366

Carriço R., Zeppilli D., Quillien N., et al.2013. Can meiofauna be a good biological indicator of the impacts of eutrophication caused by green macroalgal blooms? An Aod. Cah. Nat. Obs. Mar. 2: 9-16.

Clarke K.R., Gorley R.N. 2006. PRIMER V6: User Manual/Tutorial. PRIMER-E, Plymouth, 93 pp.

Colangelo M.A., Bertasi F., Dall’Olio P., Ceccherelli V. H. 2001. Meiofaunal biodiversity on hydrothermal seepage off Panarea (Aeolian islands, Tyrrhenian sea). In: Faranda F.M, Guglielmo L., Spezie G. (eds), Mediterranean Ecosystems: Structures and Processes. Springer Verlag, pp. 353-359. https://doi.org/10.1007/978-88-470-2105-1_46

Danovaro R. 2010. Methods for the Study of Deep-Sea Sediments, Their Functioning and Biodiversity. CRC Press Boca Raton, 458 pp. https://doi.org/10.1201/9781439811382

Feller R.J., Warwick R.M. 1988. “Energetics”. In: Higgin, R.P., Thiel, H. (eds), Introduction to the Study of Meiofauna. Washington, DC. Smithsonian Institution. pp. 181-196.

Foster M.S., Amado Filho G.M., Kamenos N.A., et al. 2013. Rhodoliths and rhodolith beds. Smithsonian Contr. Mar. Sci. 39: 143-55.

Gambi C., Vanreusel A., Danovaro R. 2003. Biodiversity of nematode assemblages from deepsea sediments of the Atacama Slope and Trench (South Pacific Ocean). Deep Sea Res. I: Oceanogr. Res. Pap. 50: 103-117. https://doi.org/10.1016/S0967-0637(02)00143-7

Giere O. 2009. Meiobenthology. The microscopic motile fauna of aquatic sediments. Springer-Verlag, Berlin 527 pp.

Grall J., Le Loc’h F., Guyonnet B., Riera P. 2006. Community structure and food web based on stable isotopes (δ15N and δ13C) analysis of a North Eastern Atlantic maerl bed. J. Exp. Mar. Biol. Ecol. 338: 1-15. https://doi.org/10.1016/j.jembe.2006.06.013

Hall-Spencer J., Kelly J., Maggs C.A. 2010. Background document on maerl beds. OSPAR Commission, London.

Heip C.H.R., Vincx M., Vranken G. 1985. The ecology of marine nematodes. Oceanogr. Mar. Biol. Ann. Rev. 23: 399-489.

Ingels J., Vanreusel A. 2013. The importance of different spatial scales in determining structure and function of deep-sea infauna communities. Biogeosciences Discuss 10: C796-C807. https://doi.org/10.5194/bgd-10-195-2013

Jackson C.M., Kamenos N.A., Moore P.G., Young M. 2004. Meiofaunal bivalves in maerl and other substrata; their diversity and community structure. Ophelia 58: 48-60. https://doi.org/10.1080/00785236.2004.10410212

Jensen P. 1987. Differences in microhabitat, abundance, biomass and body size between oxybiotic and thiobiotic free-living marine nematodes. Oecologia 71: 564-567. https://doi.org/10.1007/BF00379298

Leduc D., Probert P.K. 2009. The effect of bacterivorous nematodes on detritus incorporation by macrofaunal detritivores: A study using stable isotope and fatty acid analyses. J. Exp. Mar. Biol. Ecol. 37: 130-139. https://doi.org/10.1016/j.jembe.2009.01.011

Linnaeus C. 1758. Systema Naturae per regna tria naturae, secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis. Laurentius Salvius, Holmiae, 824 pp. https://doi.org/10.5962/bhl.title.542

McCormack E. 2006. Carraroenia ruthae gen. et sp. nov. (Copepoda, Harpacticoida, Laophontidae) from maerl substrates of the Irish west coast. Zootaxa 1202: 39-52. https://doi.org/10.11646/zootaxa.1202.1.4

Moodley L., Chen GT., Heip C., Vincx M. 2000. Vertical distribution of meiofauna in sediments from contrasting sites in the Adriatic Sea: clues to the role of abiotic versus biotic control. Ophelia 53: 203-212. https://doi.org/10.1080/00785326.2000.10409450

Martínez A., García-Gómez G., García-Herrero Á. et al. 2021. Habitat differences filter functional diversity of low dispersive microscopic animals (Acari, Halacaridae). Hydrobiologia 848: 2681-2698. https://doi.org/10.1007/s10750-021-04586-x

Novack R. 1989. Ecology of Nematodes in the Mediterranean Seagrass Posidonia oceanica (L.) Delile 1. General part and faunistics of the nematode community. Mar. Ecol. 10: 335-363. https://doi.org/10.1111/j.1439-0485.1989.tb00077.x

Platt H.M. 1977. Vertical and horizontal distribution of free-living marine nematodes from Strangford Lough, Northern Ireland. Cah. Biol. Mar.18: 261-273.

Platt H.M., Warwick R.M. 1988. Free-living Marine Nematodes. Part II: British Chromadorids. Brill Academic Pub., 502 pp.

Pusceddu A., Dell’Anno A., Fabiano M., Danovaro, R. 2009. Quantity and bioavailability of sediment organic matter as signatures of benthic trophic status. Mar. Ecol. Progr. Ser. 375: 41-52. https://doi.org/10.3354/meps07735

Pusceddu A., Gambi C., Corinaldesi C., Scopa M., Danovaro R. 2014. Relationships between Meiofaunal Biodiversity and Prokaryotic Heterotrophic Production in Different Tropical Habitats and Oceanic Regions. PLoS ONE 9: e91056. https://doi.org/10.1371/journal.pone.0091056

Raes M., Decraemer W., Vanreusel A. 2008. Walking with worms: coral-associated epifaunal nematodes. J. Biogeog. 35: 2207-2222. https://doi.org/10.1111/j.1365-2699.2008.01945.x

Semprucci F., Colantoni P., Baldelli G., et al. 2013. Meiofauna associated with coral sediments in the Maldivian subtidal habitats (Indian Ocean). Mar. Biodivers. 43: 189-198. https://doi.org/10.1007/s12526-013-0146-7

Semprucci F., Balsamo M., Apolloni L., Sandulli R. 2018. Assessment of ecological quality status along the Apulian coasts (eastern Mediterranean Sea) based on meiobenthic and nematode assemblages. Mar. Biodivers. 48: 105-115. https://doi.org/10.1007/s12526-017-0745-9

Steyaert M., Garner N., Van Gansbeke D., Vincx M. 1999. Nematode communities from the North Sea: environmental controls on species diversity and vertical distribution within the sediment. J. Mar. Biol. Assoc. UK 79: 253-264. https://doi.org/10.1017/S0025315498000289

Wieser W. 1953. Die beziehung zwischen Mundhöhlengestalt, Ernährungsweise und vorkommen bei freilebenden marinen Nematoden. Ark. Zool. 4: 439-484.

Wieser W. 1960. Benthic studies in Buzzards Bay. II. The meiofauna. Limnol. Oceanogr. 5: 121-137. https://doi.org/10.4319/lo.1960.5.2.0121

Zeppilli D., Bongiorni L., Santos R.S., Vanreusel A. 2014. Changes in Nematode Communities in Different Physiographic Sites of the Condor Seamount (North-East Atlantic Ocean) and Adjacent Sediments. PLoS ONE 9(12): e115601. https://doi.org/10.1371/journal.pone.0115601

Zeppilli D., Sarrazin J., Leduc D. Arbizu P.M., et al. 2015a. Is the meiofauna a good indicator for climate change and anthropogenic impacts? Mar. Biodivers. 45: 505-535. https://doi.org/10.1007/s12526-015-0359-z

Zeppilli D., Vanreusel A., Pradillon F., et al. 2015b. Rapid colonisation by nematodes on organic and inorganic substrata deployed at the deep-sea Lucky Strike hydrothermal vent field (Mid-Atlantic Ridge). Mar. Biodivers. 45: 489-504. https://doi.org/10.1007/s12526-015-0348-2

SUPPLEMENTARY MATERIAL

 

The following supplementary material is available through the online version of this article and at the following link: http://scimar.icm.csic.es/scimar/supplm/sm05230esm.pdf

  • Table S1. - ANOSIM (R statistic), significance level (P) and SIMPER results (Diss., Dissimilarity %). A. most abundant higher meiofaunal taxa. B. nematode species.

  • Table S2. - SIMPER analysis showing the contribution of meiofaunal taxa to between-layer dissimilarity. Contrib.%, contribution %; Cum.%, cumulative %.

  • Table S3. - List of nematode families, genera and putative species found in the maerl bed.

  • Table S4. - Nematode diversity indices in the maerl bed: species richness (SR), Margalef diversity (D), Pielou evenness (J’), expected genus number (EG(51)) and Shannon index (H’).

  • Table S5. - SIMPER analysis showing the contribution of nematode species to between-layer dissimilarity. The ten most contributing taxa are reported. The following abbreviations were used: Contrib.%, contribution%; Cum.%, cumulative %.

  • Table S6. - Meiofaunal abundance, number of higher taxa, nematode biomass, diversity (Shannon index (H’), equitability evenness (J’), expected genus number (EG(51)) and trophic diversity index (ITD)). List of exclusive and shared genera of nematodes between the maerl bed and the sandy beach.

Table S1.  ANOSIM (R statistic), significance level (P) and SIMPER results (Diss., Dissimilarity %). A. most abundant higher meiofaunal taxa. B. nematode species.
A
Group R statistic % P Diss. %
ML, 0-1 cm 41 0.01 39
ML, 1-2 cm 37 0.01 39
ML, 2-3 cm 15 0.02 59
ML, 3-4 cm 42 0.02 32
0-1 cm, 1-2 cm 59 0.01 30
0-1 cm, 3-4 cm 100 0.01 63
1-2 cm, 2-3 cm 22 0.02 49
1-2 cm, 3-4 cm 100 0.01 67
2-3 cm, 3-4 cm 17 0.04 74
B
Group R statistic % P Diss. %
ML, 0-1 cm 33 0.02 65
ML, 1-2 cm 67 0.01 74
ML, 2-3 cm 67 0.01 73
ML, 3-4 cm 83 0.01 75
0-1 cm, 1-2 cm 30 0.02 52
0-1 cm, 2-3 cm 44 0.01 58
0-1 cm, 3-4 cm 83 0.01 60
1-2 cm, 2-3 cm 19 0.03 51
1-2 cm, 3-4 cm 25 0.04 47
2-3 cm, 3-4 cm 8 0.04 49
Table S2.  SIMPER analysis showing the contribution of meiofaunal taxa to between-layer dissimilarity. Contrib.%, contribution %; Cum.%, cumulative %.
Groups ML & 0-1 cm Groups ML & 1-2 cm Groups ML & 2-3 cm Groups ML & 3-4 cm
Taxon Contrib% Cum.% Taxon Contrib% Cum.% Taxon Contrib% Cum.% Taxon Contrib% Cum.%
Nematoda 45.78 45.78 nauplii 32.3 32.3 Nematoda 31.98 31.98 Nematoda 33.28 33.28
nauplii 21.84 67.62 Copepoda 26.64 58.94 nauplii 27.64 59.62 nauplii 32.16 65.44
Copepoda 15.26 82.87 Nematoda 20.67 79.61 Copepoda 23.97 83.6 Copepoda 16.84 82.28
Foraminifera 4.93 87.8 Polichaeta 6.61 86.22 Polichaeta 6.58 90.18 Ostracoda 8.16 90.44
Ostracoda 3.86 91.66 Ostracoda 4.94 91.15
Groups 0-1 cm & 1-2 cm Groups 0-1 cm & 2-3 cm Groups 0-1 cm & 3-4 cm Groups 1-2 cm & 2-3 cm
Taxon Contrib% Cum.% Taxon Contrib% Cum.% Taxon Contrib% Cum.% Taxon Contrib% Cum.%
Nematoda 52.33 52.33 Nematoda 69.7 69.7 Nematoda 42.81 42.81 Nematoda 62.73 62.73
nauplii 12.48 64.81 Copepoda 8.23 77.93 nauplii 28.38 71.19 nauplii 11.79 74.52
Copepoda 10.92 75.73 Polichaeta 5.99 83.92 Copepoda 17.08 88.27 Copepoda 10.38 84.9
Foraminifera 9.03 84.76 Foraminifera 5.23 89.14 Foraminifera 2.86 91.13 Polichaeta 4.26 89.16
Polichaeta 7.34 92.1 nauplii 4.99 94.13 Foraminifera 4.16 93.32
Groups 1-2 cm & 3-4 cm Groups 2-3 cm & 3-4 cm
Taxon Contrib% Cum % Taxon Contrib% Cum.%
nauplii 35.24 35.24 nauplii 39.66 39.66
Nematoda 27.14 62.39 Copepoda 27.44 67.09
Copepoda 23.57 85.96 Nematoda 17.44 84.54
Polichaeta 4.36 90.32 Polichaeta 5.6 90.14
Table S3.  List of nematode families, genera and putative species found in the maerl bed.
Family Genus Species
Chromadoridae Acantholaimus Acantholaimus sp1
Chromadoridae Actinonema Actinonema sp1
Leptolaimidae Antomicron Antomicron sp1
Diplopeltidae Campylaimus Campylaimus sp1
Anticomidae Cephalanticoma Cephalanticoma sp1
Chromadoridae Chromadora Chromadora sp1
Chromadoridae Chromadora Chromadora sp2
Chromadoridae Chromadorella Chromadorella sp1
Chromadoridae Chromadoridae spp. Chromadoridae spp.
Chromadoridae Chromadorita Chromadorita sp1
Xyalidae Cobbia Cobbia sp1
Comesomatidae Comesomatidae spp. Comesomatidae spp.
Comesomatidae Comesoma Comesoma sp1
Comesomatidae Comesomoides Comesomoides sp1
Cyartonematidae Cyartonema Cyartonema sp1
Xyalidae Daptonema Daptonema sp1
Desmoscolecidae Desmoscolex Desmoscolex sp1
Camacolaimidae Diodontolaimus Diodontolaimus sp1
Comesomatidae Dorylaimopsis Dorylaimopsis sp1
Draconematidae Draconema Draconema sp1
Chromadoridae Euchromadora Euchromadora sp1
Linhomoeidae Eumorpholaimus Eumorpholaimus sp1
Enchelidiidae Eurystomina Eurystomina sp1
Oncholaimidae Filoncholaimus Filoncholaimus sp1
Oxystominidae Halalaimus Halalaimus sp1
Leptolaimidae Halaphanolaimus Halaphanolaimus sp1
Selachinematidae Halichoanolaimus Halichoanolaimus sp1
Monhysteridae Halomonhystera Halomonhystera sp1
Chromadoridae Karkinochromadora Karkinochromadora sp1
Cyatholaimidae Kraspedonema Kraspedonema sp1
Comesomatidae Laimella Laimella sp1
Leptolaimidae Leptolaimus Leptolaimus sp1
Leptolaimidae Leptolaimus Leptolaimus sp2
Linhomoeidae Linhomoeus spp. Linhomoeus spp.
Linhomoeidae Linhomoeus Linhomoeus sp1
Linhomoeidae Linhomoeus Linhomoeus sp2
Xyalidae Linhystera Linhystera sp1
Cyatholaimidae Longicyatholaimus Longicyatholaimus sp1
Desmodoridae Molgolaimus Molgolaimus sp1
Cyatholaimidae Marylynnia Marylynnia sp1
Linhomoeidae Megadesmolaimus Megadesmolaimus sp1
Desmodoridae Metachromadora Metachromadora sp1
Cyatholaimidae Metacyatholaimus Metacyatholaimus sp1
Xyalidae Metadesmolaimus Metadesmolaimus sp1
Linhomoeidae Metalinhomoeus spp. Metalinhomoeus spp.
Linhomoeidae Metalinhomoeus Metalinhomoeus sp1
Linhomoeidae Metalinhomoeus Metalinhomoeus sp2
Linhomoeidae Metalinhomoeus Metalinhomoeus sp3
Sphaerolaimidae Metasphaerolaimus Metasphaerolaimus sp1
Xyalidae Manganonema Manganonema sp1
Monhysteridae Monhysteridae spp. Monhysteridae spp.
Oxystominidae Nemanema Nemanema sp1
Chromadoridae Neochromadora Neochromadora sp1
Oncholaimidae spp. Oncholaimidae spp. Oncholaimidae spp.
Oncholaimidae Oncholaimus Oncholaimus sp1
Cyatholaimidae Paracyatholaimus Paracyatholaimus sp1
Comesomatidae Paracomesoma Paracomesoma sp1
Linhomoeidae Paralinhomoeus Paralinhomoeus sp1
Cyatholaimidae Cyatholaimidae Cyatholaimidae
Cyatholaimidae Paralongicyatholaimus Paralongicyatholaimus sp1
Enchelidiidae Pareurystomina Pareurystomina sp1
Axonolaimidae Parodontophora Parodontophora sp1
Desmodoridae Perspiria Perspiria sp1
Comesomatidae Pierrickia Pierrickia sp1
Chromadoridae Prochromadorella Prochromadorella sp1
Chromadoridae Prochromadorella Prochromadorella sp2
Xyalidae Promonhystera Promonhystera sp1
Oncholaimidae Prooncholaimus Prooncholaimus sp1
Chromadoridae Ptycholaimellus Ptycholaimellus sp1
Desmoscolecidae Quadricoma Quadricoma sp1
Comesomatidae Sabatieria Sabatieria sp1
Comesomatidae Setosabatieria Setosabatieria sp1
Sphaerolaimidae Sphaerolaimus Sphaerolaimus sp1
Chromadoridae Spiliphera Spiliphera sp1
Chromadoridae Spilophorella spp. Spilophorella spp.
Chromadoridae Spilophorella Spilophorella sp1
Chromadoridae Spilophorella Spilophorella sp2
Desmodoridae Spirinia Spirinia sp1
Chromadoridae Steineridora Steineridora sp1
Chromadoridae Steineridora Steineridora sp2
Desmodoridae Stilbonematinae Stilbonematinae
Xyalidae Stylotheristus Stylotheristus sp1
Desmodoridae Stygodesmodora Stygodesmodora sp1
Selachinematidae Synonchiella Synonchiella sp1
Ironidae Syringolaimus Syringolaimus sp1
Linhomoeidae Terschellingia spp. Terschellingia spp.
Linhomoeidae Terschellingia Terschellingia sp1
Linhomoeidae Terschellingia Terschellingia sp2 (cf.longicaudata)
Monhysteridae Thalassomonhystera Thalassomonhystera sp1
Xyalidae Theristus Theristus sp1
Thoracostomopsidae Thoracostomopsis Thoracostomopsis sp1
Xyalidae Trichoteristus Trichoteristus sp1
Desmoscolecidae Tricoma Tricoma sp1
Thoracostomopsidae Trileptium Trileptium sp1
Oncholaimidae Viscosia Viscosia sp1
Oxystominidae Wieseria Wieseria sp1
Xyalidae spp. Xyalidae spp. Xyalidae spp.
Table S4.  Nematode diversity indices in the maerl bed: species richness (SR), Margalef diversity (D), Pielou evenness (J’), expected genus number (EG(51)) and Shannon index (H’).
Layers SR D J’ EG(51) H’
ML 19.0±4.4 4.8±1.2 0.9±0.0 19.0±4.4 2.7±0.3
0-1 cm 31.7±6.0 6.6±1.4 0.7±0.1 20.5±4.9 2.5±0.6
1-2 cm 24.7±6.0 4.9±1.3 0.7±0.0 16.0±4.2 2.3±0.3
2-3 cm 26.3±1.5 5.2±0.3 0.7±0.0 16.6±0.8 2.4±0.2
3-4 cm 22.0±1.4 4.4±0.1 0.8±0.0 15.2±0.5 2.4±0.1
Table S5.  SIMPER analysis showing the contribution of nematode species to between-layer dissimilarity. The ten most contributing taxa are reported. The following abbreviations were used: Contrib.%, contribution%; Cum.%, cumulative %.
Groups ML & 0-1 cm Groups ML & 1-2 cm Groups ML & 2-3 cm
Species Contrib% Cum.% Species Contrib% Cum.% Species Contrib% Cum.%
Terschellingia sp1 3.59 3.59 Spirinia sp1 5.16 5.16 Terschellingia sp2 (cf. longicaudata) 5.25 5.25
Molgolaimus sp1 2.89 6.48 Terschellingia sp2 (cf. longicaudata) 4.1 9.26 Spirinia sp1 4.21 9.46
Metalinhomoeus sp1 2.71 9.18 Terschellingia sp1 3.3 12.56 Sabatieria sp1 4.13 13.6
Sphaerolaimus sp1 2.63 11.81 Halichoanolaimus sp1 3.26 15.82 Terschellingia spp 3.1 16.69
Spirinia sp1 2.51 14.32 Metalinhomoeus sp1 3.21 19.03 Halaphanolaimus sp1 2.51 19.2
Halalaimus sp1 2.42 16.74 Parodontophora sp1 2.87 21.9 Steineridora sp1 2.35 21.55
Xyalidae 2.34 19.08 Sabatieria sp1 2.78 24.68 Perspiria sp1 2.22 23.77
Parodontophora sp1 2.33 21.4 Linhomoeus sp2 2.53 27.21 Linhomoeus sp2 2.21 25.98
Chromadorella sp1 2.30 23.7 Xyalidae spp. 2.26 29.47 Chromadorella sp1 2.17 28.15
Metalinhomoeus spp 2.13 25.83 Chromadorella sp1 2.2 31.67 Spilophorella sp1 2.17 30.32
Groups ML & 3-4 cm Groups 0-1 & 1-2 cm Groups 0-1 & 2-3 cm
Species Contrib% Cum.% Species Contrib% Cum.% Species Contrib% Cum.%
Terschellingia sp2 (cf. longicaudata) 5.53 5.53 Terschellingia sp2 (cf. longicaudata) 3.01 9.83 Terschellingia sp2 (cf. longicaudata) 3.86 3.86
Metalinhomoeus spp 4.3 9.84 Pierrickia sp1 3.16 6.82 Molgolaimus sp1 3.68 7.54
Perspiria sp1 3.52 13.36 Spirinia sp1 3.66 3.66 Steineridora sp1 2.86 10.4
Halichoanolaimus sp1 3.51 16.87 Metalinhomoeus sp2 2.46 12.29 Diodontolaimus sp1 2.46 12.86
Metalinhomoeus sp1 3.36 20.23 Steineridora sp1 2.34 14.63 Perspiria sp1 2.45 15.31
Linhomoeus sp2 3.27 23.5 Daptonema sp1 2.34 16.96 Spirinia sp1 2.37 17.69
Sabatieria sp1 3.27 26.77 Linhomoeus sp2 2.16 19.13 Metalinhomoeus sp2 2.3 19.98
Spirinia sp1 3.27 30.04 Sphaerolaimus sp1 2.11 21.24 Sabatieria sp1 2.18 22.16
Metalinhomoeus sp2 3.01 33.06 Chromadora sp1 2.07 23.31 Daptonema sp1 2.08 24.24
Terschellingia sp1 2.61 35.66 Monhysteridae spp. 2.06 25.38 Leptolaimus sp1 2.04 26.28
Groups 0-1 & 3-4 cm Groups 1-2 & 2-3 cm Groups 1-2 & 3-4 cm
Species Contrib% Cum.% Species Contrib% Cum.% Species Contrib% Cum.%
Perspiria sp1 4.28 4.28 Molgolaimus sp1 3.17 3.17 Perspiria sp1 6 6
Terschellingia sp2 (cf. longicaudata) 3.98 8.26 Halichoanolaimus sp1 3.03 6.21 Theristus sp1 3.55 9.54
Molgolaimus sp1 3.54 11.8 Marylynnia sp1 3.03 9.23 Molgolaimus sp1 3.37 12.91
Metalinhomoeus sp2 3.47 15.26 Perspiria sp1 3.02 12.25 Metalinhomoeus sp2 3.12 16.04
Halalaimus sp1 3.11 18.38 Halaphanolaimus sp1 2.87 15.12 Metalinhomoeus spp 3.05 19.09
Steineridora sp1 2.94 21.32 Metalinhomoeus sp1 2.56 17.68 Terschellingia spp 2.87 21.96
Pierrickia sp1 2.85 24.17 Metalinhomoeus spp 2.38 20.06 Spirinia sp1 2.79 24.75
Sphaerolaimus sp1 2.53 26.69 Linhomoeus sp1 2.35 22.4 Linhomoeus sp1 2.7 27.45
Linhomoeus sp2 2.32 29.01 Leptolaimus sp1 2.35 24.75 Halalaimus sp1 2.48 29.93
Daptonema sp1 2.3 31.31 Metalinhomoeus sp2 2.3 27.05 Leptolaimus sp1 2.41 32.34
Groups 2-3 & 3-4 cm
Species Contrib% Cum.%
Metalinhomoeus spp 3.76 3.76
Halichoanolaimus sp1 3.35 7.11
Diodontolaimus sp1 3.28 10.38
Theristus sp1 3.28 13.66
Leptolaimus sp1 3.14 16.8
Perspiria sp1 3.08 19.87
Terschellingia spp 2.7 22.58
Metalinhomoeus sp2 2.68 25.25
Halalaimus sp1 2.62 27.87
Chromadoridae spp. 2.54 30.42
Table S6.  Meiofaunal abundance, number of higher taxa, nematode biomass, diversity (Shannon index (H’), equitability evenness (J’), expected genus number (EG(51)) and trophic diversity index (ITD)). List of exclusive and shared genera of nematodes between the maerl bed and the sandy beach.
Maerl bed Sandy beach Maerl/ Sandy beach
Meiofaunal abundance (ind/10 cm2) 1986±457 384±16
N° taxa 12 8
Nematode biomass (μgC/10 cm2) 108.2±41.9 47.6±2.1
H' (loge) 2.5 2.2
J' 0.8 0.7
EG(51) 18 15
ITD 0.3 0.6
Genera of nematodes Acantholaimus Chaetonema Comesoma
Actinonema Dasynemoides Daptonema
Antomicron Desmodora Molgolaimus
Campylaimus Gonionchus Neochromadora
Cephalanticoma Microlaimus Paracomesoma
Chromadora Omicronema Parodontophora
Chromadorella Richtersia Promonhystera
Chromadorita Xyala Spirinia
Cobbia Stylotheristus
Comesomoides Trichotheristus
Cyartonema Trileptium
Cyatholaimidae Viscosia
Desmoscolex
Diodontolaimus
Dorylaimopsis
Draconema
Euchromadora
Eumorpholaimus
Eurystomina
Filoncholaimus
Eurystomina
Filoncholaimus
Halalaimus
Halaphanolaimus
Halichoanolaimus
Halomonhystera
Karkinochromadora
Kraspedonema
Laimella
Leptolaimus
Linhomoeus
Linhystera
Longicyatholaimus
Marylynnia
Megadesmolaimus
Metachromadora
Metacyatholaimus
Metadesmolaimus
Metalinhomoeus
Metasphaerolaimus
Nemanema
Oncholaimus
Paracyatholaimus
Paralinhomoeus
Paralongicyatholaimus
Pareurystomina
Perspiria
Pierrickia
Prochromadorella
Prooncholaimus
Ptycholaimellus
Quadricoma
Sabatieria
Setosabatieria
Sphaerolaimus
Spiliphera
Spilophorella
Steineridora
Stilbonematinae
Stygodesmodora
Synonchiella
Syringolaimus
Terschellingia
Thalassomonhystera
Theristus
Thoracostomopsis
Tricoma