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Summary: The age and growth patterns of the mesopelagic fish Ceratoscopelus maderensis (family Myctophidae) of the 
western Mediterranean Sea were described throughout its entire life cycle (from larvae to adult stages) using the sagittae oto-
liths of 59 individuals collected in December 2009. Three characteristic zones were identified along the cross-section of the 
sagittae (larval, metamorphic and juvenile-adult zones). Assuming growth rings as daily increments, the age of the analysed 
individuals (from 3.5 to 64 mm standard length [SL]) would range from 7 to 332 days. The relationship between the number 
of increments and the fish SL was fitted to a von Bertalanffy growth model (SL=70.5899×(1–exp(–0.0501(t+2.6705))). The growth 
pattern of C. maderensis in the western Mediterranean Sea was similar to that reported for this species in the northeast At-
lantic Ocean. Though from a body size of 40-45 mm SL, growth rates declined more slowly in individuals from the western 
Mediterranean Sea, growth differences between these individuals and those from the northeast Atlantic Ocean were not statis-
tically significant. This study provides new insights into the age and growth patterns of one of the most abundant mesopelagic 
fish species in the Mediterranean Sea that have clear implications for the study and management of marine ecosystems.

Keywords: daily growth, larval growth, mesopelagic fish, Myctophidae, otolith microstructure.

Patrones de crecimiento del pez linterna Ceratoscopelus maderensis en el Mediterráneo occidental

Resumen: En el presente trabajo se describen la edad y los patrones de crecimiento desde la fase larvaria hasta la fase 
adulta del pez mesopelágico Ceratoscopelus maderensis (familia Myctophidae) del Mediterráneo occidental. Para ello, se 
analizó el otolito sagitta de 59 individuos capturados en diciembre de 2009. Se identificaron tres zonas en la sagitta, cada 
una de las cuales se corresponde con una fase del desarrollo ontogenético del pez: larvaria, metamórfica y juvenil-adulta. 
Asumiendo que los anillos de crecimiento son diarios, la edad de los individuos analizados (de 3.5 a 64 mm de longitud 
estándar [SL]) oscilaría entre 7 y 332 días. La relación entre el número de incrementos y la SL de los peces se ajustó al 
modelo de crecimiento de von Bertalanffy (SL=70.5899×(1–exp(–0.0501(t+2.6705))). El patrón de crecimiento de C. maderensis 
en el Mediterráneo occidental fue similar al previamente descrito para esta especie en el Noreste del Océano Atlántico. A 
pesar de que, a partir de 40-45 mm SL, las tasas de crecimiento disminuyeron más lentamente en los individuos del Medi-
terráneo occidental, las diferencias de crecimiento entre estos individuos y los del Noreste del Océano Atlántico no fueron 
estadísticamente significativas. Los resultados de este estudio aportan nuevos conocimientos sobre la edad y el crecimiento 
de una de las especies más abundantes del Mar Mediterráneo, lo cual tiene claras implicaciones de cara al estudio y la 
gestión de los ecosistemas marinos.

Palabras clave: crecimiento larvario, crecimiento diario, microestructura del otolito, Myctophidae, peces mesopelágicos.
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INTRODUCTION

Ceratoscopelus maderensis (Lowe, 1839) is a lan-
ternfish species (Myctophidae) that is generally found 
in mesopelagic waters at depths ranging from 200 to 
1000 m between 50ºN and 30°N in the North Atlan-
tic Ocean (Hulley 1984) and throughout the Mediter-
ranean Sea (Jonsson 1992, Cavallaro et al. 2019). Its 
larval stages inhabit the epipelagic layer, mostly con-
centrated in the first 50 m of the water column. When 
the transformation (metamorphic) stage is reached, 
individuals begin to move to the mesopelagic zone 
(Kendall et al. 1984, Richards 2005, Sassa et al. 2007). 
From this period onward, like most myctophid species, 
C. maderensis acquires a nictoepipelagic behaviour 
that implies diel vertical migrations between ca. 1000 
m depth and the surface (Hulley 1984, Mytilineou et al. 
2005, Olivar et al. 2012).

Ceratoscopelus maderensis is one of the most 
abundant myctophid species in the northeastern At-
lantic Ocean and the Mediterranean Sea (Goodyear 
et al. 1972, Hulley 1981, Olivar et al. 2012). As such, 
this species occupies a key position in the food-web 
structure of the mesopelagic community feeding on 
zooplankton (Bernal et al. 2015), which highlights its 
integral role in the functioning of oceanic ecosystems 
as an intermediate link between primary consumers 
and top predators (Gjøsaeter and Kawaguchi 1980, 
Sassa and Takahashi 2018, Anderson et al. 2019). 
Despite its important ecological role, the populations 
of C. maderensis remain one of the least well-studied 
components of marine ecosystems at both a region-
al and a global scale (St. John et al. 2016). Several 
studies have reported growth patterns in myctophid 
species (e.g. Gartner 1991a, Linkowski et al. 1993, 
Sassa et al. 2015), but despite their wide geographi-
cal distribution, there is still a lack of information on 
their growth rates and lifespan.

Accurate age determinations provide basic life-his-
tory information and are imperative for describing 
population dynamics at the species level. Most age-de-
termination studies on myctophids are based on the 
counting of daily growth increments (Brothers et al. 
1976, Methot and Kramer 1981, Gjøsaeter 1987) or sea-
sonal growth increments in sagittae otoliths (Sarmien-
to et al. 2018), length-based analysis (Ricker 1975 and 
references therein, Harvey et al. 2000) or a combination 
of these methods (Aguilar-Perera and Quijano-Puerto 
2016, Saunders et al. 2020). Microincrements in the 
otoliths of myctophids appear to be equivalent to dai-
ly rings that have been validated in other myctophids 
directly by considering their formation over periods 
of 24 hours (Gartner 1991a, b, Moku et al. 2005) and 
indirectly by the back-calculation of birth dates from 
the age, date of capture and timing with their spawn-
ing season (Young et al. 1988). Therefore, most studies 
about the growth and age of myctophids have assumed 
a daily micro-increment deposition (Greely et al. 1999, 
Hayashi et al. 2001, Wang et al. 2018).

Linkowsky et al. (1993) investigated the growth 
patterns of adult individuals of C. maderensis from 
the northeast Atlantic Ocean. However, the age and 

growth patterns of this species during its larval stage 
remained unknown so far, and no studies have been 
conducted in either early stages or adults from the 
Mediterranean Sea. The Mediterranean Sea is charac-
terized by the near-constant water temperature below 
the thermocline (100m depth) at ca.13°C (Olivar et 
al. 2012, Houpert et al. 2015) and its relative olig-
otrophy (Estrada 1985, Morel and Andre 1991). This 
contrasts with the colder and more productive waters 
of the northeastern Atlantic Ocean, where tempera-
tures range between 8°C and 18°C from 500 m depth 
to the surface (Emery and Meincke 1986). This could 
lead to dissimilar growth patterns in C. maderensis 
between the two biomes. Hulley (1984) showed that, 
in general, the maximum body size reached by meso-
pelagic fish species in the Atlantic Ocean was larger 
than that in the western Mediterranean Sea. However, 
several studies have also shown that higher tempera-
ture regimes can increase both otolith (Rountrey et al. 
2014) and fish growth (Handeland et al. 2008, Silva et 
al. 2008). Further genetic studies on the populations 
of C. maderensis might confirm whether the species 
separated into two different stocks, one in the Atlan-
tic Ocean and one in the Mediterranean Sea, with a 
biogeographical frontier in the Alboran Sea, as it has 
been demonstrated for many other fish species (Naciri 
et al. 1999).

The aims of the present study are i) to estimate the 
age and growth patterns of C. maderensis in the west-
ern Mediterranean Sea through the analysis of sagittae 
otoliths considering most of its entire lifecycle, and ii) 
to compare the growth patterns of this species in the 
western Mediterranean Sea with those reported by Lin-
kowski et al. (1993) for this species with individuals 
from the northeastern Atlantic Ocean. We expect that 
the warmer temperatures in the Mediterranean Sea will 
make this species grow faster than in the northeastern 
Atlantic Ocean.

METHODS

Fish sampling

Sampling was performed on board the research 
vessel Sarmiento de Gamboa during a cruise carried 
out in December 2009 (late autumn). The study area 
was located to the northwest and southwest of Mallor-
ca (Balearic Islands, western Mediterranean Sea, Fig. 
1) at the shelf-break (>200 m depth) and the median 
slope (700-900 m depth). A 280 m2 midwater trawl 
(10 mm mesh size in the cod-end) and a 3 m2 (3 mm 
mesh size) Isaacs- Kidd Midwater Trawl (IKMT) were 
employed to capture adult and juvenile fish. The depth 
where the fishing nets operated was controlled using 
a SCANMAR sensor. Fishing operations were per-
formed both near the surface (40-80 m) and near the 
Deep Scattering Layer (DSL) at 400 m depth, where 
the echosounder recorded the highest acoustic signal 
at 18 and 38 kHz (Olivar et al. 2012). The vessel speed 
was maintained at 4 knots for the large midwater trawl 
and 3 knots for the IKMT. After on-board fish identifi-
cation using specific literature (Hulley 1981, 1984), the 
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specimens were frozen and stored at –20°C to prevent 
otolith damage. The water column temperature was ob-
tained with the SBE 911plus CTD at each station.

The collection of fish larvae and transformation stages 
was carried out at the same stations with a 0.25 m2 Hy-
dro-Bios MultiNet with 0.3 mm mesh size. Oblique tows 
at five discrete depths from 200 m to the surface were per-
formed during a 24-h cycle (8 in daytime and 8 at night). 
Ichthyoplankton samples were preserved in 5% buffered 
formalin and sorted once in the laboratory. The pH was 
maintained at ca. 8 to prevent otolith degradation.

Fish larvae were sorted and identified in the lab-
oratory using relevant literature (Tåning 1918, Moser 
and Watson 2006). Larvae were ascribed to preflexion, 
flexion and postflexion stages (according to the uro-
style bending), or transformation stages (according to 
photophore development) (Kendall et al. 1984), and 
were measured to 0.1 mm precision under a micro-
scope employing an ocular micrometre.

Otolith preparation

The standard length (SL) was measured before oto-
lith extraction for 208 individuals, of which 45 were lar-
vae (<16 mm SL), 49 were individuals at the transforma-
tion stage (17-20 mm SL), and the remaining 114 were 
juveniles and adults (>20 mm SL). For each individual, 
the left and right sagittae otoliths were extracted from 
the ear cavity. In the larval and transformation stages, 
the otolith extraction was performed using a fine needle, 
with the help of polarized light of the microscope for 
a better location of the otoliths. After drying, a drop of 
Cristal Bond 590TM thermolabile resin was poured over 
the otolith for further preservation. In the juveniles and 
adults, we first made a cross-sectional incision at the 

back of the fish head, near the rear of the operculum. 
Then, the two sagittae were extracted with forceps ac-
cording to Secor et al. (1991). After the extraction, both 
otoliths were cleaned with a 5% solution of KOH to re-
move the attached organic tissue and then rinsed with 
water. The mounting and polishing were performed ac-
cording to the methods described by Morales-Nin (1992) 
and Stevenson and Campana (1992). An otolith of each 
fish was mounted on a slide to polish its sagittae section, 
fixing the inner face with thermolabile resin.

The otolith length was defined from maximum di-
ameter in larvae and from rostrum to posterior margin 
according to Tuset et al. (2008). In the smallest lar-
vae (5–7 mm SL), the transparency of the otoliths al-
lowed us to count growth increments without need for 
polishing. Otoliths from the transformation, juvenile 
and adult stages were manually polished with grind-
ing lapping papers (0.1–3 μm). In otoliths from larg-
er specimens, the polishing process was interspersed 
with micrographs of the increments located in the 
margin of the otolith (the narrowest ones) to ensure 
the identification and the count of these increments 
and prevent any loss in the case of over-polishing. To 
increase transparency in thicker otoliths, the polishing 
process was carried out on both sides, taking care not 
to affect the maximum diameter of the otolith. Final-
ly, the otoliths were ultra-polished with an abrasive 
consisting of a MicroCloth PSA 10/ PK 8 disc pre-
viously impregnated with an abrasive solution with 
0.05 μm of alumina. Daily increments were counted 
from images obtained with a digital camera mounted 
on an optical microscope (Zeiss Axioskop 2 Plus) and 
with the Image-Pro Plus v.5.0 image analysis soft-
ware (magnification: 100×, 400×, 630× and 1000×). 
Double readings were performed in the postrostrum 
otolith section. If the first reading was not coincident 
with the second one, a third reading was performed to 
guarantee the correct interpretation of age.

To determine whether the increment width was 
outside the resolution threshold of the optical micro-
scope, some otoliths from the transformation stage 
(n=1), and juvenile and adult stages (n=5) were also 
examined at high resolution. Polished otoliths were im-
mersed in a 1% HCl solution for between 60 and 300 
seconds, rinsed with water and allowed to air dry for 
24 hours. Finally, the otoliths were mounted, covered 
with gold-palladium and then observed using a scan-
ning electron microscope (SEM).

Growth estimation

In the Mediterranean Sea, C. maderensis is not sex-
ually mature until it reaches ≥40 mm SL (Hulley 1981, 
1984). Specimens collected in this study were not 
sexed, so we cannot confirm whether there are size dif-
ferences between sexes in individuals of C. maderensis 
from the western Mediterranean Sea. Therefore, in this 
study, specimens of both sexes were considered togeth-
er. Linkowski et al. (1993) observed that individuals 
of C. maderensis from the northeastern Atlantic Ocean 
showed no significant size differences between males 
and females. The relationship between the fish length 

Fig. 1. – Study area where samples were collected in the northwestern 
and southwestern basins of Mallorca Island (Mediterranean Sea, 
December 2009). Sampling stations are represented according to 
the type of device employed: blue rhombuses correspond to Hydro-
Bios MultiNet, red crosses to Isaacs-Kidd Midwater Trawl and 
Rectangular Midwater Trawl, and green circles to pelagic trawls; 

see the Methods section.
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and the otolith diameter was determined by linear re-
gression to ensure that the growth of the otolith is pro-
portional to the somatic growth of the species. As each 
increment is assumed to represent one-day growth, the 
relationship between the number of day-increments 
and SL was fitted by a von Bertalanffy growth curve 
based on Equation 1:

Lt=L∞[1–e–k(t–t
0
)]            [1]

where Lt is standard length in mm, L∞ is the as-
ymptotic size in mm, k in days−1 is the Brody growth 
rate coefficient, which measures the rate at which the 
growth rate declines, and t0 corresponds to the age at 
which L is 0 (von Bertalanffy 1938).

The absolute growth rate (gt) is given by gt=k(L∞–Lt), 
and when t=0 (w), the absolute growth rate is w=k×L∞. 
Parameters k and L∞ were fitted and estimated using R 
software.

Finally, a second von Bertalanffy growth curve 
considering adult specimens only (i.e. SL>19 mm) was 
fitted in order to assess for growth differences between 
our specimens from the western Mediterranean Sea 
and from the northeastern Atlantic Ocean measured by 
Linkowski et al. (1993) (individuals with SL<19 mm 
were not considered by these authors). The compari-
son of these two curves was performed without fixing 
parameters or fixing one, two or all three parameters 
using the fisheries stock-assessment method package 
(FSA; Ogle 2016) in R software. According to this 
method, when the best explanatory models are those 
in which most of the parameters have not been fixed, 
this indicates that there are differences between the 
curves. By contrast, when the best models are those in 
which most parameters have been fixed, this indicates 
similarities between the curves. The best models were 
selected using the Akaike information criterion (AIC, 
Burnham and Anderson 2002). Models with AIC dif-
ferences ≤2 were considered equivalent (see Burnham 
and Anderson 2002, 2004).

RESULTS

A total of 208 individuals of C. maderensis were 
selected to cover the entire size range of the species in 
the western Mediterranean Sea. However, only 59 indi-
viduals (28%) could be successfully processed because 
of difficulties in the preparation process. This is main-
ly because the counting of increments in the otoliths of 
larger specimens was only possible after obtaining ex-
tremely thin and delicate sheets that broke easily during 
polishing or when using the hot melting resin for fixing. 
Despite these difficulties, the number of otoliths suc-
cessfully processed was large enough to constitute a rep-
resentative sample of the size range of C. maderensis in 
the western Mediterranean Sea.

Larval otoliths were round and very small (otolith 
diameter in larval individuals ranged between 19.96 
and 218.51 µm) but turned into an oval shape as the 
fish grows (Fig. 2). The size-frequency distribution of 
juvenile and adult stages showed two modal size class-
es (20 and 50 mm respectively) (Fig. S1).

Microstructure of the otoliths

The observation and the counting of otolith incre-
ments were feasible using both optical microscope 
and SEM. Three different zones were differenciated 
in adult specimens: larval (Fig. 3A, B), metamorphic 
(Fig. 3C, D), and juvenile-adult (Fig. 3E, F). Table 1 
shows the SL ranges and the number of increments for 
each of these regions. The larval region was composed 
of a core (Fig. 3B) followed by a succession of an av-
erage of 27 increments (n=9, σ=2.98). The mean radius 
between the centre of the core and the outer part of 
the first increment was 2.95 μm (n=3, σ=0.84), while 
the average radius of the larval zone was 125.34 μm 
(n=19, σ=30.46). Within the larval region, the incre-
ment thickness increased progressively following the 
exponential function:

y=1.2196e0.015x        [2]

where y corresponds to the thickness of the increments 
in μm and x is the radius in μm (r2=0.91). The mean 
increment thickness in this region ranged from 1.4 to 
4.2 μm (n=14, σ=0.88). The end of the larval region 
was well defined by a dark band of transition between 
the larval and metamorphic zones (Fig. 3A). This band 
was 5-10 μm wide and could also be detected using an 
optical microscope.

The metamorphic zone (Fig. 3C, D) extended from 
the external limit of the larval region (Fig. 3A) to the 

Fig. 2. – Linear regression between the maximum otolith diameter 
(OL) and fish length (SL) of Ceratoscopelus maderensis otoliths 
from the western Mediterranean Sea. The images show ontogenetic 

changes in the otolith shape with development.

Development phase SL (mm) Increments N

Larval ≤ 14 7-43 12

Metamorphic 16-19 42-69 5

Juvenile-adult 19-64 61-332 42

Table 1. – Standard length (SL), number of increments for each 
developmental zone (larval, metamorphic and juvenile-adult) 
identified in the otoliths of N individuals of Ceratoscopelus 

maderensis from the western Mediterranean Sea.
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Fig. 3. – Scanning electron microphotography (SEM) of selected otoliths of Ceratoscopelus maderensis from the western 
Mediterranean Sea. (A) Larval zone: the transition between the larval and metamorphic zones is observed. (B) Detail of the central 

core in (A). (C), (D) Details of the metamorphic zone. (E) Increments in the juvenile-adult zone. (F) The margin of the otolith.
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Fig. 4. – Detail (100×) of the sagittae section of the postrostrum where two translucent and one opaque zone are 
distinguished in Ceratoscopelus maderensis from the western Mediterranean Sea.

Origin
Translucent zones

SL (mm)
Increments SourceMean SD Range N

Western Mediterranean Sea I 22.11 3.50 18-29 14 70 This study

Western Mediterranean Sea II 39.87 4.05 33-46 14 165 This study

Western Mediterranean Sea III 50.30 6.31 42-64 8 247 This study

Atlantic Ocean I 25.14 6.88 15.8-39.5 41 84 Linkowski et al. 1993

Atlantic Ocean II 35.27 6.25 23.9-46.1 27 130 Linkowski et al. 1993

Atlantic Ocean III 41.82 6.86 34.4-59.5 11 169 Linkowski et al. 1993

Table 2. – Calculation of the standard length (SL) from successive translucent bands in the otoliths of Ceratoscopelus maderensis from the 
western Mediterranean Sea (our study) and the Atlantic Ocean (Linkowski et al. 1993). The first translucent band (I) corresponds to the one 
closest to the centre of the otolith. The number of increments was estimated using the resulting von Bertalanffy model. SD, standard deviation.

beginning of the juvenile-adult region (Fig. 3E, F). In-
crements in this region showed no clear pattern and 
were sometimes even unnoticeable or incomplete and 
irregular. This greatly hindered counting of the number 
of increments in this area, so estimates for this region 
should be taken with caution. Additionally, it made it 
difficult to obtain accurate measures of the mean in-
crement thickness in this region, which was 142.46 μm 
(n=14, σ=42.23). Finally, the juvenile-adult zone (Fig. 
3E, F) consisted of well-defined increments that showed 

the typical radial structure and rhythmic growth patterns, 
as in other species. The mean increment thickness was 
4.94 μm (n=22) and showed a decreasing trend towards 
the otolith edge (to <1μm) (Fig. 3F). In addition to the 
three development regions mentioned above, from one 
to three translucent regions were also observed along 
the radial axis of the otolith of adult individuals (Fig. 4). 
The radius of each of these translucent regions relating 
to both the fish SL and the number of increments in the 
otolith is shown in Table 2.
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Growth

The age interpretation of the otoliths under the op-
tical microscope with coincident readings was success-
ful in 59 individuals between 3.5 mm and 64 mm SL 
(Table 1). Assuming that the frequency of increment 
formation in the otoliths of C. maderensis is daily, these 
individuals would be between 7 and 332 days old. The 
relationship between the number of increments and the 
SL, considering the full-size range of individuals, ren-
ders an asymptotic size of 70.59 mm and growth rates 
of 0.33 (for the smallest larvae) to 0.03 (for the largest 
adult specimen), with a growth rate decline through the 
development of 0.01mm (Fig. 5, Tables 3 and 4).

Table S1 shows the estimates of the parameters of the 
von Bertalanffy growth curves that we obtained when 
considering adult specimens only (SL>19mm), in or-
der to assess growth differences between our specimens 
and those measured by Linkowski et al. (1993) (Fig. 6) 
in the northeastern Atlantic Ocean. The comparison of 
these two curves revealed that the best explanatory mod-
el (Model 1, Table 5) was the one in which the three 
parameters of the growth curve (Linf, k and t0) had been 
fixed. This indicates that growth differences between 
our specimens and those measured by Linkowski et al. 
(1993) in the northeastern Atlantic Ocean are not statis-
tically significant. Models 1, 2, 3 and 4 (Table 5) can 
be considered equivalent as their ∆AIC values were <2. 
For body size, von Bertalanffy models predicted a SL of 
72.82 mm for the Mediterranean individuals and 77.94 
mm for the Atlantic ones (Table S1). However, consider-
ing the standard error obtained, body size differences be-
tween the Mediterranean and Atlantic specimens should 
be considered with caution.

DISCUSSION

This study provides for the first time the growth 
patterns of the lanternfish C. maderensis in the west-
ern Mediterranean Sea. Series of translucent bands 
alternating with more opaque ones were observed 
throughout the radius of the otolith across the onto-
genetic development in agreement with observations 
by Linkowski et al. (1993) in Atlantic specimens. 
However, the age determination of C. maderensis had 
some uncertainties given the lack of clear increments 
during the metamorphic phase and the unknown pe-
riod between hatching and the time at which the first 
increment is laid down. The complete reading of the 
number of increments in otoliths was particularly dif-
ficult in larger specimens (>40 mm SL) because the 
increments could not be read simultaneously across 
the entire otolith. In fact, only 28% of examined spec-
imens could be successfully processed given these 
difficulties. While Linkowsky et al. (1993) applied 
the Ratke and Dean’s (1982) regression model to pre-
dict the number of otolith increments in adults, in this 
study the preparation of the otoliths was optimized to 
enable the direct counting of increments from imag-
es obtained through the optical microscope. This al-
lowed us to build a growth model using a single type 
of methodology to obtain all the data.

Fig. 5. – Relationship between the number of increments (N) and 
standard length (SL) of Ceratoscopelus maderensis from the western 
Mediterranean Sea. Data were fitted to a von Bertalanffy growth 

model (see Methods section). t corresponds to the time in days.

Fig. 6. – Comparison of the number of increments (N) and standard 
length (SL) of Ceratoscopelus maderensis from the western 
Mediterranean Sea (red circles, this study) and the North Atlantic 

Ocean (green circles, Linkowski et al. 1993).

Table 3. – Parameters of the von Bertalanffy growth equation for 
Ceratoscopelus maderensis using the full-size range from larvae to 

adults from the western Mediterranean Sea.

CI (95%)

Parameter Estimated Lower limit Upper limit P

L∞ (mm) 70.59 61.1 80.08 0.0000

 k (days–1) 0.01 0 0.01 0.0000

t0 (days) –2.67 –10.61 5.27 0.5032

C. maderensis larvae inhabit the surface layer up to 
100 m depth during the day and at night (Olivar et al. 
2014), but their feeding activity takes place only during 
daylight (Contreras et al. 2015). Thus, the photoperiod 
and the feeding activity of these early stages must play 
an important role in the deposition of calcium in the oto-
liths and the pattern of their increments (see Eckmann 
2000, Morales-Nin 2000), which is in line with the reg-
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ular deposition pattern that we observed in the larvae of 
our study. During the transformation phase, otoliths did 
not show such a definite deposition pattern, a finding that 
could probably be related to migration or feeding. This 
suggests that transformation individuals occur near the 
surface and at depths greater than 500 m, with non-de-
fined daily feeding patterns (Contreras et al. 2015, Olivar 
et al. 2018). The absence of behavioural patterns during 
this developmental stage appears to be reflected in the 
otolith growth, in which the regular deposition pattern 
was drastically lost, as occurs in other myctophid species 
(e.g. Ozawa and Peñaflor 1990, Gartner et al. 1991b, Tak-
agi et al. 2006). As in other species, the end of this phase 
in C. maderensis is determined by the recovery of regu-
larity in the deposition of the increments (e.g. Linkowski 
et al. 1993).

The wide depth range associated with the habi-
tat of C. maderensis encompasses major changes in 
seawater temperature, pressure, light and food avail-
ability. For instance, when the adult fishes migrate to 
near-surface layers (40-80m) at night, they are ex-
posed to temperatures ~18°C. In contrast, during the 
daytime, adults remain in mesopelagic layers (200-
1000 m) where the water temperature is practically 
homogeneous at ca. 13°C. Considering this marked 
contrast in water temperature, it makes sense to as-
sume that the specimens experience a period of ad-
aptation during transformation, in which they do not 
perform the customary vertical migrations observed 
in adults. Therefore, during the transformation, C. 
maderensis might be experiencing gradual contact 

Model Fixed parameters Deviance AIC ΔAIC Wi

1 Linf, K, t0 1177.060 601.828 0.000 0.335

2 K, t0 1174.704 603.597 1.770 0.138

3 Linf, t0 1175.638 605.458 1.861 0.132

4 Linf, K 1176.968 607.449 1.991 0.124

5 Linf 1162.267 609.995 2.545 0.094

6 K 1165.683 612.878 2.883 0.079

7 t0 1172.123 616.394 3.517 0.058

8   1159.323 620.648 4.254 0.040

Estimates for parameters ± SE Model 1 Model 2 Model 3 Model 4

Linf 1 76.16 ± 1.983 76.54 ± 2.157 76.43 ± 2.124 76.13 ± 2.003

Linf 2 77.16 ± 2.872

K1    0.004 ± 0.000 0.004 ± 0.000 0.004 ± 0.000 0.004 ± 0.000

K2   0.004 ± 0.000

t01   19.85 ± 7.152 -20.83 ± 7.432 -20.36 ± 7.295 -19.93 ± 7.282

t02         -19. 2 ± 7.870

Table 5. – Upper part: models considered to assess growth differences between our specimens of Ceratoscopelus maderensis from the 
western Mediterranean Sea (considering adult specimens only; SL>19mm) and those measured by Linkowski et al. (1993) in the northeastern 
Atlantic Ocean, deviance, Akaike information criterion (AIC) values and Akaike weights (Wi). Lower part: estimates and standard error of 
the parameters of the four equivalent models (∆AIC<2; Models 1, 2, 3 and 4). L∞, asymptotic size (mm); k, Brody growth coefficient (days–1);  

t0, age at which L is 0 (days).

Table 4. – Growth rates (gt) as a function of size for the von Berta-
lanffy growth model in individuals from the western Mediterranean 

Sea and the Atlantic Ocean. SL, standard length.

Western Mediterranean 
Sea (this study)

Atlantic Ocean 
(Linkowski et al. 1993)

SL (mm) gt gt

5 0.33

10 0.30

15 0.28

20 0.25 0.21

25 0.23 0.19

30 0.20 0.17

35 0.18 0.16

40 0.15 0.14

45 0.13 0.20

50 0.10 0.10

55 0.08 0.08

60 0.05 0.07

65 0.03 0.05

70 0.03

75 0.01

80 -0.01
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with the physicochemical conditions that the species 
will have to face when reaching the adult phase. Ulti-
mately, adults exhibit diel vertical migrations to feed 
near the surface (Bernal et al. 2015) and remain with-
out feeding activity in the mesopelagic zone during 
the light hours, as mentioned above (Hulley 1984, 
Olivar et al. 2012). Incremental deposition in the ju-
venile-adult phase involved well-defined increments, 
with a decreasing pattern in the increment thickness 
towards the otolith edge (to <1μm). This decreasing 
pattern could also be reversed in some cases, as de-
scribed in other myctophids (e.g. Greely et al. 1999, 
Tomás and Panfili 2000). Therefore, the increment 
thickness in otoliths during the juvenile-adult phase 
might vary among individuals, probably as a result of 
short-term variations in food availability.

The temperature range in the sea surface and the 
mesopelagic waters is higher in the Mediterranean Sea 
than in the northeastern Atlantic Ocean (Salat et al. 
2002, Olivar et al. 2012). This is particularly interest-
ing below the thermocline in the Mediterranean Sea, 
where the temperature does not drop below 13ºC. In 
general, higher water temperature regimes speed up 
metabolic processes increasing growth in organisms. 
Furthermore, these temperature differences can be 
observed in the otolith microstructure (Degens et al. 
1969). This may help to explain why growth rates de-
clined more slowly from a certain body size in indi-
viduals from the western Mediterranean Sea. However, 
growth differences between individuals from the west-
ern Mediterranean Sea and those from the northeastern 
Atlantic Ocean were not statistically significant.

Many aspects of the biology and ecology of myc-
tophids are still poorly understood and require further 
investigation for managing ecosystems, particularly 
under uncertain climate changes. This study provides 
further knowledge of the biology of this abundant myc-
tophid, taking into account not only its entire life cycle 
but also a different geographical scenario. However, 
a more complete time coverage over the year and the 
validation of the daily periodicity of the increments are 
still necessary to achieve a more profound knowledge 
of the age and growth of the species.
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Fig. S1. – Frequency distribution of the standard length (SL) of individuals considered in this study (N=59).

Table S1. – Estimates and standard error of the parameters of the von Bertalanffy curves obtained when comparing the growth of our adult 
specimens (SL>19mm) with those measured by Linkowski et al. (1993) in the northeast Atlantic Ocean. L∞: asymptotic size (mm); k: Brody’s 

growth coefficient (days-1); t0: age at which L is 0 (days).

  Western Mediterranean Sea
 (this study)

Northeast Atlantic Ocean 
(Linkowski et al. 1993)

Parameter Estimate Standard error P Estimate standard error P

L∞ (mm) 72.82 8.272 <0.001  77.94 2.611 <0.001

k (days-1) 4.59e-3 1.19e-3  <0.001 3.63e-3 3.85e-4 <0.001

t0 (days) -8.37   13.50 >0.05 -28.59  10.10  <0.01 
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