Scientia Marina 85 (1)
January-March 2021, 15-28
ISSN: 0214-8358, eISSN: 1886-8134
https://doi.org/10.3989/scimar.05062.002

The elephant in the room: first record of invasive gregarious species of serpulids (calcareous tube annelids) in Majorca (western Mediterranean)

El elefante en la habitación: primera cita de serpúlidos gregarios invasores (anélidos de tubo calcáreo) en Mallorca (Mediterráneo occidental)

Maël Grosse

Departament de Biologia, Universitat de les Illes Balears, Palma, Illes Balears, Spain.

https://orcid.org/0000-0002-0977-1376

Roberto Pérez

Departament de Biologia, Universitat de les Illes Balears, Palma, Illes Balears, Spain.

https://orcid.org/0000-0002-5333-7300

Mateo Juan-Amengual

Departament de Biologia, Universitat de les Illes Balears, Palma, Illes Balears, Spain.

https://orcid.org/0000-0002-9064-8040

Joan Pons

Mediterranean Institute for Advanced Studies (IMEDEA), Esporles, Illes Balears, Spain.

https://orcid.org/0000-0002-4683-8840

María Capa

Departament de Biologia, Universitat de les Illes Balears, Palma, Illes Balears, Spain.

https://orcid.org/0000-0002-5063-7961

Summary

Although there are several nuisance species of serpulids reported worldwide, the present study shows that some of them have been overlooked even in geographic areas that are considered well studied. We report for the first time in Majorca the invasive species Ficopomatus enigmaticus and the first records for the Balearic Islands of the also non-native species Hydroides dianthus, H. dirampha, H. elegans and H. nigra. The most abundant species were F. enigmaticus, found at higher densities in Portixol (with up to 280 ind. m-2), and H. elegans, found at highest densities in the port of Palma (with up to 270 ind. m-2). Species have been identified after morphological examination and corroborated by mitochondrial DNA sequence data: cytochrome c oxidase subunit 1 (COI) and cytochrome b (Cytb). Molecular data show that the same haplotypes have been found in distant and disjoint biogeographic areas worldwide, which is only explicable by unintentional translocation of specimens through vectors (i.e. ship hulls or ballast water). Species delimitation analyses support previous findings that species complexes are common in both Ficopomatus and Hydroides. In fact, only among the Majorcan samples were we able to detect three species of the F. enigmaticus species complex, two of the H. elegans species complex and two of the H. dianthus species complex. The genetic distances between members of the F. enigmaticus species complex are 8.7% to 16.7% in COI sequences. The species of Hydroides hold 5.4% to 47.6 % genetic divergence between species of the same complex.

Keywords: 
non-indigenous; Hydroides; Ficopomatus; Serpulidae; polychaetes; COI; Cytb; integrative taxonomy
Resumen

Hay constancia de especies alóctonas de serpúlidos reportadas en el mundo. Pero el presente estudio muestra que algunas de ellas han sido pasadas por alto incluso en áreas geográficas consideradas bien estudiadas. En este trabajo se cita por primera vez en Mallorca la especie invasora Ficopomatus enigmaticus y se registra también por primera vez para las Islas Baleares las también especies exóticas Hydroides dianthus, H. dirampha, H. elegans e H. nigra. Las especies más abundantes fueron F. enigmaticus, encontrada en mayores densidades en Portixol (con hasta 280 ind. m-2) y H. elegans, encontrada en mayores densidades en el puerto de Palma (con hasta 270 ind. m-2). Las especies han sido identificadas después su estudio morfológico y corroboradas por las secuencias de ADN mitocondrial: subunidad 1 de la citocromo c oxidasa (COI) y citocromo b (Cytb). Los datos moleculares muestran que se han encontrado los mismos haplotipos en áreas biogeográficas distantes e inconexas de a nivel mundial, lo que solo se explica por la translocación involuntaria de ejemplares a través de vectores (es decir, cascos de barcos o agua de lastre). Los análisis de delimitación de especies respaldan resultados previos acerca de la existencia de complejos de especies en ambos géneros Ficopomatus e Hydroides. De hecho, sólo entre las muestras mallorquinas pudimos detectar tres especies del complejo de especies F. enigmaticus, dos del complejo de especies de H. elegans y dos del complejo de especies de H. dianthus. Las distancias genéticas entre los miembros del complejo de especies de F. enigmaticus son del 8.7 al 16.7% en las secuencias COI. Las especies de Hydroides tienen un 5.4-47.6% de divergencia genética entre especies del mismo complejo.

Palabras clave: 
alóctonas; Hydroides; Ficopomatus; Serpulidae; poliquetos; COI; Cytb; taxonomía integrativa

Received: April  03,  2020. Accepted: October  19,  2020. Published: March31, 2021.

Editor: R. Sardà.

Citation/Cómo citar este artículo: Grosse M., Pérez R., Juan-Amengual M., Pons J., Capa M. 2021. The elephant in the room: first record of invasive gregarious species of serpulids (calcareous tube annelids) in Majorca (western Mediterranean). Sci. Mar. 85(1): 15-28. https://doi.org/10.3989/scimar.05062.002

CONTENT

INTRODUCTION

 

According to the International Union for Conservation of Nature, biological invasions and destruction of habitat are the most important causes of biodiversity loss. Biological invasions refer to the introduction (accidental or intentional), establishment and expansion of species outside their natural geographic range (ISSG 2011Invasive Species Specialist Group (ISSG). 2011. We need to strengthen, not weaken, the struggle against harmful invasive species. http://www.issg.org/pdf/rebuttal.pdf ). Non-native species are regarded as a major threat to marine biodiversity and a contributor to environmental change (Bax et al. 2003Bax N., Williamson A., Aguero M., et al. 2003. Marine invasive alien species: a threat to global biodiversity. Mar. Policy 27: 313-323., Molnar et al. 2008Molnar J.L., Gamboa R.L., Revenga C., et al. 2008. Assessing the global threat of invasive species to marine biodiversity. Front. Ecol. Environ. 6: 485-492. https://doi.org/10.1890/070064 , Katsanevakis et al. 2014Katsanevakis S., Wallentinus I., Zenetos A., et al. 2014. Impact of invasive alien marine species on ecosystem services and biodiversity: a pan-European review. Aquat. Invasions 9: 391-423. https://doi.org/10.3391/ai.2014.9.4.01 ). However, introductions have increased radically in recent years due to numerous human-driven activities such as aquaculture, marine traffic and interconnection of hydrogeographic basins. Such introductions, especially if the organisms establish themselves and become invasive, may cause important negative environmental impacts with economic and social implications. Displacement and extinction of local species, hybridization and genetic contamination, alteration of community’ structures and complex ecological interaction networks, introduction of parasites and pathogens, obstruction of canals, infrastructure damage and losses in mariculture and facilitation of native species (Rodriguez 2006Rodriguez L.F. 2006. Can invasive species facilitate native species? Evidence of how, when, and why these impacts occur. Biol. Invasions 8: 927-939. https://doi.org/10.1007/s10530-005-5103-3 ) are some of the processes that have already been documented as consequences of invasive species (Bax et al. 2003Bax N., Williamson A., Aguero M., et al. 2003. Marine invasive alien species: a threat to global biodiversity. Mar. Policy 27: 313-323., Zenetos et al. 2005Zenetos A., Çinar M.E., Pancucci-Papadopoulou M.A., et al. 2005. Annotated list of marine alien species in the Mediterranean with records of the worst invasive species. Mediterr. Mar. Sci. 6: 63-118. https://doi.org/10.12681/mms.186 , Molnar et al. 2008Molnar J.L., Gamboa R.L., Revenga C., et al. 2008. Assessing the global threat of invasive species to marine biodiversity. Front. Ecol. Environ. 6: 485-492. https://doi.org/10.1890/070064 ).

The family Serpulidae Rafinesque, 1815Rafinesque C.S. 1815. Analyse de la nature ou tableau de l’univers et des corps organisés. Palermo, 224 pp. https://doi.org/10.5962/bhl.title.106607 are marine, benthic sedentary annelids living in the calcareous tubes they build-a diagnostic feature shared by all members of this family. Serpulids are an important component of the encrusting fauna in benthic environments and can play an important role as ecosystem engineers (Toonen and Pawlik 2001Toonen R.J., Pawlik J.R. 2001. Foundations of gregariousness: A dispersal polymorphism among the planktonic larvae of a marine invertebrate. Evolution 55: 2439-2454. https://doi.org/10.1111/j.0014-3820.2001.tb00759.x , Wright and Gribben 2017Wright J.T., Gribben P.E. 2017. Disturbance-mediated facilitation by an intertidal ecosystem engineer. Ecology 98: 2425-2436. https://doi.org/10.1002/ecy.1932 ). Non-native serpulid species can therefore cause severe impacts in newly colonized habitats as they can potentially aggregate, forming large biogenic reefs that change the habitat structure (Crooks 2002Crooks J. A. 2002. Characterizing ecosystem-level consequences of biological invasions: the role of ecosystem engineers. Oikos 97: 153-166. https://doi.org/10.1034/j.1600-0706.2002.970201.x , Heiman and Micheli 2010Heiman K.W., Micheli F. 2010. Non-native ecosystem engineer alters estuarine communities. Integr. Comp. Biol. 50: 226-236. https://doi.org/10.1093/icb/icq036 , Pernet et al. 2016Pernet B., Barton M., Fitzhugh K., et al. 2016. Establishment of the reef-forming tubeworm Ficopomatus enigmaticus (Fauvel, 1923) (Annelida: Serpulidae) in southern California. Bioinvasions Rec. 5. https://doi.org/10.3391/bir.2016.5.1.03 ), reduce food availability for other species (Bruschetti et al. 2009Bruschetti M., Bazterrica C., Luppi T., et al. 2009. An invasive intertidal reef-forming polychaete affect habitat use and feeding behavior of migratory and locals birds in a SW Atlantic coastal lagoon. J. Exp. Mar. Biol. Ecol. 375: 76-83. https://doi.org/10.1016/j.jembe.2009.05.008 , Pan and Marcoval 2013Pan J., Marcoval M.A. 2013. Top-down effects of an exotic serpulid polychaete on natural plankton assemblage of estuarine and brackish systems in the SW Atlantic. J. Coast. Res. 30: 1226-1235. https://doi.org/10.2112/JCOASTRES-D-12-00163.1 ) and have an effect on sedimentation processes that can change the ecological dynamics (Davies et al. 1989Davies B.R., Stuart V., De Villiers M. 1989. The filtration activity of a serpulid polychaete population (Ficopomatus enigmaticus (Fauvel)) and its effects on water quality in a coastal marina. Estuar. Coast. Shelf. Sci. 29: 613-620. https://doi.org/10.1016/0272-7714(89)90014-0 , Schwindt et al. 2001Schwindt E., Bortolus A., Iribarne O.O. 2001. Invasion of a reef-builder polychaete: direct and indirect impacts on the native benthic community structure. Biol. Invasions 3: 137-149. https://doi.org/10.1023/A:1014571916818 , 2004Schwindt E., De Francesco C.G., Iribarne O.O. 2004. Individual and reef growth of the invasive reef-building polychaete Ficopomatus enigmaticus in a south-western Atlantic coastal lagoon. J. Mar. Biol. Assoc. UK. 84: 987-993. https://doi.org/10.1017/S0025315404010288h ). Serpulids can also have a more direct impact on human activities by damaging ships or anthropogenic structures in harbours (Ulman et al. 2019Ulman A., Ferrario J., Forcada A., et al. 2019. Alien species spreading via biofouling on recreational vessels in the Mediterranean Sea. J. Appl. Ecol. 56: 2620-2629. https://doi.org/10.1111/1365-2664.13502 ) and clogging sewage systems and cooling water in take pipes for power plants (Zibrowius 2002Zibrowius H. 2002. Assessing scale and impact of ship-transported alien fauna in the Mediterranean? CIESM Workshop Monographs 20: 62-68., Read and Gordon 1991Read G.B., Gordon D.P. 1991. Adventive occurrence of the fouling serpulid Ficopomatus enigmaticus (Polychaeta) in New Zealand. N. Z. J. Mar. Freshw. Res. 25: 269-273. https://doi.org/10.1080/00288330.1991.9516478 , Peria and Pernet 2019Peria J., Pernet B. 2019. Tolerance to salinity and thermal stress by larvae and adults of the serpulid annelid Ficopomatus enigmaticus. Invertebr. Biol. 138: e12271. https://doi.org/10.1111/ivb.12271 ).

Ficopomatus enigmaticus (Fauvel, 1923Fauvel P. 1923. Un nouveau serpulien d’eau saumatre Mercierella enigmatica n. sp. Bull. Soc. Zool. Fr. 46: 424-430.) is a nuisance biofouling organism and a highly invasive species that has colonized estuaries and ports around the planet, where it can build reefs up to several metres in diameter (Fauvel 1923Fauvel P. 1923. Un nouveau serpulien d’eau saumatre Mercierella enigmatica n. sp. Bull. Soc. Zool. Fr. 46: 424-430., Dittmann et al. 2009Dittmann S., Rolston A., Benger S.N., et al. 2009. Habitat requirements, distribution and colonisation of the tubeworm Ficopomatus enigmaticus in the Lower Lakes and Coorong. Report for the South Australian Murray-Darling Basin Natural Resources Management Board, Adelaide, 99 pp., Styan et al. 2017Styan C.A., McCluskey C.F., Sun Y., et al. 2017. Cryptic sympatric species across the Australian range of the global estuarine invader Ficopomatus enigmaticus (Fauvel, 1923) (Serpulidae, Annelida). Aquat. Invasions 12: 53-65. https://doi.org/10.3391/ai.2017.12.1.06 ). It is also the only annelid registered in the Spanish Catalogue of Exotic Invasive Species (http://invasiber.org/). Although its geographical origin is unclear, the most agreed hypothesis is that it spread from Australia or the Indo-Pacific (Dittmann et al. 2009Dittmann S., Rolston A., Benger S.N., et al. 2009. Habitat requirements, distribution and colonisation of the tubeworm Ficopomatus enigmaticus in the Lower Lakes and Coorong. Report for the South Australian Murray-Darling Basin Natural Resources Management Board, Adelaide, 99 pp., Styan et al. 2017Styan C.A., McCluskey C.F., Sun Y., et al. 2017. Cryptic sympatric species across the Australian range of the global estuarine invader Ficopomatus enigmaticus (Fauvel, 1923) (Serpulidae, Annelida). Aquat. Invasions 12: 53-65. https://doi.org/10.3391/ai.2017.12.1.06 ). The first specimens were discovered in the canals of northern France, were they were probably introduced during World War I, attached to the hulls of warships (Fauvel 1923Fauvel P. 1923. Un nouveau serpulien d’eau saumatre Mercierella enigmatica n. sp. Bull. Soc. Zool. Fr. 46: 424-430.). The first accurate report for the Iberian Peninsula was in Galicia, northwestern Spain (Rioja 1923Rioja E. 1923. Estudio sistemático de las especies Ibéricas del suborden Sabelliformia. Trab. Mus. Natl. Cienc. Nat. Ser. Zool. 48: 1-144.), very soon after the species description. Decades later, it was reported in several localities along the Mediterranean coastline and in Turkey, Greece, Italy and Albania (e.g. Ergen 1976Ergen Z. 1976. Investigations on the taxonomy and ecology of Polychaeta from Izmir Bay and its adjacent areas. Sci. Rep. Fac. Sci. Ege Univ. 209: 1-73., Ambrogi 2000Ambrogi A.O. 2000. Biotic invasions in a Mediterranean lagoon. Biol. Invasions. 2: 165-176. https://doi.org/10.1023/A:1010004926405 , Shumka et al. 2014Shumka S., Kashta L., Cake A. 2014. Occurrence of the nonindigenous tubeworm Ficopomatus enigmaticus (Fauvel, 1923) (Polychaeta: Serpulidae) on the Albanian coast of the Adriatic Sea. Turk. J. Zool. 38: 519-521.https://doi.org/10.3906/zoo-1303-14 ). On the Levantine coast of the Iberian Peninsula, F. enigmaticus has been reported from Catalonia, Valencia and Murcia. In the Balearic Islands, it has been found in the Albufera of Menorca forming large reefs (Martínez-Taberner et al. 1993Martínez-Taberner A., Forteza V., Fornós J.J. 1993. Colonization, structure and growth of Ficopomatus enigmaticus cf. ten Hove and Weerdenburg (Polychaeta, Serpulidae) in the Albufera of Menorca, Balearic Islands. Verh. Internat. Verein. Limnol. 25: 1031-1034. https://doi.org/10.1080/03680770.1992.11900316 , Fornós et al. 1997Fornós J.J., Forteza V., Martínez-Taberner A. 1997. Modern polychaete reefs in western Mediterranean lagoons: Ficopomatus enigmaticus (Fauvel) in the Albufera of Menorca, Balearic islands. Palaeogeogr. Palaeoclimatol. Palaeoecol. 128: 175-186. https://doi.org/10.1016/S0031-0182(96)00045-4 ) but has never been reported from Majorca.

Seven species of the genus Hydroides, H. dianthus (Verrill, 1873Verrill A.E. 1873. XVIII. Report upon the invertebrate animals of Vineyard Sound and the adjacent waters, with an account of the physical characters of the region. Report on the condition of the sea fisheries of the south coast of New England in 1871 and 1872. Washington Gov. Print. Off. pp. 295-778. https://doi.org/10.5962/bhl.title.57652 ), H. dirampha Mörch, 1863Mörch O. A. L. 1863. Revisio critica Serpulidarum. Et Bidrag til Rørormenes Naturhistorie. Naturh. Tidsskr. København 3: 347-470., H. brachyacantha Rioja, 1941Rioja E. 1941. Estudios Anelidologicos. II. Observaciones acerca de varias especies del genero Hydroides Gunnerus (sensu Fauvel) de las costas Mexicanas del Pacífico. An. Inst. Biol. Mex. 12: 161-175., H. elegans (Haswell, 1883Haswell W.A. 1883. On some new Australian tubicolous annelids. Proc. Linn. Soc. N.S.W. 7: 633-638.), H. heterocera (Grube, 1868Grube A.E. 1868. Beschreibungen einiger von Georg Ritter von Frauenfeld gesammelter Anneliden und Gephyreen des rothen Meeres. Verh. Zool.-Bot. Ges. Wien 18: 629-650.), H. minax (Grube, 1878Grube A.E. 1878. Annulata Semperiana. Beiträge zur Kenntniss der Annelidenfauna der Philippinen nach den von Herrn Prof. Semper mitgebrachten Sammlungen. Mem. Acad. Sci. St. Petersb. 25: 1-300. https://doi.org/10.5962/bhl.title.85345 ) and H. operculata (Treadwell, 1929Treadwell A.L. 1929. New species of polychaetous annelids in the collections of the American Museum of Natural History from Porto Rico, Florida, Lower California, and British Somaliland. Am. Mus. Novit. 392: 1-13. https://doi.org/10.5479/si.00963801.75-2797.1 ), have also been reported as invasive and their presence is well documented for the eastern Mediterranean and for the Levantine coast of the Iberian Peninsula (Çinar 2006Çinar M. E. 2006. Serpulid species (Polychaeta: Serpulidae) from the Levantine coast of Turkey (eastern Mediterranean), with special emphasis on alien species. Aquat. Invasions 1: 223-240. https://doi.org/10.3391/ai.2006.1.4.6 , Gil 2011Gil J. 2011. The European fauna of Annelida Polychaeta. PhD thesis, Univ. Lisboa, Portugal, 1554 pp., Alcázar and San Martín 2016Alcázar J., San Martín G. 2016. Serpúlidos (Annelida, Serpulidae) colectados en la campaña oceanográfica “Fauna II” y catálogo actualizado de especies íbero-baleares de la familia Serpulidae. Graellsia 72: e053., although some of them should be assessed with molecular data). Confirmation of whether a species within the H. brachyacantha and H. operculata that has already been already assessed or a different one within complexes (Sun et al. 2016Sun Y., Wong E., Tovar-Hernández M.A., et al. 2016. Is Hydroides brachyacantha (Serpulidae: Annelida) a widespread species? Invertebr. Syst. 30: 41-59. https://doi.org/10.1071/IS15015 , 2017bSun Y., Al-Kandari M., Kubal P., et al. 2017b. Cutting a gordian knot of tubeworms with DNA data: the story of the Hydroides operculata-complex (Annelida, Serpulidae). Zootaxa 4323: 39-48. https://doi.org/10.11646/zootaxa.4323.1.3 ) is present in Mediterranean waters is still needed, as this was not part of the scope of this study. Hydroides elegans was originally described from Australia and has been reported in many ports and bays all over the world (Gil 2011Gil J. 2011. The European fauna of Annelida Polychaeta. PhD thesis, Univ. Lisboa, Portugal, 1554 pp.). Hydroides dirampha described from the Antillean Islands and probably native to the Caribbean (Gil 2011Gil J. 2011. The European fauna of Annelida Polychaeta. PhD thesis, Univ. Lisboa, Portugal, 1554 pp.) is a common species in fouling communities of tropical and temperate seas. Hydroides dianthus, described from New England, is also commonly reported in fouling communities of the Atlantic and the Mediterranean coastal environments (Sun et al. 2017aSun Y., Wong E., Keppel E., et al. 2017a. A global invader or a complex of regionally distributed species? Clarifying the status of an invasive calcareous tubeworm Hydroides dianthus (Verrill 1873) (Polychaeta: Serpulidae) using DNA barcoding. Mar. Biol. 164: 28. https://doi.org/10.1007/s00227-016-3058-9 ).

Three species were originally described from the Mediterranean: Hydroides pseudouncinata Zibrowius, 1968Zibrowius H. 1968. Étude morphologique, systématique et écologique des Serpulidae (Annelida Polychaeta) de la région de Marseille. Rec. Trav. Station mar. Endoume 43: 81-252., Hydroides nigra Zibrowius, 1971Zibrowius H. 1971. Les espèces Méditerrannéennes du genre Hydroides (Polychaeta Serpulidae). Remarques sur le prétendu polymorphisme de Hydroides uncinata. Téthys 2: 691-746. and Hydroides stoichadon Zibrowius, 1971Zibrowius H. 1971. Les espèces Méditerrannéennes du genre Hydroides (Polychaeta Serpulidae). Remarques sur le prétendu polymorphisme de Hydroides uncinata. Téthys 2: 691-746.. The former has been commonly reported in several localities of the Mediterranean, including the Balearic Islands and the northeast Atlantic, mainly under the name Hydroides uncinata (Philippi, 1884Philippi A. 1844. Einige Bemerkungen über die Gattung Serpula, nebst Aufzählung der von mir im Mittelmeer mit dem Thier beobachteten Arten. Archiv für Naturgeschichte Berlin. 10: 186-198. https://doi.org/10.5962/bhl.part.29558 ) (Alcázar and San Martín 2016Alcázar J., San Martín G. 2016. Serpúlidos (Annelida, Serpulidae) colectados en la campaña oceanográfica “Fauna II” y catálogo actualizado de especies íbero-baleares de la familia Serpulidae. Graellsia 72: e053.). Hydroides nigra is considered endemic to the Mediterranean, and has only been reported twice along the Spanish coastline, in Murcia (San Martín and Vieitez 1984San Martín G., Viéitez J.M. 1984. Anélidos poliquetos de los rizomas de Posidonia oceanica, en las costas de Cabo de Palos (Murcia, España). In: Bodouresque et al. (eds), International Workshop Posidonia oceanica Beds, GIS Posidonie publ. pp. 149-157.) and Majorca (Sun et al. 2017bSun Y., Al-Kandari M., Kubal P., et al. 2017b. Cutting a gordian knot of tubeworms with DNA data: the story of the Hydroides operculata-complex (Annelida, Serpulidae). Zootaxa 4323: 39-48. https://doi.org/10.11646/zootaxa.4323.1.3 ). Hydroides stoichadon has occasionally been reported in southern France, Italy and Spain (Alcázar and San Martín 1996). Except for H. nigra and H. pseudouncinata, none of the other Hydroides species cited above have yet been reported from the Balearic Islands.

It was not until 2009 that an effort to resolve the species complexes within Serpulidae was made (e.g. Halt et al. 2009Halt M.N., Kupriyanova E.K., Cooper S.J., et al. 2009. Naming species with no morphological indicators: species status of Galeolaria caespitosa (Annelida: Serpulidae) inferred from nuclear and mitochondrial gene sequences and morphology. Invertebr. Syst. 23: 205-222. https://doi.org/10.1071/IS09003 , Smith et al. 2012Smith A. M., Henderson Z. E., Kennedy M., et al. 2012. Reef formation versus solitariness in two New Zealand serpulids does not involve cryptic species. Aquat. Biol. 16: 97-103. https://doi.org/10.3354/ab00444 , Willette et al. 2015Willette D.A., Iñiguez A.R., Kupriyanova E.K., et al. 2015. Christmas tree worms of Indo-Pacific coral reefs: untangling the Spirobranchus corniculatus (Grube, 1862) complex. Coral Reefs 34: 899-904. https://doi.org/10.1007/s00338-015-1294-y , and several others thereafter). Among these studies, genetic analyses of F. enigmaticus using Cytochrome b (Cytb) revealed high genetic diversity in the group and possible cryptic species (Styan et al 2017Styan C.A., McCluskey C.F., Sun Y., et al. 2017. Cryptic sympatric species across the Australian range of the global estuarine invader Ficopomatus enigmaticus (Fauvel, 1923) (Serpulidae, Annelida). Aquat. Invasions 12: 53-65. https://doi.org/10.3391/ai.2017.12.1.06 , Yee et al. 2019Yee A., Mackie J., Pernet B. 2019. The distribution and unexpected genetic diversity of the non-indigenous annelid Ficopomatus enigmaticus in California. Aquat. Invasions 14: 250-266. https://doi.org/10.3391/ai.2019.14.2.06 , Oliva et al. 2020Oliva M., De Marchi L., Vieira Sanches M., et al. 2020. Atlantic and Mediterranean populations of the widespread serpulid Ficopomatus enigmaticus: Developmental responses to carbon nanotubes. Mar. Poll. Bull. 156: 111265. https://doi.org/10.1016/j.marpolbul.2020.111265 ). Similar patterns were found in some of the species of the genus Hydroides using the markers cytochrome c oxidase subunit 1 (COI) and Cytb (Sun et al. 2016Sun Y., Wong E., Tovar-Hernández M.A., et al. 2016. Is Hydroides brachyacantha (Serpulidae: Annelida) a widespread species? Invertebr. Syst. 30: 41-59. https://doi.org/10.1071/IS15015 , 2017aSun Y., Wong E., Keppel E., et al. 2017a. A global invader or a complex of regionally distributed species? Clarifying the status of an invasive calcareous tubeworm Hydroides dianthus (Verrill 1873) (Polychaeta: Serpulidae) using DNA barcoding. Mar. Biol. 164: 28. https://doi.org/10.1007/s00227-016-3058-9 ). Those findings highlight the importance of DNA-based methods for assessing non-indigenous species.

We present the first record in Majorca of the invasive species F. enigmaticus, which is already considered invasive, and the first record for the Balearic Islands of the species H. dianthus, H. dirampha and H. elegans. We also provide results after genetic analyses of DNA sequences and insights about their introduction events and pathways. We refer to the metaphor of the “elephant in the room” in the title, with the aim of highlighting how major issues such as the presence of large populations of marine invasive species have been overlooked in apparently well-known areas such as harbours.

MATERIALS AND METHODS

 

Study area and sampling design

 

Majorca is the largest island in the Balearic archipelago, located in the western Mediterranean. Its geographical situation has made it a strategic point for trade and exchange with the rest of the Mediterranean since the Phoenician colonies in the third century BC (Aubet 2001Aubet M.E. 2001. The Phoenicians and the West: politics, colonies and trade. Cambridge Univ. Press, 448 pp.), and since the mid-20th century tourism has played a fundamental role in its economy. The archipelago is considered one of the main tourist destinations in Europe, and more than 800 cruise ships and 44000 merchant’ ships dock annually in its four main international ports (Palma, Alcudia, Ibiza and Mahón). In addition, Majorca’s 30 marinas have over 28000 private docks for pleasure boats (APB 2017Autoridad Portuaria de Baleares (APB). 2017. Memoria Anual, Port de Baleares, 229 pp.). All this maritime traffic has likely caused the involuntary dispersion of adult specimens attached to ship hulls (Zibrowius 1991Zibrowius H. 1991. Ongoing modification of the Mediterranean marine fauna and flora by the establishment of exotic species. Mésogée 51: 83-107.) or larvae in ballast waters (Hewitt et al. 2009Hewitt C.L., Gollasch S., Minchin D. 2009. The vessel as a vector-biofouling, ballast water and sediments. In: Rilov G., Crooks J.A. (eds) Biological Invasions in Marine Ecosystems. Ecol. Stud. Springer, Berlin, Heidelberg, pp. 117-131. https://doi.org/10.1007/978-3-540-79236-9_6 ).

Seven localities were sampled around the island between July 2017 and July 2019 (Fig.1), including the international ports of Palma and Alcudia and the leisure or fishing ports of Sóller, Sa Rápita and Portitxol. In addition, two localities in the bay of Palma but outside the harbour environments were also selected: Sa Porrassa and Cala Blava, in the Marine Reserve of the Bay of Palma. Several samples were taken at each locality, maximizing habitat diversity (exposure, orientation, traffic, type of substrate, etc., Table 1). Modified qualitative rapid assessment surveys (similar to Ulman et al. 2017Ulman A., Ferrario J., Occhpinti-Ambrogi A., et al. 2017. A massive update of non-indigenous species records in Mediterranean marinas. PeerJ. 5: e3954. https://doi.org/10.7717/peerj.3954 ) were undertaken with a rectangular scraper equipped with a 1 mm diameter mesh fabric at one end and a 2 m stick at the other. At each station, artificial substrates were scraped off on the shore to determine the absence or presence of targeted species. Finally, 3 to 5 L sediment samples were collected with a van Veen grab from both anthropogenic and natural environments.

medium/medium-SCIENTIA_MARINA-85-01-15-gf1.png
Fig. 1.  Map of the localities sampled around the island of Majorca.
Table 1.  Stations and habitats where Ficopomatus and Hydroides species were found in this study.
Station NumberLocationSpecies FoundDepth (m)Habitat
PAR-01 Port of Palma 39°34’01.5”N; 2°38’38.6”E

H. dianthus

0.5
PAR-02 Puerto de Palma 39°33’55.7”N; 2°37’54.7”E
  • F. enigmaticus

  • H. dianthus

  • H. elegans

1 Concrete dock
PAR-06 Port of Palma 39°33’10.4”N; 2°37’55.4”E

H. elegans

0.5
PAR-12 Puerto de Palma 39°33’55.7”N; 2°37’54.7”E
  • F. enigmaticus

  • H. elegans

  • H. dirampha

1 Concrete dock
POR-01 Portitxol 39°33’35.6”N; 2°40’05.1”E

H. dianthus

1
POR-02 Portitxol 39°33’40.3”N; 2°40’06.6”E

F. enigmaticus

0.5 Concrete dock covered with cirripeds
POR-03 Portitxol 39°33’42.5”N; 2°40’10.2”E

F. enigmaticus

0.5 Concrete dock covered with cirripeds
POR-04 Portitxol 39°33’39.7”N; 2°40’08.3”E
  • F. enigmaticus

  • H. dianthus

0.3 Concrete pier with brown algae and sponges
POR-12 Portitxol 39°33’40.3”N; 2°40’06.6”E

F. enigmaticus

0.5 Concrete dock
POR-13 Portitxol 39°33’42.5”N; 2°40’10.2”E
  • F. enigmaticus

  • H. dianthus

  • H. elegans

0.5 Concrete dock covered with cirripeds
POR-14 Portitxol 39°33’39.7”N; 2°40’08.3”E
  • F. enigmaticus

  • H. dianthus

  • H. nigra

0.3 Concrete dock with brown algae and sponges
PAD-03 Puerto de Palma 39°33’57.7”N; 2°37’45.5”E

F. enigmaticus

2 Muddy sediment
PABA-14 Puerto de Palma 39°33’24.0”N; 2°37’32.9”E

F. enigmaticus

1 Fouling plate
PALC-01 Port of Alcudia 39°50’20.6’’N; 3°08’03.9’’E

H. elegans

0-1 Fouling plate
PALC-02 Port of Alcudia 39°50’21.2’’N; 3°08’01.7’’E
  • H. dianthus

  • H. elegans

0-1 Fouling plate
PALC-03 Port of Alcudia 39°50’22.1’’N; 3°07’57.9’’E

H. dianthus

0-1 Fouling plate
PALC-04 Port of Alcudia 39°50’13.1’’N; 3°08’06.0’’E

H. dianthus

0-1 Fouling plate
PALC-05 Port of Alcudia 39°50’14.0’’N; 3°08’06.2’’E
  • H. dianthus

  • H. dirampha

0-1 Fouling plate
PALC-06 Port of Alcudia 39°50’16.1’’N; 3°07’57.6’’E
  • H. dianthus

  • H. elegans

0-1 Fouling plate
PALC-07 Port of Alcudia 39°50’21.6’’N; 3°08’12.6’’E

H. dianthus

0-1 Fouling plate
PSOL-01 Port of Sóller 39°47’47.8’’N; 2°41’43.4’’E

H. dirampha

0-1 Fouling plate

Quantitative samples were also taken by scuba divers (Fig. 2A, B), who scraped a standard surface of 30×30 cm on hard substrates (both artificial and natural) at depths of 0.5 to 7 m (Fig. 2A, B). In addition, 33×33 cm fouling plates were placed at depths of between 0.5 and 5 m for 3 to 6 months in order to study settlement and colonization processes (Fig. 2D). The surfaces were also scraped after this time. Target species from all samples were sorted in the laboratory and stored at 4°C to 6°C in 96% ethanol. Additional specimens of H. norvegica, fixed and preserved in 96% ethanol, were obtained from Norway for genetic comparison with the morphologically similar H. elegans.

medium/medium-SCIENTIA_MARINA-85-01-15-gf2.png
Fig. 2.  A, B, Photographs showing field work and sample collection from harbour environments (port of Palma). C, Ficopomatus enigmaticus aggregation collected from shallow water (1 m deep) in Portixol. D, Hydroides species attached to a fouling plate after four months of being deployed, at port of Palma.

The aggregation or colonies present at each locality were considered as populations. A total of 52 specimens of Hydroides and 21 specimens of Ficopomatus were selected from the collected samples for molecular work.

Morphological studies

 

All specimens were examined with a stereo and compound light microscope and identified to morphospecies following original and updated descriptions (e.g. Zibrowius 1971Zibrowius H. 1971. Les espèces Méditerrannéennes du genre Hydroides (Polychaeta Serpulidae). Remarques sur le prétendu polymorphisme de Hydroides uncinata. Téthys 2: 691-746., Fauvel 1923Fauvel P. 1923. Un nouveau serpulien d’eau saumatre Mercierella enigmatica n. sp. Bull. Soc. Zool. Fr. 46: 424-430., Bastida-Zavala and ten Hove 2002Bastida-Zavala J. R., ten Hove H.A. 2002. Revision of Hydroides Gunnerus, 1768 (Polychaeta: Serpulidae) from the Western Atlantic Region. Beaufortia 52: 103-178.). For scanning electron microscopy (SEM), specimens were dehydrated in a series of mixtures of absolute ethanol and hexamethyldisilazane (HMDS) with the following ratios 3:1, 2:2, 1:3, and 1:1, 1:3, and then into pure HMDS. The prepared samples were mounted on holders, sputter-coated with gold (10 nm thickness) and examined with a HITACHI S-3400N scanning electron microscope at the University of the Balearic Islands. Vouchers were deposited at the Museo Nacional de Ciencias Naturales (MNCN, Madrid; Table 2).

Table 2.  Information about the specimens used for the phylogenetic analyses, species names, vouchers, collection information and GenBank accession numbers.
SpeciesVoucherDNA CodeCOI GenBankCytb GenBankStationCollection DateLatitudeLongitudeDepth
Ficopomatus enigmaticus MNCN 16.01/18765 FIC01 MT044486 MT215015 POR-02 26-Jul-17 39°33’40.3”N 2°40’06.6”E 0.5 m
Ficopomatus enigmaticus MNCN 16.01/18766 FIC02 MT044489 MT215014 POR-02 26-Jul-17 39°33’40.3”N 2°40’06.6”E 0.5 m
Ficopomatus enigmaticus MNCN 16.01/18767 FIC04 MT044492 NA POR-03 26-Jul-17 39°33’42.5”N 2°40’10.2”E 0.5 m
Ficopomatus enigmaticus MNCN 16.01/18768 FIC05 MT044491 NA POR-04 26-Jul-17 39°33’39.7”N 2°40’08.3”E 0.3 m
Ficopomatus enigmaticus MNCN 16.01/18769 FIC12 MT044494 NA POR-13 28-Nov-17 39°33’42.5”N 2°40’10.2”E 0.5 m
Ficopomatus enigmaticus MNCN 16.01/18770 FIC15 MT044488 NA POR-14 28-Nov-17 39°33’39.7”N 2°40’08.3”E 0.3 m
Ficopomatus enigmaticus MNCN 16.01/18771 FIC16 MT044495 NA PAR-12 28-Nov-17 39°33’55.7”N 2°37’54.7”E 1 m
Ficopomatus enigmaticus MNCN 16.01/18772 FIC17 MT044490 NA PAR-12 28-Nov-17 39°33’55.7”N 2°37’54.7”E 1 m
Ficopomatus enigmaticus MNCN 16.01/18773 FIC20 MT044487 NA PAR-12 28-Nov-17 39°33’55.7”N 2°37’54.7”E 1 m
Ficopomatus enigmaticus MNCN 16.01/18774 FIC21 MT044493 NA POR-13 28-Nov-17 39°33’42.5”N 2°40’10.2”E 0.5 m
Hydroides nigra MNCN 16.01/18775 HYD11 NA MT215009 PAR-06 26-Jul-17 39°33’10.4”N 2°37’55.4”E 0.5 m
Hydroides dianthus MNCN 16.01/18776 HYD14 NA MT215010 PALC-02 26-Jul-17 39°50’21.2’’N 3°08’01.7’’E 0.5m
Hydroides elegans HYD22 NA MT215012 PARBAL-15 28-Nov-17 39°33’15.5”N 2°37’33.7”E
Hydroides elegans MNCN 16.01/18777 HYD23 NA MT215008 PAR-02 26-Jul-17 39°33’55.7”N 2°37’54.7”E 1 m
Hydroides dianthus MNCN 16.01/18778 HYD26 NA MT215011 PAR-01 26-Jul-17 39°34’01.5”N 2°38’38.6”E 0.5 m
Hydroides norvegica HYD30 NA MT215013 BER-FASCD2 10-Sep-18 60.40017 5.30842 12 m
Hydroides dirampha MNCN 16.01/18779 PAR06i05 MT044496 NA PAR-06 26-Jul-17 39°33’10.4”N 2°37’55.4”E 0.5 m
Hydroides dianthus MNCN 16.01/18780 POR02i09 MT044497 NA POR-02 26-Jul-17 39°33’40.3”N 2°40’06.6”E 0.5 m
Hydroides elegans MNCN 16.01/18781 PAR02i05 MT044498 NA PAR-02 26-Jul-17 39°33’55.7”N 2°37’54.7”E 1 m
Hydroides elegans MNCN 16.01/18782 PAR02i04 MT044499 NA PAR-02 26-Jul-17 39°33’55.7”N 2°37’54.7”E 1 m
Hydroides elegans MNCN 16.01/18783 PAD01i03 MT044500 NA PAD-01 26-Jul-17 39°34’01.5”N 2°38’38.6”E 2 m
Hydroides elegans MNCN 16.01/18784 PAR02i08 MT044501 NA PAR-02 26-Jul-17 39°33’55.7”N 2°37’54.7”E 1 m

Molecular data

 

A small portion, 1 to 2 mm, of each specimen’s thorax or a few radioles were taken for molecular work. DNA was extracted from Ficopomatus specimens using the Quick-gDNA Miniprep Kit (Zymo) according to the manufacturer’s instructions. DNA was extracted from Hydroides specimens using QuickExtract (Epicentre). Cytochrome c oxydase subunit 1 (COI) and Cytochrome b (Cytb) were amplified by PCR. The amplification reaction of COI for Ficopomatus contained 10.8 μl of water, 1.2 μl of 50 mM MgCl2, 2 μl of buffer 10×, 0.4 μl of Biotaq 5 U μl-1, 2 μl of dNTPs mix at 10 mM, 0.8 μl of each primer jgLCO1490/jgHCO2198 (Geller et al. 2013Geller J., Meyer C., Parker M., et al. 2013. Redesign of PCR primers for mitochondrial cytochrome c oxidase subunit I for marine invertebrates and application in all-taxa biotic surveys. Mol. Ecol. Resour. 13: 851-861. https://doi.org/10.1111/1755-0998.12138 ) at 10 mM and 2 μl of DNA (4-20 ng μl-1). PCR reactions for amplification of Cytb and COI for Hydroides contained 4.5 μl of water, 1 μl of each primer jgLCO1490/jgHCO2198, Hydro-COIF/Hydro-COIR or Cytb424F/cobr825, 7.5 μl of MyTaq Red Mix (Bioline) and 1 μl of DNA (4-20 ng μl-1). Primer sequences and cycling conditions are given in Table 3. PCR products were run on a 1% agarose gel containing ethydium bromide for 30 min at 80 V and visualized with UV light. Amplified PCR fragments were of around 660 bp, while Cytb fragments were of around 430 bp. Successful PCR products were cleaned using microCLEAN for PCR clean-up (Microzone) or ethanol/sodium acetate precipitation. For some samples, cycle sequencing was performed on both strands by Eurofins Genomics DNA Sequencing Department (Ebersberg, Germany). The rest of the samples were terminated using BigDye Terminator v3.1 (ThermoFisher) and sequenced on an ABI3130 sequencer. Forward and reverse reads were merged into consensus sequences and edited using Geneious v.7 (Kearse et al. 2012Kearse M., Moir R., Wilson A., et al. 2012. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28: 1647-1649. https://doi.org/10.1093/bioinformatics/bts199 ).

Table 3.  Primers used in this study with their respective cycles.
MarkerPrimersSourceSequenceCycle
COIjgLCO1490(Geller et al. 2013Geller J., Meyer C., Parker M., et al. 2013. Redesign of PCR primers for mitochondrial cytochrome c oxidase subunit I for marine invertebrates and application in all-taxa biotic surveys. Mol. Ecol. Resour. 13: 851-861. https://doi.org/10.1111/1755-0998.12138 )TITCIACIAAYCAYAARGAYATTGG4 min 95°C; 34x: 40 s 94°C, 40 s 48°C, 60 s 72°C; 6 min 72°C
jgHCO2198(Geller et al. 2013Geller J., Meyer C., Parker M., et al. 2013. Redesign of PCR primers for mitochondrial cytochrome c oxidase subunit I for marine invertebrates and application in all-taxa biotic surveys. Mol. Ecol. Resour. 13: 851-861. https://doi.org/10.1111/1755-0998.12138 )TAIACYTCIGGRTGICCRAARAAYCA
Hydro-COIF(Sun et al. 2012Sun Y., Kupriyanova E.K., Qiu J.W. 2012. COI barcoding of Hydroides: a road from impossible to difficult. Invertebr. Syst. 26: 539-547. https://doi.org/10.1071/IS12024 )TCWRTWRTKACDGTKCATGCTA5 min 95°C; 35x 40 s 94°C, 40 s 48°C, 60 s 72°C; 6 min 72°C
Hydro-COIR(Sun et al. 2012Sun Y., Kupriyanova E.K., Qiu J.W. 2012. COI barcoding of Hydroides: a road from impossible to difficult. Invertebr. Syst. 26: 539-547. https://doi.org/10.1071/IS12024 )CMRYAGGWTSAAARAACCTAGTA
CytbCytb 424F(Boore and Brown 2000Boore J.L., Brown W.M. 2000. Mitochondrial genomes of Galathealinum, Helobdella, and Platynereis: sequence and gene arrangement comparisons indicate that Pogonophora is not a phylum and Annelida and Arthropoda are not sister taxa. Mol. Biol. Evol. 17: 87-106. https://doi.org/10.1093/oxfordjournals.molbev.a026241 )GGWTAYGTWYTWCCWTGRGGWCARAT4 min 95°C; 35x 40 s 94°C, 40 s 50°C, 60 s 72°C; 6 min 72°C
cobr825(Burnette et al. 2005Burnette A.B., Struck T.H., Halanych K.M. 2005. Holopelagic Poeobius meseres (‘Poeobiidae’, Annelida) is derived from benthic flabelligerid worms. Biol. Bull-US 208: 213-220. https://doi.org/10.2307/3593153 )AARTAYCAYTCYGGYTTRATRTG

Additionally, 57 COI and 42 Cytb sequences of F. enigmaticus and Hydroides spp. were downloaded from GenBank (Benson et al. 2008Benson D.A., Karsh-Mizrachi I., Lipman D.J., et al. 2008. GenBank. Nucleic Acids Res. 36: 25-30. https://doi.org/10.1093/nar/gkm929 , see Supplementary Material).

Phylogenetic and species delimitation analysis and genetic distances

 

Sequences were aligned with MAFFT 7 online version (Katoh and Standley 2013Katoh K., Standley D.M. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30: 772-780. https://doi.org/10.1093/molbev/mst010 ) and alignments were checked in Aliview 1.25 (Larsson 2014Larsson A. 2014. AliView: a fast and lightweight alignment viewer and editor for large datasets. Bioinformatics 30: 3276-3278. https://doi.org/10.1093/bioinformatics/btu531 ). Flanking regions with missing data were removed using Gblocks 0.91b (Castresana 2000Castresana J. 2000. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol. Biol. Evol. 17: 540-552. https://doi.org/10.1093/oxfordjournals.molbev.a026334 ) with the softest parameters (allow for smaller final blocks, gap positions within the final blocks and less strict flanking positions).

Best-fitting models and partition schema for each marker were selected using PartionFinder 2.1.1 (Lanfear et al. 2016Lanfear R., Frandsen P.B., Wright A.M., et al. 2016. PartitionFinder 2: New methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol. Biol. Evol. 34: 772-773. https://doi.org/10.1093/molbev/msw260 , Guindon et al. 2010Guindon S., Dufayard J.F., Lefort V., et al. 2010. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst. Biol. 59: 307-321. https://doi.org/10.1093/sysbio/syq010 ) with the Bayesian information criterion. The number of variable and parsimony-informative sites was calculated with MEGA X 10.0.5 (Kumar et al. 2018Kumar S., Stecher G., Li M., et al. 2018. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol. Biol. Evol. 35: 1547-1549. https://doi.org/10.1093/molbev/msy096 ). Two datasets were created for phylogenetic analyses: one containing unique COI sequences and one containing unique Cytb sequences.

Bayesian inference (BI) analyses were performed on both datasets to obtain ultrametric trees compatible with downstream species delimitation analyses. BI analyses were conducted using BEAST2 (Bouckaert et al. 2014Bouckaert R., Heled J., Kühnert D., et al. 2014. BEAST 2: A Software Platform for Bayesian Evolutionary Analysis. PLoS Comput. Biol. 10: e1003537. https://doi.org/10.1371/journal.pcbi.1003537 ) for both datasets (COI and the concatenated dataset) using the nucleotide substitution model mentioned above. A strict clock was assumed for both datasets. A Yule model was used as tree prior with a default Γ distribution as birth rate prior. A lognormal distribution with M=1.0 and S=1.25 was used for the kappa parameter prior (Drummond and Bouckaert 2015Drummond A.J., Bouckaert R.R. 2015. Bayesian Evolutionary Analysis with BEAST. Cambridge Univ. Press. https://doi.org/10.1017/CBO9781139095112 ). All analyses were run with a chain length of 50000000. Convergence of each run and parameter was checked using Tracer 1.7.1 (Rambaut et al. 2018Rambaut A., Drummond A.J., Xie D., et al. 2018. Posterior Summarization in Bayesian Phylogenetics Using Tracer 1.7. Syst. Biol. 67: 901-904. https://doi.org/10.1093/sysbio/syy032 ), i.e. ESS > 200. A maximum clade credibility tree was obtained with Treeannotator (Bouckaert et al. 2014Bouckaert R., Heled J., Kühnert D., et al. 2014. BEAST 2: A Software Platform for Bayesian Evolutionary Analysis. PLoS Comput. Biol. 10: e1003537. https://doi.org/10.1371/journal.pcbi.1003537 ) after discarding 25% of the trees as burnin. All phylogenetic analyses were performed on Cypres Science Gateway (Miller et al. 2010Miller M.A., Pfeiffer W., Schwartz T. 2010. Creating the CIPRES Science Gateway for Inference of Large Phylogenetic Trees. In: Proceedings of the Gateway Computing Environments Workshop. New Orleans, pp. 1-8. https://doi.org/10.1109/GCE.2010.5676129 ). Trees were visualized and edited using FigTree 1.4.4 (Rambaut 2014Rambaut A. 2014. FigTree 1.4.2 Software. Institute of Evolutionary Biology, Univ. Edinburgh, Edinburgh.) and later in LibreOffice Draw 5.1.6.2.

The general mixed Yule-coalescent model (GMYC) (Pons et al. 2006Pons J., Barraclough T.G., Gomez-Zurita J., et al. 2006. Sequence-based species delimitation for the DNA taxonomy of undescribed insects. Syst. Biol. 55: 595-609. https://doi.org/10.1080/10635150600852011 , Fujisawa and Barraclough 2013Fujisawa T., Barraclough T.G. 2013. Delimiting species using single-locus data and the Generalized Mixed Yule Coalescent Approach: A revised method and evaluation on simulated data sets. Syst. Biol. 62: 707-724. https://doi.org/10.1093/sysbio/syt033 ) and the multi-rate Poisson tree process (mPTP) (Kapli et al. 2017Kapli P., Lutteropp S., Zhang J., et al. 2017. Multi-rate Poisson tree processes for single-locus species delimitation under maximum likelihood and Markov chain Monte Carlo. Bioinformatics 33: 1630-1638. https://doi.org/10.1093/bioinformatics/btx025 ) were used to delimit the number of molecular species in the datasets. GMYC and mPTP 0.2.4 were used on both BI trees with a single threshold. The methods were applied separately on the Ficopomatus and Hydroides groups for the Cytb datasets. GMYC was implemented in R (R Core Team 2015R Core Team. 2015. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ ) with the packages ape 5.3 (Paradis and Schliep 2018Paradis E., Schliep K. 2018. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35: 526-528. https://doi.org/10.1093/bioinformatics/bty633 ), MASS 7.3-45 Venables and Ripley 2002Venables W.N., Ripley B.D. 2002. Modern applied statistics with S. Fourth Edition, Springer, New York. https://doi.org/10.1007/978-0-387-21706-2 ), Paran 1.5.2 (Dinno 2018Dinno A. 2018. paran: Horn’s Test of Principal Components/Factors. R package version 1.5.2. https://CRAN.R-project.org/package=paran ) and splits 1.0-19 (Ezard et al. 2017Ezard T., Fujisawa T., Barraclough T. 2017. splits: SPecies’ LImits by Threshold Statistics. R package version 1.0-19/r52 https://R-Forge.R-project.org/projects/splits/ ). mPTP was applied through its webserver (https://mptp.h-its.org).

Nucleotide divergence (K2P) over sequence pairs within and between the well supported lineages after the phylogenetic analyses and species delimitation analyses were estimated in MEGA X 10.0.5 (Kumar et al. 2018Kumar S., Stecher G., Li M., et al. 2018. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol. Biol. Evol. 35: 1547-1549. https://doi.org/10.1093/molbev/msy096 ). Paired positions containing gaps and missing data were removed.

RESULTS

 

Morphological analyses and records

 

The presence of F. enigmaticus was confirmed in two of the seven sampled areas: the port of Palma and Portixol (Fig. 2C). In the port of Palma, it was only found on one of the deployed fouling plates. Scrapings in Portixol recovered aggregations of at least 280 individuals/m2 at some sites, especially those closed to the torrent mouth, right at the end of the port. Four species of Hydroides were identified morphologically from the ports of Palma, Portixol, Alcudia and Sóller: H. dianthus, H. elegans, H. dirampha and H. nigra (Figs. 2D, 3). These five serpulid species are recorded for the first time in Majorca. Juvenile or damaged specimens without an operculum could not be identified to the species level. The most common and abundant species was H. elegans, which was found in the port of Palma at densities of up to 270 individuals/m2. No Hydroides specimens were found in the ports of Sa Rápita and Cala Blava and only one specimen of one species, H. nigra, was collected at the Islet of Sa Porrassa (donated to Sun et al. 2017bSun Y., Al-Kandari M., Kubal P., et al. 2017b. Cutting a gordian knot of tubeworms with DNA data: the story of the Hydroides operculata-complex (Annelida, Serpulidae). Zootaxa 4323: 39-48. https://doi.org/10.11646/zootaxa.4323.1.3 ). Specimens identified as H. norvegica from Norway were compared morphologically with H. elegans to confirm that the main morphological differences are in the collar chaetae, with subdistal spines in the latter absent in the former. The wide variation observed in the opercular morphology of members of both species indicates that this is a less reliable character for species discrimination.

medium/medium-SCIENTIA_MARINA-85-01-15-gf3.png
Fig. 3.  SEM pictures of the operculum of the four species of Hydroides recorded. A, H. dirampha, scale bar 200 µm; B, detail of operculum of H. dirampha, scale bar 100 µm; C, H. nigra, scale bar 200 µm; D, H. dianthus, scale bar 200 µm; E, H. elegans, scale bar 100 µm; F, detail of operculum of H. elegans, scale bar 50 µm.

Phylogenetic and species delimitation analyses

 

Despite our efforts to amplify and sequence both markers, only 10 COI and two Cytb sequences of F. enigmaticus were obtained (GenBank accession numbers (AC): MT044486-MT044495, MT215014-MT215015; Table 2), as well as six COI and five Cytb sequences of Hydroides (AC: MT044496-MT044501, MT215008-MT215013; Table 2). The COI dataset contained 68 sequences and was 379 bp long, with 228 variable sites, 212 of them parsimony-informative. The Cytb dataset contained 50 sequences and was 264 bp long, with 190 variable sites, 175 of them parsimony-informative.

Specimens of F. enigmaticus split into three distinct and supported clades, and species delimitation analyses (GMYC and mPTP) confirmed the presence of three molecular species of the F. enigmaticus species complex in Majorca. For two species, F. enigmaticus Clade 4 and 5 (Fig. 4), only COI sequences are available and do not match any existing records. Therefore, these species could be new cryptic species within the F. enigmaticus complex, or else could match any of the clades previously assessed in Australia (Styan et al. 2017Styan C.A., McCluskey C.F., Sun Y., et al. 2017. Cryptic sympatric species across the Australian range of the global estuarine invader Ficopomatus enigmaticus (Fauvel, 1923) (Serpulidae, Annelida). Aquat. Invasions 12: 53-65. https://doi.org/10.3391/ai.2017.12.1.06 ). For the third species, F. enigmaticus Clade 1 (Fig 4, 5), both COI and Cytb sequences are available, and this species has previously been recorded from distant bioregions such as Australia, New Zealand, California and Portugal and northern Spain (e.g. Styan et al. 2017Styan C.A., McCluskey C.F., Sun Y., et al. 2017. Cryptic sympatric species across the Australian range of the global estuarine invader Ficopomatus enigmaticus (Fauvel, 1923) (Serpulidae, Annelida). Aquat. Invasions 12: 53-65. https://doi.org/10.3391/ai.2017.12.1.06 , Yee et al. 2019Yee A., Mackie J., Pernet B. 2019. The distribution and unexpected genetic diversity of the non-indigenous annelid Ficopomatus enigmaticus in California. Aquat. Invasions 14: 250-266. https://doi.org/10.3391/ai.2019.14.2.06 , Oliva et al. 2020Oliva M., De Marchi L., Vieira Sanches M., et al. 2020. Atlantic and Mediterranean populations of the widespread serpulid Ficopomatus enigmaticus: Developmental responses to carbon nanotubes. Mar. Poll. Bull. 156: 111265. https://doi.org/10.1016/j.marpolbul.2020.111265 ). K2P distances within these species range from 0.3% to 4.7%, and K2P distances between them range from 10.5% to 24.7% (Tables 4, 5).

medium/medium-SCIENTIA_MARINA-85-01-15-gf4.png
Fig. 4.  BI COI tree. Species found in Majorca are highlighted in blue. Red dots above or under branches indicate bootstrap values under 70. Specimens sequenced for this study are in bold and dark blue. GMYC entities are indicated by green lines. mPTP entities are indicated by red lines. Ficopomatus clades are named as in Styan et al. (2017)Styan C.A., McCluskey C.F., Sun Y., et al. 2017. Cryptic sympatric species across the Australian range of the global estuarine invader Ficopomatus enigmaticus (Fauvel, 1923) (Serpulidae, Annelida). Aquat. Invasions 12: 53-65. https://doi.org/10.3391/ai.2017.12.1.06 . Hydroides dianthus clades are named as in Sun et al. (2017b)Sun Y., Al-Kandari M., Kubal P., et al. 2017b. Cutting a gordian knot of tubeworms with DNA data: the story of the Hydroides operculata-complex (Annelida, Serpulidae). Zootaxa 4323: 39-48. https://doi.org/10.11646/zootaxa.4323.1.3 .
medium/medium-SCIENTIA_MARINA-85-01-15-gf5.png
Fig. 5.  BI Cytb tree. Species found in Majorca are highlighted in blue. Red dots above or under branches indicate bootstrap values under 70. Specimens sequenced for this study are in bold and dark blue. GMYC entities are indicated by green lines. mPTP entities are indicated by red lines. Ficopomatus clades are named as in Styan et al. (2017)Styan C.A., McCluskey C.F., Sun Y., et al. 2017. Cryptic sympatric species across the Australian range of the global estuarine invader Ficopomatus enigmaticus (Fauvel, 1923) (Serpulidae, Annelida). Aquat. Invasions 12: 53-65. https://doi.org/10.3391/ai.2017.12.1.06 . Hydroides dianthus clades are named as in Sun et al. (2017b)Sun Y., Al-Kandari M., Kubal P., et al. 2017b. Cutting a gordian knot of tubeworms with DNA data: the story of the Hydroides operculata-complex (Annelida, Serpulidae). Zootaxa 4323: 39-48. https://doi.org/10.11646/zootaxa.4323.1.3 .
Table 4.  Divergences measured in COI fragment using the K2P model (lower left corner) and p-distance (upper right corner). In grey cells, intraspecific genetic variation (K2P). Ambiguous positions removed for each sequence pair.
COIFicopomatus enigmaticus Clade 1Ficopomatus enigmaticus Clade 4Ficopomatus enigmaticus Clade 5Hydroides diramphaHydroides dianthus Clade AHydroides dianthus Clade BHydroides elegans Clade E1Hydroides elegans Clade E2Hydroides elegans / ezoensisHydroides nigraHydroides triversiculosaHydroides basispinosa / gradataHydroides inornata / operculataHydroides operculataHydroides pseudouncinataHydroides crucigeraHydroides brachyacanthaHydroides recurvispina / dolabrusHydroides panamensisHydroides sanctaecrucisHydroides fusicola
Ficopomatus enigmaticus Clade 1 0.02 0.11 0.16 0.58 0.61 0.59 0.56 0.51 0.58 0.61 0.63 0.56 0.52 0.57 0.62 0.63 0.60 0.60 0.59 0.58 0.59
Ficopomatus enigmaticus Clade 4 0.11 0.01 0.15 0.51 0.58 0.58 0.51 0.49 0.55 0.58 0.54 0.56 0.51 0.55 0.59 0.51 0.55 0.54 0.54 0.56 0.50
Ficopomatus enigmaticus Clade 5 0.16 0.15 n 0.55 0.56 0.57 0.53 0.49 0.55 0.55 0.52 0.52 0.52 0.51 0.57 0.50 0.57 0.53 0.57 0.57 0.48
Hydroides dirampha 0.58 0.51 0.55 n 0.25 0.27 0.31 0.29 0.29 0.31 0.29 0.30 0.28 0.29 0.30 0.24 0.22 0.25 0.23 0.23 0.28
Hydroides dianthus Clade A 0.61 0.58 0.56 0.25 0.01 0.07 0.31 0.30 0.24 0.32 0.32 0.31 0.28 0.30 0.28 0.24 0.19 0.17 0.20 0.15 0.25
Hydroides dianthus Clade B 0.59 0.58 0.57 0.27 0.07 0.01 0.29 0.30 0.26 0.32 0.31 0.31 0.30 0.33 0.26 0.24 0.23 0.18 0.21 0.14 0.28
Hydroides elegans Clade E1 0.56 0.51 0.53 0.31 0.31 0.29 0.01 0.09 0.30 0.32 0.30 0.29 0.31 0.35 0.36 0.29 0.32 0.28 0.31 0.30 0.31
Hydroides elegans Clade E2 0.51 0.49 0.49 0.29 0.30 0.30 0.09 0.01 0.28 0.32 0.30 0.26 0.27 0.32 0.31 0.26 0.30 0.26 0.27 0.29 0.28
Hydroides elegans / ezoensis 0.58 0.55 0.55 0.29 0.24 0.26 0.30 0.28 0.00 0.29 0.30 0.24 0.25 0.28 0.30 0.27 0.26 0.29 0.31 0.28 0.11
Hydroides nigra 0.61 0.58 0.55 0.31 0.32 0.32 0.32 0.32 0.29 n 0.30 0.27 0.26 0.29 0.20 0.28 0.30 0.30 0.29 0.30 0.30
Hydroides triversiculosa 0.63 0.54 0.52 0.29 0.32 0.31 0.30 0.30 0.30 0.30 n 0.34 0.35 0.35 0.29 0.27 0.28 0.31 0.31 0.29 0.29
Hydroides basispinosa / gradata 0.56 0.56 0.52 0.30 0.31 0.31 0.29 0.26 0.24 0.27 0.34 0.00 0.15 0.20 0.26 0.26 0.30 0.31 0.29 0.30 0.26
Hydroides inornata / operculata 0.52 0.51 0.52 0.28 0.28 0.30 0.31 0.27 0.25 0.26 0.35 0.15 0.00 0.10 0.25 0.24 0.24 0.26 0.26 0.25 0.27
Hydroides operculata 0.57 0.55 0.51 0.29 0.30 0.33 0.35 0.32 0.28 0.29 0.35 0.20 0.10 n 0.25 0.25 0.26 0.28 0.29 0.27 0.27
Hydroides pseudouncinata 0.62 0.59 0.57 0.30 0.28 0.26 0.36 0.31 0.30 0.20 0.29 0.26 0.25 0.25 0.01 0.23 0.21 0.24 0.25 0.23 0.31
Hydroides crucigera 0.63 0.51 0.50 0.24 0.24 0.24 0.29 0.26 0.27 0.28 0.27 0.26 0.24 0.25 0.23 n 0.22 0.23 0.21 0.22 0.26
Hydroides brachyacantha 0.60 0.55 0.57 0.22 0.19 0.23 0.32 0.30 0.26 0.30 0.28 0.30 0.24 0.26 0.21 0.22 n 0.18 0.18 0.16 0.26
Hydroides recurvispina / dolabrus 0.60 0.54 0.53 0.25 0.17 0.18 0.28 0.26 0.29 0.30 0.31 0.31 0.26 0.28 0.24 0.23 0.18 0.00 0.14 0.15 0.27
Hydroides panamensis 0.59 0.54 0.57 0.23 0.20 0.21 0.31 0.27 0.31 0.29 0.31 0.29 0.26 0.29 0.25 0.21 0.18 0.14 0.03 0.18 0.29
Hydroides sanctaecrucis 0.58 0.56 0.57 0.23 0.15 0.14 0.30 0.29 0.28 0.30 0.29 0.30 0.25 0.27 0.23 0.22 0.16 0.15 0.18 0.01 0.27
Hydroides fusicola 0.59 0.50 0.48 0.28 0.25 0.28 0.31 0.28 0.11 0.30 0.29 0.26 0.27 0.27 0.31 0.26 0.26 0.27 0.29 0.27 n
Table 5.  Divergences measured in Cytb fragment using the K2P model (lower left corner) and p-distance (upper right corner). In grey cells, intraspecific genetic variation (K2P). Ambiguous positions removed for each sequence pair.
CytbFicopomatus enigmaticus Clade 1Ficopomatus enigmaticus Clade 2bFicopomatus enigmaticus Clade 2aHydroides elegans Clade E1Hydroides norvegicaHydroides dianthus Clade BHydroides diramphaHydroides cf nigraHydroides nigraHydroides pseudouncinnataHydroides tuberculataHydroides triversiculosaHydroides minaxHydroides nikaeHydroides operculataHydroides panamensisHydroides dolabrusHydroides sanctaecrucisHydroides brachyacantha aHydroides brachyacantha bHydroides crucigeraHydroides fusicolaHydroides ezoensisHydroides novaepommeraniae
Ficopomatus enigmaticus Clade 1 0.03 0.25 0.21 0.64 0.71 0.61 0.65 0.63 0.65 0.72 0.62 0.64 0.65 0.74 0.63 0.59 0.57 0.60 0.63 0.64 0.74 0.69 0.68 0.72
Ficopomatus enigmaticus Clade 2b 0.25 0.00 0.19 0.72 0.70 0.64 0.67 0.66 0.68 0.77 0.68 0.65 0.66 0.73 0.68 0.63 0.63 0.60 0.67 0.69 0.76 0.72 0.78 0.70
Ficopomatus enigmaticus Clade 2a 0.21 0.19 0.05 0.70 0.66 0.65 0.65 0.70 0.65 0.76 0.65 0.57 0.65 0.65 0.65 0.64 0.63 0.62 0.67 0.67 0.69 0.70 0.69 0.69
Hydroides elegans Clade E1 0.64 0.72 0.70 0.01 0.26 0.44 0.38 0.46 0.43 0.42 0.40 0.40 0.37 0.41 0.43 0.37 0.44 0.40 0.38 0.35 0.43 0.43 0.40 0.46
Hydroides norvegica 0.71 0.70 0.66 0.26 0.04 0.41 0.42 0.45 0.47 0.43 0.43 0.36 0.38 0.39 0.44 0.36 0.36 0.37 0.39 0.36 0.42 0.36 0.41 0.43
Hydroides dianthus Clade B 0.61 0.64 0.65 0.44 0.41 0.02 0.25 0.26 0.31 0.31 0.28 0.28 0.28 0.29 0.22 0.18 0.23 0.19 0.19 0.24 0.21 0.28 0.27 0.34
Hydroides dirampha 0.65 0.67 0.65 0.38 0.42 0.25 n 0.22 0.26 0.26 0.27 0.23 0.26 0.28 0.23 0.17 0.19 0.22 0.22 0.19 0.25 0.34 0.26 0.30
Hydroides cf nigra 0.63 0.66 0.70 0.46 0.45 0.26 0.22 n 0.32 0.34 0.34 0.31 0.29 0.35 0.26 0.24 0.25 0.22 0.23 0.22 0.25 0.36 0.36 0.29
Hydroides nigra 0.65 0.68 0.65 0.43 0.47 0.31 0.26 0.32 n 0.22 0.34 0.31 0.35 0.29 0.27 0.29 0.34 0.31 0.31 0.30 0.31 0.42 0.35 0.38
Hydroides pseudouncinnata 0.72 0.77 0.76 0.42 0.43 0.31 0.26 0.34 0.22 n 0.36 0.30 0.29 0.29 0.27 0.27 0.29 0.27 0.32 0.30 0.27 0.37 0.29 0.36
Hydroides tuberculata 0.62 0.68 0.65 0.40 0.43 0.28 0.27 0.34 0.34 0.36 0.19 0.30 0.25 0.26 0.28 0.25 0.25 0.26 0.27 0.29 0.29 0.30 0.27 0.30
Hydroides triversiculosa 0.64 0.65 0.57 0.40 0.36 0.28 0.23 0.31 0.31 0.30 0.30 n 0.17 0.27 0.25 0.22 0.26 0.27 0.26 0.23 0.25 0.29 0.25 0.24
Hydroides minax 0.65 0.66 0.65 0.37 0.38 0.28 0.26 0.29 0.35 0.29 0.25 0.17 n 0.26 0.24 0.20 0.27 0.25 0.22 0.23 0.26 0.29 0.28 0.23
Hydroides nikae 0.74 0.73 0.65 0.41 0.39 0.29 0.28 0.35 0.29 0.29 0.26 0.27 0.26 0.00 0.26 0.22 0.27 0.29 0.27 0.28 0.27 0.32 0.29 0.33
Hydroides operculata 0.63 0.68 0.65 0.43 0.44 0.22 0.23 0.26 0.27 0.27 0.28 0.25 0.24 0.26 n 0.16 0.24 0.21 0.18 0.21 0.27 0.34 0.32 0.29
Hydroides panamensis 0.59 0.63 0.64 0.37 0.36 0.18 0.17 0.24 0.29 0.27 0.25 0.22 0.20 0.22 0.16 n 0.10 0.13 0.15 0.16 0.20 0.26 0.24 0.29
Hydroides dolabrus 0.57 0.63 0.63 0.44 0.36 0.23 0.19 0.25 0.34 0.29 0.25 0.26 0.27 0.27 0.24 0.10 n 0.17 0.19 0.23 0.24 0.28 0.24 0.30
Hydroides sanctaecrucis 0.60 0.60 0.62 0.40 0.37 0.19 0.22 0.22 0.31 0.27 0.26 0.27 0.25 0.29 0.21 0.13 0.17 n 0.17 0.21 0.21 0.24 0.25 0.28
Hydroides brachyacantha a 0.63 0.67 0.67 0.38 0.39 0.19 0.22 0.23 0.31 0.32 0.27 0.26 0.22 0.27 0.18 0.15 0.19 0.17 0.00 0.19 0.21 0.29 0.28 0.31
Hydroides brachyacantha b 0.64 0.69 0.67 0.35 0.36 0.24 0.19 0.22 0.30 0.30 0.29 0.23 0.23 0.28 0.21 0.16 0.23 0.21 0.19 0.00 0.22 0.29 0.26 0.32
Hydroides crucigera 0.74 0.76 0.69 0.43 0.42 0.21 0.25 0.25 0.31 0.27 0.29 0.25 0.26 0.27 0.27 0.20 0.24 0.21 0.21 0.22 n 0.30 0.27 0.35
Hydroides fusicola 0.69 0.72 0.70 0.43 0.36 0.28 0.34 0.36 0.42 0.37 0.30 0.29 0.29 0.32 0.34 0.26 0.28 0.24 0.29 0.29 0.30 n 0.14 0.37
Hydroides ezoensis 0.68 0.78 0.69 0.40 0.41 0.27 0.26 0.36 0.35 0.29 0.27 0.25 0.28 0.29 0.32 0.24 0.24 0.25 0.28 0.26 0.27 0.14 n 0.35
Hydroides novaepommeraniae 0.72 0.70 0.69 0.46 0.43 0.34 0.30 0.29 0.38 0.36 0.30 0.24 0.23 0.33 0.29 0.29 0.30 0.28 0.31 0.32 0.35 0.37 0.35 n

Among specimens identified as Hydroides elegans, two species are recovered after phylogenetic and species delimitation analyses. For one species, H. elegans Clade E2 (Fig 4), only COI sequences are available, and do not match any existing records. Therefore, this species appears to be a new cryptic species within the H. elegans species complex. For the second species, H. elegans Clade E1 (Figs 4, 5), both COI and Cytb sequences are available (albeit from different specimens). This species has previously been recorded from distant bioregions such as Australia, California and China. K2P distances within these species range from 0.07% to 1.4%, and K2P distances from other Hydroides species range from 9.2% to 46.3% (Tables 4, 5).

Among the specimens identified as Hydroides dirampha, one species was recovered with one COI sequence available (Fig. 4). This species has previously been recorded from distant bioregions such as Australia and Panama. K2P distances from other Hydroides species range from 21.9% to 31.3% (Tables 4, 5).

Among the specimens identified as Hydroides dianthus, two species were recovered. For one species, H. diantus Clade A (Fig. 4), one COI sequence is available. This species has been previously identified from the Mediterranean, as well as from distant bioregions such as China, Brazil and the east coast of the US. For the other species, H. dianthus Clade B (Fig. 5), one Cytb sequences was available. This species has previously been recorded from distant bioregions such as Ukraine and Texas. K2P distances within these species range from 0.08% to 1.7%, and K2P distances from other Hydroides species range from 6.7% to 34.2% (Tables 4, 5).

One Cytb sequence was obtained from the specimen identified as H. nigra, which does not cluster with any available sequences, including that of another specimen identified as H. nigra from Majorca (Fig. 5). K2P distances from other Hydroides species range from 21.7% to 46.3% (Table 5). This result may indicate that either of the two specimens identified as H. nigra from Majorca actually belongs to a different species, with morphological features similar to the diagnostic features of this species.

DISCUSSION

 

Molecular data for assessing species diversity and invasive status

 

Assessing cryptic annelid diversity after analyses of DNA sequences is now a common procedure (Nygren 2014Nygren A. 2014. Cryptic polychaete diversity: a review. Zool. Scr. 43: 172-183. https://doi.org/10.1111/zsc.12044 ). Previous analyses of Cytb sequences showed that F. enigmaticus was in fact a species complex (Styan et al. 2017Styan C.A., McCluskey C.F., Sun Y., et al. 2017. Cryptic sympatric species across the Australian range of the global estuarine invader Ficopomatus enigmaticus (Fauvel, 1923) (Serpulidae, Annelida). Aquat. Invasions 12: 53-65. https://doi.org/10.3391/ai.2017.12.1.06 , Yee et al. 2019Yee A., Mackie J., Pernet B. 2019. The distribution and unexpected genetic diversity of the non-indigenous annelid Ficopomatus enigmaticus in California. Aquat. Invasions 14: 250-266. https://doi.org/10.3391/ai.2019.14.2.06 ), gathering at least two cryptic species (understood as morphologically identical but separately evolving metapopulation lineages).

Clade 1 is currently reported as widely distributed (e.g. California, Australia and Majorca) (Styan et al. 2017Styan C.A., McCluskey C.F., Sun Y., et al. 2017. Cryptic sympatric species across the Australian range of the global estuarine invader Ficopomatus enigmaticus (Fauvel, 1923) (Serpulidae, Annelida). Aquat. Invasions 12: 53-65. https://doi.org/10.3391/ai.2017.12.1.06 , Yee et al. 2019Yee A., Mackie J., Pernet B. 2019. The distribution and unexpected genetic diversity of the non-indigenous annelid Ficopomatus enigmaticus in California. Aquat. Invasions 14: 250-266. https://doi.org/10.3391/ai.2019.14.2.06 , present study). In the case of two of the lineages found in the present study, Clade 4 and Clade 5, there are no previous records of these species elsewhere, and they are for now only known from Majorca. Considering that the F. enigmaticus species complex is not originally from Mediterranean waters, they have probably been introduced, and it is also expected that members of these clades can be found in other regions worldwide. It is interesting to note that Clade 2 reported by Styan et al. (2017)Styan C.A., McCluskey C.F., Sun Y., et al. 2017. Cryptic sympatric species across the Australian range of the global estuarine invader Ficopomatus enigmaticus (Fauvel, 1923) (Serpulidae, Annelida). Aquat. Invasions 12: 53-65. https://doi.org/10.3391/ai.2017.12.1.06 and Yee et al. (2019)Yee A., Mackie J., Pernet B. 2019. The distribution and unexpected genetic diversity of the non-indigenous annelid Ficopomatus enigmaticus in California. Aquat. Invasions 14: 250-266. https://doi.org/10.3391/ai.2019.14.2.06 is recovered as two separate species in the present analyses. While we did not include all the data available for this clade in the species delimitation analyses, this suggests that molecular species delimitation is not straightforward in this group.

The situation is similar with species of Hydroides found in Majorcan waters. Both H. operculata and H. dianthus have previously been shown to be species complexes (Sun et al. 2017aSun Y., Wong E., Keppel E., et al. 2017a. A global invader or a complex of regionally distributed species? Clarifying the status of an invasive calcareous tubeworm Hydroides dianthus (Verrill 1873) (Polychaeta: Serpulidae) using DNA barcoding. Mar. Biol. 164: 28. https://doi.org/10.1007/s00227-016-3058-9 ,bSun Y., Al-Kandari M., Kubal P., et al. 2017b. Cutting a gordian knot of tubeworms with DNA data: the story of the Hydroides operculata-complex (Annelida, Serpulidae). Zootaxa 4323: 39-48. https://doi.org/10.11646/zootaxa.4323.1.3 ). Hydroides dianthus Clade A has already been reported from the eastern and southern USA, Brazil, east China, Japan, Turkey and Italy. Its distribution area now includes Majorca. Although H. dianthus was originally from the USA (Verrill 1873Verrill A.E. 1873. XVIII. Report upon the invertebrate animals of Vineyard Sound and the adjacent waters, with an account of the physical characters of the region. Report on the condition of the sea fisheries of the south coast of New England in 1871 and 1872. Washington Gov. Print. Off. pp. 295-778. https://doi.org/10.5962/bhl.title.57652 ), it is argued that it may originate from the Mediterranean (Sun et al. 2017aSun Y., Wong E., Keppel E., et al. 2017a. A global invader or a complex of regionally distributed species? Clarifying the status of an invasive calcareous tubeworm Hydroides dianthus (Verrill 1873) (Polychaeta: Serpulidae) using DNA barcoding. Mar. Biol. 164: 28. https://doi.org/10.1007/s00227-016-3058-9 ). If this is confirmed, although the species has not been reported in the Balearic Islands before, it would involve reconsidering their status as invasive in Mediterranean localities. The situation is different for Hydroides cf dianthus Clade B, which has been recorded from only two places, Texas (Caribbean) and Ukraine (Black Sea), and never before in the same region as Hydroides dianthus clade A. It was suggested that this species has been introduced via the Mediterranean from an American population to the Black Sea, and our record provides more evidence in support of this hypothesis. However, previous studies of H. cf. dianthus Clade B were done after analyses of COI sequences, and our record uses a Cytb sequence, which limits further interpretations. (The link of the identity of sequences from these two markers was made possible by later sequencing of a voucher for more global phylogenetic purposes - see Sun et al. 2018Sun Y., Wong E., Ayhong S.T., et al. 2018 Barcoding and multi-locus phylogeography of the globally distributed calcareous tubeworm Hydroides Gunnerus, 1768 (Annelida, Polychaeta, Serpulidae). Mol. Phy. Evol. 127: 732-745. https://doi.org/10.1016/j.ympev.2018.06.021 .)

Genetic data has a great potential for detecting invasive species (Muñoz-Colmenero et al. 2018Muñoz-Colmenero M., Ardura A., Clusa L., et al. 2018. New specific molecular marker detects Ficopomatus enigmaticus from water eDNA before positive results of conventional sampling. J. Nat. Conserv. 43: 173-178. https://doi.org/10.1016/j.jnc.2017.12.004 ), determining the source of the invasion and understanding the routes taken by the species (Geller et al. 2010Geller J.B., Darling J.A., Carlton J.T. 2010. Genetic perspectives on marine biological invasions. Ann. Rev. Mar. Sci. 2: 367-393. https://doi.org/10.1146/annurev.marine.010908.163745 , Yee et al. 2019Yee A., Mackie J., Pernet B. 2019. The distribution and unexpected genetic diversity of the non-indigenous annelid Ficopomatus enigmaticus in California. Aquat. Invasions 14: 250-266. https://doi.org/10.3391/ai.2019.14.2.06 ). When encountering cryptic diversity, it is also particularly important to distinguish between the potentially invasive and native lineages. Though it was one of the aims of the present study, despite the recent progress in the COI DNA barcoding of Hydroides species (Sun et al. 2012Sun Y., Kupriyanova E.K., Qiu J.W. 2012. COI barcoding of Hydroides: a road from impossible to difficult. Invertebr. Syst. 26: 539-547. https://doi.org/10.1071/IS12024 ), we encountered many difficulties in sequencing COI and Cytb from Hydroides and Ficopomatus. While the data we obtained are sufficient to detect the presence of the species complexes and identify the species present in Majorcan waters, they are not sufficient to properly assess their population structure or the sources of the invasion.

Distribution of the Ficopomatus enigmaticus species complex

 

The presence of F. enigmaticus (sensu lato) has been observed in the ports of Palma and Portitxol and near the mouth of torrents. These environments are characterized by low hydrodynamism (expect for after a large rainfall), eutrophic waters and changes in salinity. This kind of habitat has been observed previously in other studies dealing with this species (Yee et al. 2019Yee A., Mackie J., Pernet B. 2019. The distribution and unexpected genetic diversity of the non-indigenous annelid Ficopomatus enigmaticus in California. Aquat. Invasions 14: 250-266. https://doi.org/10.3391/ai.2019.14.2.06 ) and conforms to the ecology of the optimal habitat for the proliferation of F. enigmaticus (sensu lato), which consists of enclosed environments with murky waters. The wide ranges of tolerance to salinity and temperature give members of this species complex the ability to establish themselves in these variant environments, unlike other serpulid species (Dittmann et al. 2009Dittmann S., Rolston A., Benger S.N., et al. 2009. Habitat requirements, distribution and colonisation of the tubeworm Ficopomatus enigmaticus in the Lower Lakes and Coorong. Report for the South Australian Murray-Darling Basin Natural Resources Management Board, Adelaide, 99 pp.).

During the summer, there was a greater proliferation and density of F. enigmaticus populations, as previously observed in other studies (Vuillemin 1958Vuillemin S. 1958. Fixation obtenue au laboratoire des larves de quelques Serpuliens (Annélides Polychètes) du lac de Tunis. C. R. Acad. Hebd. Seances Acad. Sci. D. 247: 2038-2040., Dixon 1981Dixon D.R. 1981. Reproductive biology of the serpulid Ficopomatus (Mercierella) enigmaticus in the Thames Estuary, SE England. J. Mar. Biol. Assoc. UK. 61: 805-815. https://doi.org/10.1017/S0025315400048220 ). According to the literature, the minimum temperature to reproduce ranges between 14°C and 18°C, which in the Balearic Islands corresponds to the month of May. The main episode of settlement and growth is between spring and summer, which correlates with an increase in biomass and carbonated production (Fornós et al. 1997Fornós J.J., Forteza V., Martínez-Taberner A. 1997. Modern polychaete reefs in western Mediterranean lagoons: Ficopomatus enigmaticus (Fauvel) in the Albufera of Menorca, Balearic islands. Palaeogeogr. Palaeoclimatol. Palaeoecol. 128: 175-186. https://doi.org/10.1016/S0031-0182(96)00045-4 ). Knowing that complete maturation takes four months (Obenat and Pezzani, 1994Obenat S.M., Pezzani S.E. 1994. Life cycle and population structure of the polychaete Ficopomatus enigmaticus (Serpulidae) in Mar Chiquita coastal lagoon, Argentina. Estuaries 17: 263. https://doi.org/10.2307/1352574 ), large aggregations may appear during the summer. The addition of the intensification of the international maritime traffic at this period increases the potential for dispersion.

Distribution of the Hydroides species

 

Species diversity showed an uneven presence and abundance between the locations sampled (Table 1). The most common species were H. dianthus and H. elegans, which were present at more sites within the ports of Palma, Portixol and Alcudia. Hidroides dirampha occurred in the ports of Palma, Alcudia and Sóller, and H. nigra only in Portixol (Table 1). Accordingly, the port environments with the greatest species diversity were in descending order the ports of Palma, Alcudia, Portixol and Sóller. There seems to be some correlation between the ports with the highest volume of maritime traffic (Palma, Alcudia and Portixol) and the greatest diversity of invasive species, which would conform to the expected results, because a greater flow of maritime transport could favour the translocation of these species associated with fouling communities embedded on the hulls of the boats (e.g. Zibrowius 1971Zibrowius H. 1971. Les espèces Méditerrannéennes du genre Hydroides (Polychaeta Serpulidae). Remarques sur le prétendu polymorphisme de Hydroides uncinata. Téthys 2: 691-746., ten Hove and Kupriyanova 2009Ten Hove H.A., Kupriyanova E.K. 2009. Taxonomy of Serpulidae (Annelida, Polychaeta): The state of affairs. Zootaxa 2036: 1-126. https://doi.org/10.11646/zootaxa.2036.1.1 , Çinar 2012Çinar M. E. 2012. Alien polychaete species worldwide: current status and their impacts J. Mar. Biolog. Assoc. U.K. 93: 1257-1278. https://doi.org/10.1017/S0025315412001646 ). In the present study, the preference of Hydroides for artificial substrates is verified (as in Pawlik 1992Pawlik J.R. 1992. Chemical ecology of the settlement of benthic marine invertebrates. Oceanogr. Mar. Biol. 30: 273-335., Kupriyanova et al. 2001Kupriyanova E.K., Nishi E., ten Hove H.A., et al. 2001. A review of life history patterns in Serpulimorph polychaetes: ecological and evolutionary perspectives. Oceanogr. Mar. Biol. 39: 1-101.), with four species being present in the ports of Palma and Portixol, while none were recorded on rocky substrates in nearby anthropized areas, such as Cala Blava, and only one specimen in Sa Porrasa Islet (Sun et al. 2017bSun Y., Al-Kandari M., Kubal P., et al. 2017b. Cutting a gordian knot of tubeworms with DNA data: the story of the Hydroides operculata-complex (Annelida, Serpulidae). Zootaxa 4323: 39-48. https://doi.org/10.11646/zootaxa.4323.1.3 ).

CONCLUSION

 

We report for the first time the presence of the Serpulidae species Ficopomatus enigmaticus, Hydroides dianthus, H. dirampha, H. elegans and H. nigra from Majorca. From these species, at least F. enigmaticus, H. dianthus and H. elegans are actually species complexes, within which at least one of the species is cosmopolitan and known as invasive. Three other species within these complexes are for now only known to Majorca and their possible status as invasive is unknown. A better knowledge of the introduction events of these species can be gained by sequencing more specimens from the archipelago.

ACKNOWLEDGEMENTS

 

The samples from the port of Palma, Portixol, Cala Blava and Sa Porrasa were collected as part of the project “Analysis of the marine benthic diversity in the Port of Palma and other areas of the Bay: comparison of morphological analysis and metabarcoding”, financed by the Port Authority of the Balearic Islands (APB). The specimens of H. norvegica sequenced were collected as part of the project “Polychaetes in the Norwegian Ports: uncovering diversity in coastal anthropogenic environments and assessing cryptogenic and non-indigenous species”, funded by the Norwegian Taxonomy Initiative (ABD, pnr 90262600), and we would like to thank our colleagues Torkild Bakken, Eiving Oug, Tuva Munkeby and Gunhilld Borgensen for their help in the field. We are grateful to Jaime Ros, Joel Bestard (professional divers) and Cayetana Casas (skipper of IMEDEA’s boat) for their assistance. The necessary permits were requested to sample in the port areas (Port Authority, OCAE Balearic Islands, Club Náutic Sa Rápita and Port Authority of Sóller) and in the Marine Reserve of the Bay of Palma (Directorate General of Fisheries and Medi Marí, Department of Environment, Agriculture and Fishing). We are grateful to Ferran Hierro (SCT, UIB) for his assistance with the scanning electron microscope, and to Lluis Gómez-Pujol for providing us with the map of Majorca. María Capa is sponsored by the Ramón y Cajal programme (RYC-2016-20799) funded by the Spanish Ministerio de Asuntos Económicos y Transformación Digital, the Agencia Estatal de Investigación, the Comunidad Autónoma de las Islas Baleares and the European Social Fund. An early version of this manuscript was improved after the thorough comments and suggestions of two reviewers: Lena Kupriyanova and Craig Styan.

REFERENCES

 

Alcázar J., San Martín G. 2016. Serpúlidos (Annelida, Serpulidae) colectados en la campaña oceanográfica “Fauna II” y catálogo actualizado de especies íbero-baleares de la familia Serpulidae. Graellsia 72: e053.

Ambrogi A.O. 2000. Biotic invasions in a Mediterranean lagoon. Biol. Invasions. 2: 165-176. https://doi.org/10.1023/A:1010004926405

Aubet M.E. 2001. The Phoenicians and the West: politics, colonies and trade. Cambridge Univ. Press, 448 pp.

Autoridad Portuaria de Baleares (APB). 2017. Memoria Anual, Port de Baleares, 229 pp.

Bastida-Zavala J. R., ten Hove H.A. 2002. Revision of Hydroides Gunnerus, 1768 (Polychaeta: Serpulidae) from the Western Atlantic Region. Beaufortia 52: 103-178.

Bax N., Williamson A., Aguero M., et al. 2003. Marine invasive alien species: a threat to global biodiversity. Mar. Policy 27: 313-323.

Benson D.A., Karsh-Mizrachi I., Lipman D.J., et al. 2008. GenBank. Nucleic Acids Res. 36: 25-30. https://doi.org/10.1093/nar/gkm929

Boore J.L., Brown W.M. 2000. Mitochondrial genomes of Galathealinum, Helobdella, and Platynereis: sequence and gene arrangement comparisons indicate that Pogonophora is not a phylum and Annelida and Arthropoda are not sister taxa. Mol. Biol. Evol. 17: 87-106. https://doi.org/10.1093/oxfordjournals.molbev.a026241

Bouckaert R., Heled J., Kühnert D., et al. 2014. BEAST 2: A Software Platform for Bayesian Evolutionary Analysis. PLoS Comput. Biol. 10: e1003537. https://doi.org/10.1371/journal.pcbi.1003537

Bruschetti M., Bazterrica C., Luppi T., et al. 2009. An invasive intertidal reef-forming polychaete affect habitat use and feeding behavior of migratory and locals birds in a SW Atlantic coastal lagoon. J. Exp. Mar. Biol. Ecol. 375: 76-83. https://doi.org/10.1016/j.jembe.2009.05.008

Burnette A.B., Struck T.H., Halanych K.M. 2005. Holopelagic Poeobius meseres (‘Poeobiidae’, Annelida) is derived from benthic flabelligerid worms. Biol. Bull-US 208: 213-220. https://doi.org/10.2307/3593153

Castresana J. 2000. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol. Biol. Evol. 17: 540-552. https://doi.org/10.1093/oxfordjournals.molbev.a026334

Çinar M. E. 2006. Serpulid species (Polychaeta: Serpulidae) from the Levantine coast of Turkey (eastern Mediterranean), with special emphasis on alien species. Aquat. Invasions 1: 223-240. https://doi.org/10.3391/ai.2006.1.4.6

Çinar M. E. 2012. Alien polychaete species worldwide: current status and their impacts J. Mar. Biolog. Assoc. U.K. 93: 1257-1278. https://doi.org/10.1017/S0025315412001646

Crooks J. A. 2002. Characterizing ecosystem-level consequences of biological invasions: the role of ecosystem engineers. Oikos 97: 153-166. https://doi.org/10.1034/j.1600-0706.2002.970201.x

Davies B.R., Stuart V., De Villiers M. 1989. The filtration activity of a serpulid polychaete population (Ficopomatus enigmaticus (Fauvel)) and its effects on water quality in a coastal marina. Estuar. Coast. Shelf. Sci. 29: 613-620. https://doi.org/10.1016/0272-7714(89)90014-0

Dinno A. 2018. paran: Horn’s Test of Principal Components/Factors. R package version 1.5.2. https://CRAN.R-project.org/package=paran

Dittmann S., Rolston A., Benger S.N., et al. 2009. Habitat requirements, distribution and colonisation of the tubeworm Ficopomatus enigmaticus in the Lower Lakes and Coorong. Report for the South Australian Murray-Darling Basin Natural Resources Management Board, Adelaide, 99 pp.

Dixon D.R. 1981. Reproductive biology of the serpulid Ficopomatus (Mercierella) enigmaticus in the Thames Estuary, SE England. J. Mar. Biol. Assoc. UK. 61: 805-815. https://doi.org/10.1017/S0025315400048220

Drummond A.J., Bouckaert R.R. 2015. Bayesian Evolutionary Analysis with BEAST. Cambridge Univ. Press. https://doi.org/10.1017/CBO9781139095112

Ergen Z. 1976. Investigations on the taxonomy and ecology of Polychaeta from Izmir Bay and its adjacent areas. Sci. Rep. Fac. Sci. Ege Univ. 209: 1-73.

Ezard T., Fujisawa T., Barraclough T. 2017. splits: SPecies’ LImits by Threshold Statistics. R package version 1.0-19/r52 https://R-Forge.R-project.org/projects/splits/

Fauvel P. 1923. Un nouveau serpulien d’eau saumatre Mercierella enigmatica n. sp. Bull. Soc. Zool. Fr. 46: 424-430.

Fornós J.J., Forteza V., Martínez-Taberner A. 1997. Modern polychaete reefs in western Mediterranean lagoons: Ficopomatus enigmaticus (Fauvel) in the Albufera of Menorca, Balearic islands. Palaeogeogr. Palaeoclimatol. Palaeoecol. 128: 175-186. https://doi.org/10.1016/S0031-0182(96)00045-4

Fujisawa T., Barraclough T.G. 2013. Delimiting species using single-locus data and the Generalized Mixed Yule Coalescent Approach: A revised method and evaluation on simulated data sets. Syst. Biol. 62: 707-724. https://doi.org/10.1093/sysbio/syt033

Geller J.B., Darling J.A., Carlton J.T. 2010. Genetic perspectives on marine biological invasions. Ann. Rev. Mar. Sci. 2: 367-393. https://doi.org/10.1146/annurev.marine.010908.163745

Geller J., Meyer C., Parker M., et al. 2013. Redesign of PCR primers for mitochondrial cytochrome c oxidase subunit I for marine invertebrates and application in all-taxa biotic surveys. Mol. Ecol. Resour. 13: 851-861. https://doi.org/10.1111/1755-0998.12138

Gil J. 2011. The European fauna of Annelida Polychaeta. PhD thesis, Univ. Lisboa, Portugal, 1554 pp.

Grube A.E. 1868. Beschreibungen einiger von Georg Ritter von Frauenfeld gesammelter Anneliden und Gephyreen des rothen Meeres. Verh. Zool.-Bot. Ges. Wien 18: 629-650.

Grube A.E. 1878. Annulata Semperiana. Beiträge zur Kenntniss der Annelidenfauna der Philippinen nach den von Herrn Prof. Semper mitgebrachten Sammlungen. Mem. Acad. Sci. St. Petersb. 25: 1-300. https://doi.org/10.5962/bhl.title.85345

Guindon S., Dufayard J.F., Lefort V., et al. 2010. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst. Biol. 59: 307-321. https://doi.org/10.1093/sysbio/syq010

Gunnerus J.E. 1768. Om nogle Norske coraller. Kongel. Norske Vidensk. Selsk. Skr. 4: 38-73.

Halt M.N., Kupriyanova E.K., Cooper S.J., et al. 2009. Naming species with no morphological indicators: species status of Galeolaria caespitosa (Annelida: Serpulidae) inferred from nuclear and mitochondrial gene sequences and morphology. Invertebr. Syst. 23: 205-222. https://doi.org/10.1071/IS09003

Heiman K.W., Micheli F. 2010. Non-native ecosystem engineer alters estuarine communities. Integr. Comp. Biol. 50: 226-236. https://doi.org/10.1093/icb/icq036

Hewitt C.L., Gollasch S., Minchin D. 2009. The vessel as a vector-biofouling, ballast water and sediments. In: Rilov G., Crooks J.A. (eds) Biological Invasions in Marine Ecosystems. Ecol. Stud. Springer, Berlin, Heidelberg, pp. 117-131. https://doi.org/10.1007/978-3-540-79236-9_6

Haswell W.A. 1883. On some new Australian tubicolous annelids. Proc. Linn. Soc. N.S.W. 7: 633-638.

Invasive Species Specialist Group (ISSG). 2011. We need to strengthen, not weaken, the struggle against harmful invasive species. http://www.issg.org/pdf/rebuttal.pdf

Iroso I. 1921. Revisione dei serpulidi e sabellidi del Golfo di Napoli. PSZNI Mar. Ecol. 3: 47-91.

Katsanevakis S., Wallentinus I., Zenetos A., et al. 2014. Impact of invasive alien marine species on ecosystem services and biodiversity: a pan-European review. Aquat. Invasions 9: 391-423. https://doi.org/10.3391/ai.2014.9.4.01

Kapli P., Lutteropp S., Zhang J., et al. 2017. Multi-rate Poisson tree processes for single-locus species delimitation under maximum likelihood and Markov chain Monte Carlo. Bioinformatics 33: 1630-1638. https://doi.org/10.1093/bioinformatics/btx025

Katoh K., Standley D.M. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30: 772-780. https://doi.org/10.1093/molbev/mst010

Kearse M., Moir R., Wilson A., et al. 2012. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28: 1647-1649. https://doi.org/10.1093/bioinformatics/bts199

Kumar S., Stecher G., Li M., et al. 2018. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol. Biol. Evol. 35: 1547-1549. https://doi.org/10.1093/molbev/msy096

Kupriyanova E.K., Nishi E., ten Hove H.A., et al. 2001. A review of life history patterns in Serpulimorph polychaetes: ecological and evolutionary perspectives. Oceanogr. Mar. Biol. 39: 1-101.

Lanfear R., Frandsen P.B., Wright A.M., et al. 2016. PartitionFinder 2: New methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol. Biol. Evol. 34: 772-773. https://doi.org/10.1093/molbev/msw260

Larsson A. 2014. AliView: a fast and lightweight alignment viewer and editor for large datasets. Bioinformatics 30: 3276-3278. https://doi.org/10.1093/bioinformatics/btu531

Martínez-Taberner A., Forteza V., Fornós J.J. 1993. Colonization, structure and growth of Ficopomatus enigmaticus cf. ten Hove and Weerdenburg (Polychaeta, Serpulidae) in the Albufera of Menorca, Balearic Islands. Verh. Internat. Verein. Limnol. 25: 1031-1034. https://doi.org/10.1080/03680770.1992.11900316

Miller M.A., Pfeiffer W., Schwartz T. 2010. Creating the CIPRES Science Gateway for Inference of Large Phylogenetic Trees. In: Proceedings of the Gateway Computing Environments Workshop. New Orleans, pp. 1-8. https://doi.org/10.1109/GCE.2010.5676129

Molnar J.L., Gamboa R.L., Revenga C., et al. 2008. Assessing the global threat of invasive species to marine biodiversity. Front. Ecol. Environ. 6: 485-492. https://doi.org/10.1890/070064

Mörch O. A. L. 1863. Revisio critica Serpulidarum. Et Bidrag til Rørormenes Naturhistorie. Naturh. Tidsskr. København 3: 347-470.

Muñoz-Colmenero M., Ardura A., Clusa L., et al. 2018. New specific molecular marker detects Ficopomatus enigmaticus from water eDNA before positive results of conventional sampling. J. Nat. Conserv. 43: 173-178. https://doi.org/10.1016/j.jnc.2017.12.004

Nygren A. 2014. Cryptic polychaete diversity: a review. Zool. Scr. 43: 172-183. https://doi.org/10.1111/zsc.12044

Obenat S.M., Pezzani S.E. 1994. Life cycle and population structure of the polychaete Ficopomatus enigmaticus (Serpulidae) in Mar Chiquita coastal lagoon, Argentina. Estuaries 17: 263. https://doi.org/10.2307/1352574

Oliva M., De Marchi L., Vieira Sanches M., et al. 2020. Atlantic and Mediterranean populations of the widespread serpulid Ficopomatus enigmaticus: Developmental responses to carbon nanotubes. Mar. Poll. Bull. 156: 111265. https://doi.org/10.1016/j.marpolbul.2020.111265

Pan J., Marcoval M.A. 2013. Top-down effects of an exotic serpulid polychaete on natural plankton assemblage of estuarine and brackish systems in the SW Atlantic. J. Coast. Res. 30: 1226-1235. https://doi.org/10.2112/JCOASTRES-D-12-00163.1

Paradis E., Schliep K. 2018. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35: 526-528. https://doi.org/10.1093/bioinformatics/bty633

Pawlik J.R. 1992. Chemical ecology of the settlement of benthic marine invertebrates. Oceanogr. Mar. Biol. 30: 273-335.

Peria J., Pernet B. 2019. Tolerance to salinity and thermal stress by larvae and adults of the serpulid annelid Ficopomatus enigmaticus. Invertebr. Biol. 138: e12271. https://doi.org/10.1111/ivb.12271

Pernet B., Barton M., Fitzhugh K., et al. 2016. Establishment of the reef-forming tubeworm Ficopomatus enigmaticus (Fauvel, 1923) (Annelida: Serpulidae) in southern California. Bioinvasions Rec. 5. https://doi.org/10.3391/bir.2016.5.1.03

Philippi A. 1844. Einige Bemerkungen über die Gattung Serpula, nebst Aufzählung der von mir im Mittelmeer mit dem Thier beobachteten Arten. Archiv für Naturgeschichte Berlin. 10: 186-198. https://doi.org/10.5962/bhl.part.29558

Pons J., Barraclough T.G., Gomez-Zurita J., et al. 2006. Sequence-based species delimitation for the DNA taxonomy of undescribed insects. Syst. Biol. 55: 595-609. https://doi.org/10.1080/10635150600852011

R Core Team. 2015. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/

Rafinesque C.S. 1815. Analyse de la nature ou tableau de l’univers et des corps organisés. Palermo, 224 pp. https://doi.org/10.5962/bhl.title.106607

Rambaut A. 2014. FigTree 1.4.2 Software. Institute of Evolutionary Biology, Univ. Edinburgh, Edinburgh.

Rambaut A., Drummond A.J., Xie D., et al. 2018. Posterior Summarization in Bayesian Phylogenetics Using Tracer 1.7. Syst. Biol. 67: 901-904. https://doi.org/10.1093/sysbio/syy032

Read G.B., Gordon D.P. 1991. Adventive occurrence of the fouling serpulid Ficopomatus enigmaticus (Polychaeta) in New Zealand. N. Z. J. Mar. Freshw. Res. 25: 269-273. https://doi.org/10.1080/00288330.1991.9516478

Rioja E. 1923. Estudio sistemático de las especies Ibéricas del suborden Sabelliformia. Trab. Mus. Natl. Cienc. Nat. Ser. Zool. 48: 1-144.

Rioja E. 1941. Estudios Anelidologicos. II. Observaciones acerca de varias especies del genero Hydroides Gunnerus (sensu Fauvel) de las costas Mexicanas del Pacífico. An. Inst. Biol. Mex. 12: 161-175.

Rodriguez L.F. 2006. Can invasive species facilitate native species? Evidence of how, when, and why these impacts occur. Biol. Invasions 8: 927-939. https://doi.org/10.1007/s10530-005-5103-3

San Martín G., Viéitez J.M. 1984. Anélidos poliquetos de los rizomas de Posidonia oceanica, en las costas de Cabo de Palos (Murcia, España). In: Bodouresque et al. (eds), International Workshop Posidonia oceanica Beds, GIS Posidonie publ. pp. 149-157.

Schwindt E., Bortolus A., Iribarne O.O. 2001. Invasion of a reef-builder polychaete: direct and indirect impacts on the native benthic community structure. Biol. Invasions 3: 137-149. https://doi.org/10.1023/A:1014571916818

Schwindt E., De Francesco C.G., Iribarne O.O. 2004. Individual and reef growth of the invasive reef-building polychaete Ficopomatus enigmaticus in a south-western Atlantic coastal lagoon. J. Mar. Biol. Assoc. UK. 84: 987-993. https://doi.org/10.1017/S0025315404010288h

Shumka S., Kashta L., Cake A. 2014. Occurrence of the nonindigenous tubeworm Ficopomatus enigmaticus (Fauvel, 1923) (Polychaeta: Serpulidae) on the Albanian coast of the Adriatic Sea. Turk. J. Zool. 38: 519-521.https://doi.org/10.3906/zoo-1303-14

Smith A. M., Henderson Z. E., Kennedy M., et al. 2012. Reef formation versus solitariness in two New Zealand serpulids does not involve cryptic species. Aquat. Biol. 16: 97-103. https://doi.org/10.3354/ab00444

Styan C.A., McCluskey C.F., Sun Y., et al. 2017. Cryptic sympatric species across the Australian range of the global estuarine invader Ficopomatus enigmaticus (Fauvel, 1923) (Serpulidae, Annelida). Aquat. Invasions 12: 53-65. https://doi.org/10.3391/ai.2017.12.1.06

Sun Y., Kupriyanova E.K., Qiu J.W. 2012. COI barcoding of Hydroides: a road from impossible to difficult. Invertebr. Syst. 26: 539-547. https://doi.org/10.1071/IS12024

Sun Y., Wong E., Tovar-Hernández M.A., et al. 2016. Is Hydroides brachyacantha (Serpulidae: Annelida) a widespread species? Invertebr. Syst. 30: 41-59. https://doi.org/10.1071/IS15015

Sun Y., Wong E., Keppel E., et al. 2017a. A global invader or a complex of regionally distributed species? Clarifying the status of an invasive calcareous tubeworm Hydroides dianthus (Verrill 1873) (Polychaeta: Serpulidae) using DNA barcoding. Mar. Biol. 164: 28. https://doi.org/10.1007/s00227-016-3058-9

Sun Y., Al-Kandari M., Kubal P., et al. 2017b. Cutting a gordian knot of tubeworms with DNA data: the story of the Hydroides operculata-complex (Annelida, Serpulidae). Zootaxa 4323: 39-48. https://doi.org/10.11646/zootaxa.4323.1.3

Sun Y., Wong E., Ayhong S.T., et al. 2018 Barcoding and multi-locus phylogeography of the globally distributed calcareous tubeworm Hydroides Gunnerus, 1768 (Annelida, Polychaeta, Serpulidae). Mol. Phy. Evol. 127: 732-745. https://doi.org/10.1016/j.ympev.2018.06.021

Ten Hove H.A., Kupriyanova E.K. 2009. Taxonomy of Serpulidae (Annelida, Polychaeta): The state of affairs. Zootaxa 2036: 1-126. https://doi.org/10.11646/zootaxa.2036.1.1

Toonen R.J., Pawlik J.R. 2001. Foundations of gregariousness: A dispersal polymorphism among the planktonic larvae of a marine invertebrate. Evolution 55: 2439-2454. https://doi.org/10.1111/j.0014-3820.2001.tb00759.x

Treadwell A.L. 1929. New species of polychaetous annelids in the collections of the American Museum of Natural History from Porto Rico, Florida, Lower California, and British Somaliland. Am. Mus. Novit. 392: 1-13. https://doi.org/10.5479/si.00963801.75-2797.1

Ulman A., Ferrario J., Occhpinti-Ambrogi A., et al. 2017. A massive update of non-indigenous species records in Mediterranean marinas. PeerJ. 5: e3954. https://doi.org/10.7717/peerj.3954

Ulman A., Ferrario J., Forcada A., et al. 2019. Alien species spreading via biofouling on recreational vessels in the Mediterranean Sea. J. Appl. Ecol. 56: 2620-2629. https://doi.org/10.1111/1365-2664.13502

Venables W.N., Ripley B.D. 2002. Modern applied statistics with S. Fourth Edition, Springer, New York. https://doi.org/10.1007/978-0-387-21706-2

Verrill A.E. 1873. XVIII. Report upon the invertebrate animals of Vineyard Sound and the adjacent waters, with an account of the physical characters of the region. Report on the condition of the sea fisheries of the south coast of New England in 1871 and 1872. Washington Gov. Print. Off. pp. 295-778. https://doi.org/10.5962/bhl.title.57652

Vuillemin S. 1958. Fixation obtenue au laboratoire des larves de quelques Serpuliens (Annélides Polychètes) du lac de Tunis. C. R. Acad. Hebd. Seances Acad. Sci. D. 247: 2038-2040.

Willette D.A., Iñiguez A.R., Kupriyanova E.K., et al. 2015. Christmas tree worms of Indo-Pacific coral reefs: untangling the Spirobranchus corniculatus (Grube, 1862) complex. Coral Reefs 34: 899-904. https://doi.org/10.1007/s00338-015-1294-y

Wright J.T., Gribben P.E. 2017. Disturbance-mediated facilitation by an intertidal ecosystem engineer. Ecology 98: 2425-2436. https://doi.org/10.1002/ecy.1932

Yee A., Mackie J., Pernet B. 2019. The distribution and unexpected genetic diversity of the non-indigenous annelid Ficopomatus enigmaticus in California. Aquat. Invasions 14: 250-266. https://doi.org/10.3391/ai.2019.14.2.06

Zenetos A., Çinar M.E., Pancucci-Papadopoulou M.A., et al. 2005. Annotated list of marine alien species in the Mediterranean with records of the worst invasive species. Mediterr. Mar. Sci. 6: 63-118. https://doi.org/10.12681/mms.186

Zibrowius H. 1968. Étude morphologique, systématique et écologique des Serpulidae (Annelida Polychaeta) de la région de Marseille. Rec. Trav. Station mar. Endoume 43: 81-252.

Zibrowius H. 1971. Les espèces Méditerrannéennes du genre Hydroides (Polychaeta Serpulidae). Remarques sur le prétendu polymorphisme de Hydroides uncinata. Téthys 2: 691-746.

Zibrowius H. 1991. Ongoing modification of the Mediterranean marine fauna and flora by the establishment of exotic species. Mésogée 51: 83-107.

Zibrowius H. 2002. Assessing scale and impact of ship-transported alien fauna in the Mediterranean? CIESM Workshop Monographs 20: 62-68.

SUPPLEMENTARY MATERIAL

 

The following supplementary material is available through the online version of this article and at the following link: http://scimar.icm.csic.es/scimar/supplm/sm05062esm.pdf

Table S1.  Collection information on the specimens used for the phylogenetic analyses, vouchers, and GenBank accession numbers.
SpeciesVoucher / IDLocalityCOICytb
Hydroides triversiculosus AMW40553 / SAME3601 Australia JQ885940 EU190476
Hydroides basispinosa AMW48317 Australia MF405948
Hydroides gradata AMW48313 Australia MF405959
Hydroides operculata AMW40552 China JQ885948
Hydroides operculata AMW40550 China KP178722
Hydroides inornata AMW48848 India MF405941
Hydroides operculata AMW46604 Kuwait MF405954
Hydroides nigra AMW42073 Spain MF405952
Hydroides pseudouncinata AMW48679 Spain MF405946
Hydroides pseudouncinata ZMAVPol5240 France KP178713 EU190467
Hydroides pseudouncinata AMW47500 Greece MF405945
Hydroides diramphus AMW40539 China KP178718
Hydroides crucigera AMW40538 Mexico JQ885947 KP178715
Hydroides branchyacanthus AMW40536 Mexico JQ885941
Hydroides recurvispina AMW40547 Mexico JQ885945
Hydroides dolabrus AMW46906 Mexico KP178712 KP178719
Hydroides panamensis AMW47428 Costa Rica KP988293
Hydroides sanctaecrucis AMW46569 Australia KU051504
Hydroides sanctaecrucis AMW40549 Mexico JQ885943 KP178717
Hydroides sanctaecrucis Australia KU051501
Hydroides sanctaecrucis AMW46568 Australia KU051503
Hydroides dianthus AMW48799 Turkey KY123243
Hydroides dianthus AMW48789 Turkey KY123249
Hydroides dianthus AMW48688 Italy KY386653
Hydroides dianthus AMW48664 Italy KY386640
Hydroides dianthus AMW48629 Italy KY386635
Hydroides dianthus 302666 USA KU051463
Hydroides dianthus AMW48170 Ukraine KU051522
Hydroides dianthus AMW47779 USA KU051477
Hydroides dianthus AMW48167 Ukraine KU051521
Hydroides dianthus AMW48156 USA KU051512
Hydroides dianthus AMW47774 USA KU051472
Hydroides dianthus AMW48152 USA KU051508
Hydroides dianthus AMW48158 USA KU051514
Hydroides dianthus AMW47780 USA KU051478
Hydroides fusicola AMW40545 Japan JQ885950 KP178723
Hydroides elegans WT2NR-3 Australia MH339602
Hydroides ezoensis AMW40544 Russia JQ885951 KP178716
Hydroides elegans WT5NS Australia MH339603
Hydroides elegans AMW40541 Australia JQ885939
Hydroides elegans SA5MB-2 USA KY235613
Hydroides elegans AMW40540 China JQ885938
Hydroides elegans WT1NS-4 Australia MH339601
Hydroides elegans UI5S USA KY235618
Hydroides elegans WT5NS-2 Australia MH339600
Hydroides elegans WT2MS-1 Australia MH339596
Hydroides elegans CN1RT USA KY235603
Hydroides elegans AC74MR USA KY235596
Hydroides elegans SA2R-1 USA KY235607
Ficopomatus enigmaticus KU697663 Spain KU697663
Ficopomatus enigmaticus KU697660 Spain KU697660
Ficopomatus enigmaticus KU697661 Spain KU697661
Ficopomatus enigmaticus KU697662 Spain KU697662
Ficopomatus enigmaticus KU697664 Spain KU697664
Ficopomatus enigmaticus KX840012 Spain KX840012
Ficopomatus enigmaticus KX840013 Spain KX840013
Ficopomatus enigmaticus Cu3 Australia KP863760
Ficopomatus enigmaticus Wi2 Australia KP863759
Ficopomatus enigmaticus Ho4 Australia KP863758
Ficopomatus enigmaticus H10_It Italy MK934530
Ficopomatus enigmaticus H14_It Italy MK934534
Ficopomatus enigmaticus H13_It Italy MK934533
Ficopomatus enigmaticus H12_It Italy MK934532
Ficopomatus enigmaticus Sw2 Australia KP863738
Ficopomatus enigmaticus Sw1 Australia KP863736
Ficopomatus enigmaticus H9_It_Av Italy / Portugal MK934529
Ficopomatus enigmaticus LA_36 USA MK334109
Ficopomatus enigmaticus LA_32 USA MK334105
Ficopomatus enigmaticus Cu6 Australia KP863767
Ficopomatus enigmaticus H11_It Italy MK934531
Hydroides norvegica AMW46897 Norway KP178721
Hydroides tuberculata SAME3596 EU190473
Hydroides tuberculata AMW45419 Australia KR095099
Hydroides minax SAME3597 EU190475
Hydroides nikae SAME3530 EU190466
Hydroides nikae AMW46923 Australia KR095078
Hydroides brachyachanta AMW45577 Mexico KR095053
Hydroides brachyachanta AMW46899 Mexico KR095068
Hydroides brachyachanta AMW46900 Mexico KR095069
Hydroides brachyachanta AMW47016 Mexico KR095089
Hydroides brachyachanta AMW46903 Mexico KR095070
Hydroides novaepommeraniae SAME3599 EU190478
Ficopomatus enigmaticus H1_AV_IT Italy / Portugal MH271215
Ficopomatus enigmaticus H6_IT Italy MH271220
Hydroides nigra AM W48678 Spain MF406020
Hydroides elegans AMW48216 USA MG892710
Hydroides elegans AM W46406 MG892708
Hydroides dirampha AM W48205 Panama MG892525
Hydroides dirampha AM W42402 Australia MG892524
Ficopomatus enigmaticus FIC01 - MNCN 16.01/18765 Majorca MT044486 MT215015
Ficopomatus enigmaticus FIC02 - MNCN 16.01/18766 Majorca MT044489 MT215014
Ficopomatus enigmaticus FIC04 - MNCN 16.01/18767 Majorca MT044492 NA
Ficopomatus enigmaticus FIC05 - MNCN 16.01/18768 Majorca MT044491 NA
Ficopomatus enigmaticus FIC12 - MNCN 16.01/18769 Majorca MT044494 NA
Ficopomatus enigmaticus FIC15 - MNCN 16.01/18770 Majorca MT044488 NA
Ficopomatus enigmaticus FIC16 - MNCN 16.01/18771 Majorca MT044495 NA
Ficopomatus enigmaticus FIC17 - MNCN 16.01/18772 Majorca MT044490 NA
Ficopomatus enigmaticus FIC20 - MNCN 16.01/18773 Majorca MT044487 NA
Ficopomatus enigmaticus FIC21 - MNCN 16.01/18774 Majorca MT044493 NA
Hydroides nigra HYD11 - MNCN 16.01/18775 Majorca NA MT215009
Hydroides dianthus HYD14 - MNCN 16.01/18776 Majorca NA MT215010
Hydroides elegans HYD22 Majorca NA MT215012
Hydroides elegans HYD23 - MNCN 16.01/18777 Majorca NA MT215008
Hydroides dianthus HYD26 - MNCN 16.01/18778 Majorca NA MT215011
Hydroides norvegica HYD30 Norway NA MT215013
Hydroides dirampha PAR06i05 - MNCN 16.01/18779 Majorca MT044496 NA
Hydroides dianthus POR02i09 - MNCN 16.01/18780 Majorca MT044497 NA
Hydroides elegans PAR02i05 - MNCN 16.01/18781 Majorca MT044498 NA
Hydroides elegans PAR02i04 - MNCN 16.01/18782 Majorca MT044499 NA
Hydroides elegans PAD01i03 - 16.01/18783 Majorca MT044500 NA
Hydroides elegans PAR02i08 - MNCN 16.01/18784 Majorca MT044501 NA