Size overlap in intertidal decapod communities along the chilean coast

Patricio De los Ríos-Escalante 1,2, Guillermo Figueroa-Muñoz 3, Marco A. Retamal 4,†,
Rolando Vega-Aguayo 5,6, Carlos Esse 7

1 Universidad Católica de Temuco, Facultad de Recursos Naturales, Departamento de Ciencias Biológicas y Químicas, Casilla 15-D, Temuco, Chile.
2 Núcleo de Estudios Ambientales, UC Temuco.
(PDR-E) (Corresponding author) E-mail: prios@uct.cl. ORCID iD: https://orcid.org/0000-0001-5056-7003
3 Genomics in Ecology, Evolution and Conservation Laboratory (GEECLAB), Departamento de Zoología, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile.
(GF-M) E-mail: gfigueroa2013@alu.uct.cl. ORCID iD: https://orcid.org/0000-0001-7446-9934
4 Universidad de Concepción, Facultad de Ciencias Naturales y Oceanográficas, Departamento de Oceanografía, Casilla 160-C, Concepción, Chile.
(MAR) (Deceased August 2019) E-mail: marretam@udec.cl. ORCID iD: https://orcid.org/0000-0001-8255-1137
5 Universidad Católica de Temuco, Facultad de Recursos Naturales, Departamento de Ciencias Agropecuarias y Acuícolas, Casilla 15-D, Temuco, Chile.
6 Núcleo de Investigación de Producción Alimentaria.
(RV-A) E-mail: rvega@uct.cl. ORCID iD: https://orcid.org/0000-0002-3300-6893
7 Unidad de Cambio Climático y Medio Ambiente, Instituto de Estudios de Hábitat (IEH), Facultad de Arquitectura y Construcción, Universidad Autónoma de Chile, Temuco, Chile.
(CE) E-mail: carlos.esse@uautonoma.cl. ORCID iD: https://orcid.org/0000-0002-5030-3275

Summary: The intertidal crustaceans on the Chilean coast are characterized by high diversity and niche specialization. The present study applied a size overlap null model for intertidal decapod communities at four different sites on the Chilean coast. The results revealed that there is a size overlap for the four sites, though body size is significantly different for each location. This means that the reported species would share their ecological niches. The results agree with the first classic environmental descriptions for Chilean intertidal decapods at a local scale and support the observations for similar species on the southern Pacific and southern Atlantic coasts.

Keywords: intertidal decapods; rocky shore; null models; size overlap.

Superposición de tamaño en comunidades de decápodos a lo largo de la costa chilena

Resumen: Los crustáceos intermareales en la costa chilena se caracterizan por su gran diversidad y especialización de nicho. El presente estudio tiene como objetivo aplicar un modelo nulo de superposición de tamaño para comunidades de decápodos intermareales en cuatro sitios diferentes de la costa chilena. Los resultados obtenidos revelaron que existe una superposición de tamaño para cuatro sitios estudiados, a pesar de que el tamaño del cuerpo es significativamente diferente para cada ubicación. Esto significa que las especies reportadas tendrían una superposición de tamaño, lo que significa que las especies reportadas compartirían sus respectivos nichos ecológicos. En este contexto, los resultados estarían de acuerdo con las primeras descripciones ambientales clásicas para los decápodos intermareales chilenos a escala local, y apoyaría las observaciones de especies similares en el Pacífico sur y la costa sur del Atlántico.

Palabras clave: decápodos intermereales; costa rocosa; modelos nulos; superposición de tamaño.

Citation/Como citar este artículo: De los Ríos-Escalante P., Figueroa-Muñoz G., Retamal M.A., Vega-Aguayo R., Esse C. 2020. Size overlap in intertidal decapod communities along the chilean coast. Sci. Mar. 84(2): 151-154. https://doi.org/10.3989/scimar.04973.14A

Editor: R. Sardà.

Received: July 2, 2019. Accepted: April 3, 2020. Published: April 23, 2020.

Copyright: © 2020 CSIC. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International (CC BY 4.0) License.

Contents

Summary
Resumen
Introduction
Materials and methods
Results and discussion
Acknowledgements
References

INTRODUCTIONTop

The Chilean intertidal decapod fauna is characterized by the presence of a wide range of species along the whole continental territory and Peruvian coast and species reported only for the southern coast that can be shared with the southern Atlantic coast (Retamal 1981Retamal M.A. 1981. Catalogo ilustrado de los Crustáceos Decápodos de Chile. Gayana, (Zool.) 44: 1-110., Retamal and Moyano 2010Retamal M.A., Moyano H.I. 2010. Zoogeografía de los crustáceos decápodos chilenos marinos y dulceacuícola. Lat. Am. J. Aq. Res. 38: 302-328., Vega-Aguayo et al. 2018Vega-Aguayo R., Figueroa-Muñoz G., Retamal M.A., et al. 2018. Spatial distribution and abundance of Hemigrapsus crenulatus (H. Milne-Edwards, 1837) (Decapoda, Varunidae) in the Puerto Cisnes Estuary (44°S, Aysen region, Chile). Crustaceana 91: 1465-1482.). The ecological role of these decapods is detritivorous, and they inhabit mainly lower intertidal levels (Bahamonde and López 1969Bahamonde N., Lopez M. 1969. Cyclograpsus cinereus Dana, en biocenosis supramareales de Chile (Crustacea, Decapoda, Brachyura, Grapsidae). Bol. Mus. Nac. Hist. Nat. 29: 166-203., Sanhueza et al. 1975Sanhueza E., Bahamonde N., Lopez M.T. 1975. Petrolisthes granulosus (Guérin, 1835) en biocenosis supramareales de El Tabo (Crustacea: Decapoda: Anomura). Bol. Mus. Nac. Hist. Nat. 34: 121-136., Vega-Aguayo et al. 2018Vega-Aguayo R., Figueroa-Muñoz G., Retamal M.A., et al. 2018. Spatial distribution and abundance of Hemigrapsus crenulatus (H. Milne-Edwards, 1837) (Decapoda, Varunidae) in the Puerto Cisnes Estuary (44°S, Aysen region, Chile). Crustaceana 91: 1465-1482.).

The rocky shores between northern and southern central Chile (17-41°S) are characterized by the presence of coasts exposed to waves, with high productivity mainly in northern Chile because of the cold water of the Humboldt Stream that generates high species diversity (Santelices 1992Santelices B. 1992. Algas marinas de Chile. Distribución, ecología, utilización, diversidad. Ediciones Pontificia Universidad Católica de Chile, Santiago de Chile. 399 pp.). The rocky shores have high species richness because they provide environmental heterogeneity in term of microhabitats that can sustain high species diversity (Bahamonde and López 1969Bahamonde N., Lopez M. 1969. Cyclograpsus cinereus Dana, en biocenosis supramareales de Chile (Crustacea, Decapoda, Brachyura, Grapsidae). Bol. Mus. Nac. Hist. Nat. 29: 166-203., Sanhueza et al. 1975Sanhueza E., Bahamonde N., Lopez M.T. 1975. Petrolisthes granulosus (Guérin, 1835) en biocenosis supramareales de El Tabo (Crustacea: Decapoda: Anomura). Bol. Mus. Nac. Hist. Nat. 34: 121-136., Santelices 1992Santelices B. 1992. Algas marinas de Chile. Distribución, ecología, utilización, diversidad. Ediciones Pontificia Universidad Católica de Chile, Santiago de Chile. 399 pp.).

To the south of 41° latitude there are many inner seas and estuaries characterized by low salinity and relatively low productivity and species richness in comparison with northern and central Chilean rocky shores (Retamal 1969Retamal M.A. 1969. Hemigrapsus crenulatus (H. Milne Edwards, 1837), en el estero Lenga (Crustacea, Decapoda, Grapsidae). Bol. Soc. Biol. Concepción 13: 281-309., Santelices 1992Santelices B. 1992. Algas marinas de Chile. Distribución, ecología, utilización, diversidad. Ediciones Pontificia Universidad Católica de Chile, Santiago de Chile. 399 pp., Vega-Aguayo et al. 2018Vega-Aguayo R., Figueroa-Muñoz G., Retamal M.A., et al. 2018. Spatial distribution and abundance of Hemigrapsus crenulatus (H. Milne-Edwards, 1837) (Decapoda, Varunidae) in the Puerto Cisnes Estuary (44°S, Aysen region, Chile). Crustaceana 91: 1465-1482.). A similar situation has been reported for the southern Atlantic coast in Argentina (Boschi and Gavio 2005Boschi E.E., Gavio M. 2005. On the distribution of decapod crustaceans from the Magellan biogeographic provinces and the Antarctic region. Sci. Mar. 69: 195-200.).

Community ecology proposes the use of null models to determine whether communities are structured or random (Gotelli and Graves 1996Gotelli N.J. Graves G.R. 1996. Null models in ecology. Smithsonian Institution Press, Washington, DC. 368 pp.). One of the models proposed is called size overlap, which is based on the assumption that, in conditions of niche overlap, the ecological niche is shared by the involved species because of the absence of interspecific competence (Gotelli and Graves 1996Gotelli N.J. Graves G.R. 1996. Null models in ecology. Smithsonian Institution Press, Washington, DC. 368 pp., Gotelli and Entsminger 2009Gotelli N.J., Entsminger G.L. 2009. EcoSim: Null models software for ecology. Version 7. Acquired Intelligence Inc. & Kesey-Bear. Jericho, VT 05465. [Accessed: 02th May 2019]).

The present study aims to apply a size overlap null model to understand decapod community ecological patterns and structures and compare sizes within sites for decapod communities in four intertidal rocky environments in northern Chile (Antofagasta, 23°S and Caldera, 27°S) and southern Chile (Pargua, 41°S and San Juan 42°S) (Fig. 1) that are different types of rocky shores.

figure

Full size image

Fig. 1. – Map of sites included in the present study.

MATERIALS AND METHODSTop

Specimens were collected manually from rocky intertidal shores at study sites during low tide in the austral autumn and spring of 2016 (Pargua and San Juan Estuary in May 2016, Trocadero, in September 2016, and Caldera in October 2016; Table 1). They were identified according to Retamal (1981)Retamal M.A. 1981. Catalogo ilustrado de los Crustáceos Decápodos de Chile. Gayana, (Zool.) 44: 1-110.. Total length of the collected samples was measured according to Bahamonde and López (1969)Bahamonde N., Lopez M. 1969. Cyclograpsus cinereus Dana, en biocenosis supramareales de Chile (Crustacea, Decapoda, Brachyura, Grapsidae). Bol. Mus. Nac. Hist. Nat. 29: 166-203. and Sanhueza et al. (1975)Sanhueza E., Bahamonde N., Lopez M.T. 1975. Petrolisthes granulosus (Guérin, 1835) en biocenosis supramareales de El Tabo (Crustacea: Decapoda: Anomura). Bol. Mus. Nac. Hist. Nat. 34: 121-136..

Table 1. – Geographical location, species reported and total length for species reported in sites included in the present study.

Site Geographical location Species reported Total length (mm)
Trocadero 23°34′S 70°23′W Cyclograpsus cinereus Dana, 1851 4.9±1.0 (n=5)
Petrolisthes granulosus (Guerin, 1835) 6.6±0.9 (n=7)
Caldera 27°04′S 70°49′W Betaeus truncatus Dana, 1852 29.2±4.9 (n=12)
Cyclograpsus cinereus 6.2±1.1 (n=12)
Leptograpsus variegatus (Fabricius, 1793) 53.2±3.2 (n=6)
Petrolisthes violaceus (Guerin, 1831) 11.7±1.8 (n=12)
Pargua 41°46′S 73°08′W Acantocyclops gayi (H. Milne Edwards and Lucas, 1844) 18.6±3.5 (n=20)
Hemigrapsus crenulatus (H. Milne Edwards, 1837) 25.2±3.6 (n=5)
Petrolisthes violaceus 11.2±2.9 (n=10)
San Juan estuary 42°19′S 73°29′W Acantocyclops gayi 17.9±5.3 (n=15)
Hemigrapsus crenulatus 17.0±3.5 (n=15)

Total length within reported species was compared for each site. A non-parametric Wilcoxon test was used for sites with two species, whereas a Kruskall-Wallis test was used for sites with more than two species. Successive non-parametric Wilcoxon tests within pairs were used for multiple comparison (Desu and Raghavarao 2004Desu M.M., Raghavarao D. 2004. Non parametric statistical methods for complete and censored data. Chapman & Hall / CRC, Boca Raton, Florida, U.S.A. 367 pp.). All of these analyses were applied using the R software (R Development Core Team 2009R Development Core Team. 2009. R: A language and environment for statistical computing. R foundation for statistical computing, Vienna.).

The null model is size structure, was applied for total length collected specimens, and it was applied to determine the non-random patterns in size overlap of species. The data for this analysis consisted of a matrix in which each species was a row, and each site was a column (Gotelli and Graves 1996Gotelli N.J. Graves G.R. 1996. Null models in ecology. Smithsonian Institution Press, Washington, DC. 368 pp., Gotelli and Entsminger 2009Gotelli N.J., Entsminger G.L. 2009. EcoSim: Null models software for ecology. Version 7. Acquired Intelligence Inc. & Kesey-Bear. Jericho, VT 05465. [Accessed: 02th May 2019]). Entries in the matrix represented the mean size length of each species. The original matrix was then reshuffled to produce random patterns that would be expected in the absence of competitive interactions. The options minimum difference and size uniform were used. These null model analyses were performed using the EcosimR package (Gotelli and Ellison 2013Gotelli N.J., Ellison A.M. 2013. EcoSimR 1.00. [Accessed: 02th May 2019]) and the R software (R Development Core Team 2009R Development Core Team. 2009. R: A language and environment for statistical computing. R foundation for statistical computing, Vienna.).

RESULTS AND DISCUSSIONTop

On the northern coast of Chile, the species Cyclograpsus cinereus Dana, 1851 and Petrolisthes granulosus (Guèrin, 1835) were observed at the Trocadero site, located within Antofagasta town, and the species Betaeus truncatus Dana, 1852, C. cinereus, Leptograpsus variegatus (Fabricius, 1793) and Petrolisthes violaceus (Guerin, 1831) at the site near Caldera town. On the northern coast of Chile, the species Acantocyclops gayi (H Milne Edwards and Lucas, 1844), Hemigrapsus crenulatus (H Milne Edwards, 1837) and P. violaceus were observed at the Pargua site and A. gayi, and H. crenulatus at the San Juan estuary site (Table 1). The null model results for all the study sites revealed the presence of size overlap for all sites (Table 2, Fig. 2). The total length comparison denoted significant differences for all reported species within the study sites (Table 2).

Table 2. – Results of size overlap null models for decapod species and non-parametric comparisons reported for the sites in the present study; n.s., non-significant.

Site Observed index Mean index Variance P
Trocadero 1.700 1.700 0.001 0.999 n.s.
Caldera 5.500 5.387 14.247 0.445 n.s.
Pargua 6.600 3.416 4.176 0.058 n.s.
San Juan estuary 0.900 0.900 0.001 0.999 n.s.
Non-parametric comparisons
Trocadero W=32.000 / P=0.017 *
Caldera c2=39.875 (v=3) / P<0.001
B. truncatus – C. cinereus: W=144.000 / P<0.001*
B. truncatus – P. violaceus: W=144.000 / P<0.001*
B. truncatus – L. variegatus: W=0.000 / P<0.001*
C. cinereusP. violaceus: W=2.000 / P<0.001*
C. cinereusL. variegatuss: W=0.000 / P<0.001*
L. variegatusP. violaceus: W=0.000 / P<0.001*
Pargua c2=22.284 (v=2) / P<0.001
A. gayi – H. crenulatus: W=8.500 / P=0.004*
A. gayi – P. violaceus: W=190.500 / P<0.001*
H. crenulatus P. violaceous : W=0 / P=0.002*
San Juan estuary W=108 / P=0.896 n.s

figure2

Full size image

Fig. 2. – Graphs of results of the size overlap null model for the study sites.

The results of the size overlap null models indicate that the involved species have no niche segregation. The species richness of crustaceans on rocky shores is high at large scales (kilometres), with a marked niche segregation because of environmental heterogeneity (Lardies and Werthman 1996Lardies M.A., Wehrtmann I.S. 1996. Aspects of the reproductive biology of Petrolisthes laevigatus (Guérin, 1835) (Decapoda, Anomura, Porcellanidae). Part I: Reproductive output and chemical composition of eggs during embryonic development. Arch. Fish. Mar. Res. 43: 121-135., Hernáez and Palma 2003Hernáez P., Palma S. 2003. Fecundidad, volumen del huevo y rendimiento reproductivo de cinco especies de porcelánidos intermareales del norte de Chile (Decapoda, Porcellanidae). Inv. Mar. 31: 35-46., Díaz et al. 2013Díaz M., Socowsky R., Pardo L.M., et al. 2013. Biochemical responses and physiological status in the crab Hemigrapsus crenulatus (Crustacea, Varunidae) from high anthropogenically-impacted estuary (Lenga, south-central Chile). Mar. Env. Res. 83: 73-81.), but at a local scale there would be no niche segregation because two or more similar species may share microenvironments (Antezana et al. 1965Antezana T., Fagetti E., López M.T. 1965. Observaciones bioecológicas en decápodos de Valparaíso. Rev. Biol. Mar. 12: 1-60., De los Ríos et al. 2018De los Ríos P, Figueroa-Muñoz G., Kies F. 2018. Presence of Cyrtograpsus angulatus Dana, 1851 (Decapoda, Brachyura) on the Chilean northern Patagonian coast. Crustaceana 91: 353-361., Vega-Aguayo et al. 2018Vega-Aguayo R., Figueroa-Muñoz G., Retamal M.A., et al. 2018. Spatial distribution and abundance of Hemigrapsus crenulatus (H. Milne-Edwards, 1837) (Decapoda, Varunidae) in the Puerto Cisnes Estuary (44°S, Aysen region, Chile). Crustaceana 91: 1465-1482.), such as intertidal pebbles, because of the absence of competence with other decapod species (Bahamonde and López 1969Bahamonde N., Lopez M. 1969. Cyclograpsus cinereus Dana, en biocenosis supramareales de Chile (Crustacea, Decapoda, Brachyura, Grapsidae). Bol. Mus. Nac. Hist. Nat. 29: 166-203., Sanhueza et al. 1975Sanhueza E., Bahamonde N., Lopez M.T. 1975. Petrolisthes granulosus (Guérin, 1835) en biocenosis supramareales de El Tabo (Crustacea: Decapoda: Anomura). Bol. Mus. Nac. Hist. Nat. 34: 121-136., Hernáez and Palma 2003Hernáez P., Palma S. 2003. Fecundidad, volumen del huevo y rendimiento reproductivo de cinco especies de porcelánidos intermareales del norte de Chile (Decapoda, Porcellanidae). Inv. Mar. 31: 35-46.). The results obtained in the present study agree with similar observations for the south American Atlantic coast, including that of southern Argentina (Gerard et al. 1999Gerard V.A., Cerrato R.M., Larson A.A. 1999. Potential impacts of a western Pacific grapsid crab on intertidal communities of the northwestern Atlantic Ocean. Biol. Inv. 1: 353-361., Boschi and Gavio 2005Boschi E.E., Gavio M. 2005. On the distribution of decapod crustaceans from the Magellan biogeographic provinces and the Antarctic region. Sci. Mar. 69: 195-200., Camiolo and Luppi 2016Camiolo M.D., Luppi T.A. 2016. Hábitat y historia de vida de Pachycheles laevidactylus (Crustacea, Anomura, Porcellanidae) en el intermareal rocoso de Mar del Plata, Argentina. Iheringia, (Zool.) 106: 1).

The results indicate the need for more ecological studies involving niche specialization of intertidal decapods species for each site, considering interspecific competence and niche segregation at different locations to explain biogeographical patterns.

ACKNOWLEDGEMENTSTop

The present study was financed by the project MECESUP UCT 0804, and the authors express their gratitude to M.I. and S.M.A. for their valuable suggestions.

REFERENCESTop

Antezana T., Fagetti E., López M.T. 1965. Observaciones bioecológicas en decápodos de Valparaíso. Rev. Biol. Mar. 12: 1-60.

Bahamonde N., Lopez M. 1969. Cyclograpsus cinereus Dana, en biocenosis supramareales de Chile (Crustacea, Decapoda, Brachyura, Grapsidae). Bol. Mus. Nac. Hist. Nat. 29: 166-203.

Boschi E.E., Gavio M. 2005. On the distribution of decapod crustaceans from the Magellan biogeographic provinces and the Antarctic region. Sci. Mar. 69: 195-200.
https://doi.org/10.3989/scimar.2005.69s2195

Camiolo M.D., Luppi T.A. 2016. Hábitat y historia de vida de Pachycheles laevidactylus (Crustacea, Anomura, Porcellanidae) en el intermareal rocoso de Mar del Plata, Argentina. Iheringia, (Zool.) 106: 1-9.
https://doi.org/10.1590/1678-4766e2016015

De los Ríos P, Figueroa-Muñoz G., Kies F. 2018. Presence of Cyrtograpsus angulatus Dana, 1851 (Decapoda, Brachyura) on the Chilean northern Patagonian coast. Crustaceana 91: 353-361.
https://doi.org/10.1163/15685403-00003767

Desu M.M., Raghavarao D. 2004. Non parametric statistical methods for complete and censored data. Chapman & Hall / CRC, Boca Raton, Florida, U.S.A. 367 pp.
https://doi.org/10.1201/9781482285895

Díaz M., Socowsky R., Pardo L.M., et al. 2013. Biochemical responses and physiological status in the crab Hemigrapsus crenulatus (Crustacea, Varunidae) from high anthropogenically-impacted estuary (Lenga, south-central Chile). Mar. Env. Res. 83: 73-81.
https://doi.org/10.1016/j.marenvres.2012.10.012

Gerard V.A., Cerrato R.M., Larson A.A. 1999. Potential impacts of a western Pacific grapsid crab on intertidal communities of the northwestern Atlantic Ocean. Biol. Inv. 1: 353-361.
https://doi.org/10.1023/A:1010093329077

Gotelli N.J. Graves G.R. 1996. Null models in ecology. Smithsonian Institution Press, Washington, DC. 368 pp.

Gotelli N.J., Entsminger G.L. 2009. EcoSim: Null models software for ecology. Version 7. Acquired Intelligence Inc. & Kesey-Bear. Jericho, VT 05465. [Accessed: 02th May 2019]
https://doi.org/10.5281/zenodo.16504

Gotelli N.J., Ellison A.M. 2013. EcoSimR 1.00. [Accessed: 02th May 2019]
http://www.uvm.edu/~ngotelli/EcoSim/EcoSim.html

Hernáez P., Palma S. 2003. Fecundidad, volumen del huevo y rendimiento reproductivo de cinco especies de porcelánidos intermareales del norte de Chile (Decapoda, Porcellanidae). Inv. Mar. 31: 35-46.
https://doi.org/10.4067/S0717-71782003000200004

Lardies M.A., Wehrtmann I.S. 1996. Aspects of the reproductive biology of Petrolisthes laevigatus (Guérin, 1835) (Decapoda, Anomura, Porcellanidae). Part I: Reproductive output and chemical composition of eggs during embryonic development. Arch. Fish. Mar. Res. 43: 121-135.

R Development Core Team. 2009. R: A language and environment for statistical computing. R foundation for statistical computing, Vienna.

Retamal M.A. 1969. Hemigrapsus crenulatus (H. Milne Edwards, 1837), en el estero Lenga (Crustacea, Decapoda, Grapsidae). Bol. Soc. Biol. Concepción 13: 281-309.

Retamal M.A. 1981. Catalogo ilustrado de los Crustáceos Decápodos de Chile. Gayana, (Zool.) 44: 1-110.

Retamal M.A., Moyano H.I. 2010. Zoogeografía de los crustáceos decápodos chilenos marinos y dulceacuícola. Lat. Am. J. Aq. Res. 38: 302-328.

Sanhueza E., Bahamonde N., Lopez M.T. 1975. Petrolisthes granulosus (Guérin, 1835) en biocenosis supramareales de El Tabo (Crustacea: Decapoda: Anomura). Bol. Mus. Nac. Hist. Nat. 34: 121-136.

Santelices B. 1992. Algas marinas de Chile. Distribución, ecología, utilización, diversidad. Ediciones Pontificia Universidad Católica de Chile, Santiago de Chile. 399 pp.

Vega-Aguayo R., Figueroa-Muñoz G., Retamal M.A., et al. 2018. Spatial distribution and abundance of Hemigrapsus crenulatus (H. Milne-Edwards, 1837) (Decapoda, Varunidae) in the Puerto Cisnes Estuary (44°S, Aysen region, Chile). Crustaceana 91: 1465-1482.
https://doi.org/10.1163/15685403-00003841