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Summary: We propose a global index of impact based on the relative vulnerability of the local population of every species 
and the further application of regression trees globally optimized with evolutionary algorithms to study the fishing impact on 
the cartilaginous fish in southeastern Spain. The fishing impact is much higher in areas of less than 40 m depth within 11 km 
of the Cape Palos marine reserve. The impact also depends on the state of the sea and the kind of habitat. Deep-sea habitats 
associated with hard substrata and sandy beds show the highest impact, and sublittoral muds and habitats associated with 
circalittoral rocks with moderate energy show the lowest impact. The fishing impact changes throughout the moon cycle, 
showing different day-scale patterns associated with different habitats and different species compositions. Finally, we show 
that the global optimization of the regression trees can be essential to find some important patterns and that these trees are 
a useful tool for determining which areas are considered to be more important in terms of protection, taking into account 
specifically the vulnerability of the local populations.
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Factores que afectan el impacto pesquero sobre peces cartilaginosos en el sureste español (Mediterráneo Suroccidental)

Resumen: Proponemos un índice global de impacto basado en la vulnerabilidad relativa de las poblaciones locales de cada 
una de las especies y la posterior aplicación de árboles de regresión globalmente optimizados con algoritmos evolutivos, para 
estudiar el impacto de la pesca en los peces cartilaginosos del sureste español. El impacto de la pesca es mucho mayor, dentro 
de los 11 km de la reserva marina de Cabo de Palos, en aquellas zonas de menos de 40 m de profundidad. El impacto también 
depende del estado de la mar y el tipo de hábitat. Los hábitats de aguas profundas asociados a sustrato duro y fondo arenoso 
muestran los máximos impactos, mientras que, tanto los fondos fangosos sublitorales como los hábitats rocosos circalitorales 
con moderada energía de las corrientes, muestran un menor impacto. Además, se dan cambios a lo largo del ciclo lunar en el 
impacto de la pesca, lo que significa que existen diferentes patrones diarios, asociados a distintos hábitats, con distinta com-
posición específica. Finalmente, mostramos que la optimización global de los árboles de regresión es esencial para revelar 
patrones importantes y son una herramienta útil para determinar aquellas áreas mas importantes en términos de protección, 
teniendo en cuenta, concretamente, la vulnerabilidad de las poblaciones locales
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INTRODUCTION

Fishing is a major agent of disturbances to marine 
ecosystems (e.g. Watling and Norse 1998, Pauly et al. 
2002, 2003, Kaiser et al. 2003) and in some extreme 
cases can even lead to extinctions of some marine 
specimens or populations (Dulvy et al. 2003). Fish-
ing has caused a general decline in fish biomass and 
placed many marine species under serious conserva-
tion concern (e.g. Casey and Myers 1998, Pauly et al. 
2002, Baum et al. 2003, Dulvy et al. 2003, Sadovy and 
Cheung 2003, Madsen 2007). According to a United 
Nations Food and Agriculture Organization (FAO) 
estimate, over 70% of the world’s fish stocks are ei-
ther fully exploited or depleted. Additionally, fishing 
disrupts food webs, leading to changes in the structure 
of marine habitats, influencing the diversity, composi-
tion, biomass and productivity of the associated biota 
(Jennings and Kaiser 1998). 

In the Mediterranean Sea, fish stock levels are 
alarmingly low. The European Environment Agency 
reports that over 65% of all fish stocks in the region are 
outside safe biological limits, while the FAO considers 
that some of the most important fisheries are threat-
ened. There are clear indications that catch size has 
declined, often dramatically, and in many areas larger 
and longer-lived species have disappeared entirely 
from commercial catches (Kaiser et al. 2003).

More specifically, cartilaginous fish have shown to 
be particularly vulnerable to fishing mortality result-
ing from direct fisheries as well as from by-catches. 
Sharks and rays are typical k-strategists. Most of their 
species show slow growth and delayed maturation, long 
reproductive cycles, low fecundity and long life spans. 
They generally occupy a high position in trophic food 
webs. Forty percent of their species are viviparous, and 
the egg-laying species deposit only a few large benthic 
eggs. Moreover, 55% of skate species are endemic to 
single zoogeographic localities (McEachran and Musick 
1975, Dulvy and Reynolds 2002). These characteristics 
make them especially vulnerable species, more likely to 
be affected by intense fishing activity than most teleosts 
(Castro et al. 1999, Stevens et al. 2000).

Cartilaginous fish are considered a priority in 
fishery research and management. In 1999, the FAO 
developed an International Plan of Action for the Con-
servation and Management of Sharks (IPOA-Shark); 
in 2003 the United Nations Environment Programme 
(UNEP) developed the Mediterranean action plan for 
cartilaginous fish; and in February 2009 the European 
Commission adopted the first ever EU Action Plan for 
the Conservation and Management of Sharks. The aim 
of the European Commission Plan is to ensure that ef-
fective steps are taken to help rebuild their stocks under 
threat, and to set down guidelines for the sustainable 
management of the fisheries concerned. The plan also 
includes measures to improve scientific knowledge of 
their stocks and fisheries. This study aims to provide a 
better understanding of the determining factors of fish-
ing impact on cartilaginous fish in the western Medi-
terranean Sea and thus contribute to the objectives of 
this European Action Plan.

We study the impact of fishing on the cartilaginous 
fish by taking into account the vulnerability of the local 
populations of each species involved in the fisheries of 
the western Mediterranean Sea. Genetic diversity cor-
relates strongly with the capacity of species to adapt to 
environmental changes (Frankham et al. 2002), so the 
protection of vulnerable populations is essential for the 
protection of the species.

Vulnerability has been categorized by the Interna-
tional Union for Conservation of Nature (IUCN) as 
the probability of becoming ‘endangered’, i.e. at risk 
of becoming extinct because the species in question is 
either few in numbers or threatened by changing en-
vironmental or predation parameters. In this survey, 
vulnerability is estimated taking into account only lo-
cal abundance. 

Vulnerability has been estimated using more com-
plex criteria. The biological vulnerability score from 
Millsap et al. (1990), for example, was based not only 
on population size, but also on population trend, changes 
in distribution, fecundity, and ecological specializations. 
More recent studies have shown, however, that it is by 
no means straightforward to establish the vulnerability 
or risk of extinction of the species. Vulnerability has 
been shown to correlate with some biological attributes 
of the species, which are referred to as intrinsic vulner-
ability (Jennings et al. 1999, Reynolds et al. 2001, Dulvy 
et al. 2004, Castro et al. 2005, Frisk et al. 2005, Ferretti et 
al. 2008, Dulvy and Forrest 2010). Body size correlates 
with local extinction risk, perhaps due to its correlation 
with mortality and life-history parameters such as late 
age at maturity (Dulvy and Reynolds 2002). However, 
marine species cannot even be directly assumed as being 
less vulnerable on the basis of biological attributes such 
as high fecundity or large-scale dispersal characteristics 
(Dulvy et al. 2003). Isaac and Cowlishaw (2004) show 
that, in addition to body size, vulnerability can also de-
pend on ecological flexibility, type of habitat and diet. 
They also found that species’ vulnerability to different 
types of threat can be highly variable and is likely to de-
pend on both threat type and biology. The vulnerability 
of a species can be quantified in many different ways 
and the vulnerability of a species is not the same as the 
vulnerability of some of its populations. Directly using 
local abundance and range of distribution is probably 
the most simple and straightforward way to evaluate the 
vulnerability of a population, and that is the approach 
taken in this study.

Many studies (e.g. Dulvy et al. 2004) have dealt 
with the impact of fishing, but not with the factors 
affecting the fishing impact on a whole taxonomical 
group, taking into consideration, moreover, the spe-
cific vulnerability of the population of each species. 
This study therefore proposes a new approach to ana-
lysing the impact of fishing, using in addition a novel 
methodological approach from the machine learning 
field. Regression trees allow for the recognition of 
patterns in data (Mendoza et al. 2010, 2011, Davidson 
et al. 2012). Here, these patterns are the combinations 
of technical, environmental and geographical factors 
that increase the fishing impact on cartilaginous fish in 
southeastern Spain.
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MATERIALS AND METHODS

The study area is southeast Spain (western Medi-
terranean Sea), extending from the area of Cartagena 
(Murcia, Spain) and the Gulf of Alicante to the vicinity 
of the island of Ibiza, between 37°15.6’ and 39°18.6’N, 
and 1°39.0’W and 1°52.2’E.

 
The data

Data were extracted from the Spanish Institute 
of Oceanography (IEO) observers’ onboard data-
base, from a fleet of 27 trawler boats, for the period 
2006-2011. This data set includes the abundance of 
a number of species caught in the western Mediter-
ranean Sea, as well as a variety of features relating 
to the haul, the fishery units, the vessels and the 
environmental and geographic information of the 

fishing trips, among other aspects. Some of these fea-
tures were directly used as variables for the analyses. 
Other variables were obtained indirectly from them. 
The mean depth of the haul, its mean geographical 
coordinates, and the mean point time, for example, 
were obtained by averaging the start and end point 
values. Some other variables, such as the moon day, 
were obtained from the Internet. The slope and its ori-
entation, the distance from the Cape of Palos marine 
protected area (MPA) and some variables related to 
the habitat were obtained from the mean coordinates 
of each haul, using a geographic information system 
(GIS) software. Only three technical variables were 
available for the full set of hauls, the vessel length 
and speed and the duration of the haul. This resulted 
in 16 numerical variables (Table 1) and 13 categorical 
variables (Table 2), which were used as predictors for 
the analyses.

Table 1. – Numerical variables.

Variable Min Max Mean

Impact (response variable) 0 598.6 17.08
Vessel length (m) 14 23 16.65
Vessel speed (knots) 1.9 3.7 3.06
Course of the ship (degrees) 0 360 109.87
Wind force (knots) 0 8 1.84
Sea state (Douglas sea scale) 0 (Calm) 5 (Rough) 1.18
Mean latitude (degrees) 37.26 39.31 37.85
Mean longitude (degrees) –1.65 1.87 –0.44
Duration of the haul (hours) 2.1 8.49 3.49
Mean depth (m) 22 718 257
Slope of the sea bed (degrees) 0 7.5 1.6
Bathymetry (m) –815 –22 –221.50
Orientation of the sea bed (degrees) 0 360 120.14
Distance to the Cape Palos marine reserve (km) 0.22 223 40
Distance to the coast (km) 1.76 60.06 19.4
Time (hours) 3.81 14.62 9.79
Moon day (New Moon=1) 1 30 15.34

Table 2. – Categorical variables. * Variables from the EUNIS Habitat Classification.

Variable Categories

Light Day, Night
Target species (1) European hake (Merluccius merluccius), (2) red shrimp (Aristeus antennatus), (3) Multispecies 1 (octo-

pus, sparids, mullets, squid and sepiids), (4) Norway lobster (Nephrops norvegicus), (5) Multispecies 2 [deep-
water pink shrimp (Parapenaeus longirostris), European hake, and blue whiting (Micromesistius poutassou)] 
and (6) Lophius and European hake

Month January to December
Season Spring, summer, autumn, winter
Substrate* Mud, sandy mud, sand, rock or other hard substrata
Substrate group plus* Muds, sands, rock or biogenic reef
Biozone* Bathyal, deep circalittoral, infralittoral, upper circalittoral
Biozone Group* Bathyal, shelf, shallow, shallow aphotic
Level 2 habitats* Deep-sea bed, circalittoral rock and other hard substrata, sublittoral sediment
Level 3 habitats* Deep-sea mud, deep-sea sand, atlantic and Mediterranean moderate energy circalittoral rock, sublittoral sand, 

sublittoral mixed sediments, sublittoral mud, deep-sea rock and artificial hard substrata
Level 4 habitats* Mediterranean communities of bathyal muds, faunal communities on deep moderate energy circalittoral rock, 

infralittoral fine sand, Mediterranean communities of shelf-edge detritic bottoms, Mediterranean animal com-
munities of coastal detritic bottoms, Mediterranean communities of coastal terrigenous muds, infralittoral 
fine mud, Mediterranean communities of muddy detritic bottoms, Mediterranean coralligenous communities 
moderately exposed to hydrodynamic action

EUNIS habitat* Mediterranean communities of bathyal muds, facies of sandy muds with Thenea muricata, deep-sea sand, 
faunal communities on deep moderate energy circalittoral rock, infralittoral fine sands, Mediterranean com-
munities of shelf-edge detritic bottoms, Mediterranean biocoenosis of coastal detritic bottoms, Mediterranean 
biocoenosis of coastal terrigenous muds, infralittoral fine mud, deep-sea rock and artificial hard substrata, 
Mediterranean biocoenoses of muddy detritic bottoms, Mediterranean coralligenous communities moderately 
exposed to hydrodynamic action

Grouped* Substrate group plus-biozone group bathyal muds, bathyal sands, shelf rock or biogenic reef, shallow sands, 
shelf muds, shallow muds, bathyal rock or biogenic reef, shelf sands, shallow aphotic rock or biogenic reef
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Some of these variables, such as the moon day, are 
cyclic. However, the analyses considers all the numeri-
cal variables as linear, with a start and an end point, 
and this can hide significant patterns in these variables. 
To avoid this problem, each cyclic variable was rein-
cluded in the analyses with all the possible start and 
end points. As explained below, the analysis technique 
used for this study selects those variables involved in 
the model, so redundant information is not a problem.

The variables related to the substrate and the habitat 
were obtained from the EUNIS Habitat Classification, 
whose description is available online in Davies et al. 
(2004). The rest of the variables are described in Ta-
bles 1 and 2. A total of 501 hauls were available, in 
which 23 species of cartilaginous fish were identified 
(Table 3). Some individuals, identified only at the level 
of genus, were not used for the analyses. The fisheries 
were multispecies and none of the cartilaginous fish 
were target species.

 
The analyses

An impact value was assigned to each of the 501 
hauls, taking into account both the total number of 
cartilaginous fish species caught in that haul and the 
vulnerability of the local population of each of these 
species. The local vulnerability of species i (Vi) is the 
inverse of the relative frequency of hauls in which it 
appears. Thus, Vi=N/Ni, where N is the total number 
of hauls in which the most frequently caught species 
appears, and Ni the number of hauls in which species 
i appears. In this way, (i) the vulnerability of a given 
species n times less frequent than another is n times 
higher, (ii) the vulnerability of the most frequently 
caught species is 1 (the minimum) and (iii) the vulner-
ability of those species that appeared in only one haul 
is maximum. The impact value of each haul was then 

calculated by summing the local vulnerability values of 
all the species caught in that haul.

Abundance values were available but they were not 
used directly because they had been estimated from 
subsamples of the whole catch, and this results in un-
reliable estimates for sparse species. Thus, abundance 
was estimated from the frequency of hauls in which 
the species appeared. Frequency has been widely used 
as an estimation of abundance, given that it has been 
shown to be correlated with abundance for most or-
ganisms (e.g. Hergstrom and Niall 1990, Venier and 
Fahrig 1998, Nielsen et al. 2005, Borregaard and Rah-
bek 2010).

Although the impact of the hauls is obviously cal-
culated using only the cartilaginous fish species, to 
estimate the relative local vulnerability we take into 
account all the fish species caught in the area, from 
all the taxonomical groups. This makes it possible to 
compare the vulnerability of the local populations of 
the cartilaginous fish in comparison with the rest of the 
fish species.

The impact value was calculated for the 501 hauls, 
which were used as training data for regression tree de-
velopment, with the rest of the variables (Tables 1 and 2) 
as predictors. Like classification trees, regression trees 
work as an ‘expert system’ that learns inductively from 
the input of a series of samples or training data. These 
tree-based machine learning techniques are “white box” 
or “knowledge discovery” techniques (Quinlan 1985, 
Krzysztof et al. 2007, Mendoza 2007), and unlike in 
other methods such as neuronal networks (considered as 
a ‘black box’ technique), the product of the learning can 
be represented explicitly, in the form of trees.

Commonly used regression and classification tree 
methods build the model in a forward stepwise search. 
Beginning with the root node, which includes all sam-
ples in the training dataset, the best possible variable to 
split the node into two child nodes is selected. In order 
to find the best variable, the software checks all pos-
sible splitting variables, as well as all possible values 
of the variable to be used to split the node. In choosing 
the best variable, the program seeks to minimize the 
average impurity of the two child nodes, an indication 
of the relative homogeneity (the inverse of impurity) 
of cases in the nodes. Once a split is made, the routine 
is repeated for each group separately until an overlarge 
tree is grown, which is then pruned back to the desired 
size. The resulting branching tree is a set of if-then 
logical conditions (the splits), whose interpretation is 
straightforward (Mendoza 2007, Rogan et al. 2008, 
Mendoza et al 2011).

In forward-search recursive partitioning methods, 
splits are chosen to maximize homogeneity at the next 
step only. Each split is analysed independently of the 
subsequent splits, searching then only a small fraction 
of the global search space. This typically leads to a 
globally suboptimal solution. Although this approach 
is known to be an efficient heuristic, the results of 
these recursive tree methods are only locally optimal. 
An alternative way to search over the parameter space 
of trees is to use global optimization methods such as 
evolutionary algorithms.

Table 3. – Vulnerability of the local populations of the cartilaginous 
fish species, with the mean, median and first quartile of vulnerabil-

ity of the 299 species caught in the area

Species Vulnerability

Centrophorus granulosus 372
Centroscymnus coelolepis 372
Dasyatis akajei 372
Dasyatis pastinaca 372
Galeorhinus galeus 372
Heptranchias perlo 372
Hexanchus griseus 372
Mustelus punctulatus 372
Pteromylaeus bovinus 372
Raja brachyura 372
Squalus acanthias 372
Myliobatis aquila 186
Oxynotus centrina 186
Chimaera monstrosa 93

Mean 107.6
Dalatias licha 74.4
Raja asterias 74.4
Raja montagui 62

Median 41.3
Torpedo marmorata 21.9
Mustelus mustelus 16.9
Raja clavata 14.9

Q1 10.1
Etmopterus spinax 2.9
Galeus melastomus 2.1
Scyliorhinus canicula 1.8
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In this study, the analyses were first performed us-
ing recursive regression trees, with SPSS 17.0, and later 
repeated with globally optimized regression trees when 
the evtree package for R (Grubinger et al. 2011) was 
available. Evtree optimizes the trees with evolutionary 
algorithms. It works as follows: first, a user-specified 
number of trees is initialized with random split rules in 
the root nodes. Then, mutation and crossover operators 
are applied to modify the structure of the trees and the 
tests are applied in the internal nodes. After each modi-
fication step, a survivor selection mechanism selects 
the best candidate models. The quality of the trees is 
measured as a function of its misclassification and the 
complexity of the tree. The selected trees are then rep-
licated until the original number of trees is restored and 
the next iteration starts. In this evolutionary process 
the mean quality of the population increases over time. 
The algorithm terminates when the quality of the best 
5% of trees stabilizes for 100 iterations, but not before 
1000 iterations. If the run does not converge, the algo-
rithm terminates after a user-specified number of itera-
tions. The tree with the highest quality according to the 
evaluation function is returned (Grubinger et al. 2011). 
Unlike other methodologies that use all the informa-
tion supplied by the training set (e.g. neural networks), 
for methodologies such as classification or regression 
trees, which are able to select those variables involved 
in the model, redundant information is not a problem.

RESULTS

Six species of the 23 cartilaginous fish involved in 
this study show vulnerability values lower than the me-
dian of the 299 fish species caught in the area (41.3). 
Three of them are even included in the first quartile 
(10.1, Table 3). Eleven species, on the other hand, ap-
peared in only one haul, so their vulnerability value is 
maximum. 

According to the evaluation function of the evtree 
algorithm, when all the variables are included in the 
analysis, the tree shown in Figure 1 is the one with 
the highest quality. It involves only two variables and 
shows that the main determining factor is the distance 
from the Cape Palos MPA, although only in combi-
nation with the depth. There are only eight hauls in 
the tree of Figure 1 that took place above 42 m depth 
(depth<42m), within 10.6 km of the Cape Palos marine 
reserve (node 3). Their mean impact (182.75) is more 
than 20 times the mean impact of the 39 hauls that were 
carried out over 10.6 km, also above 42 m depth (8.795 
node 4), and more than ten times the mean impact of 
the full set of hauls (17.078, n=501, node 0). The mean 
impact of the 108 hauls within of 10.6 km the Cape 
Palos marine reserve, deeper than 42 m, is only 16.59 
(not in the tree of Fig. 1), so this distance alone does 
not affect the fishing impact. However, depth by itself 
does affect the impact. Above 42 m depth the impact 

Fig. 1. – First tree selected by the evtree algorithm when all the variables are included in the analysis.
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Fig. 2. – Tree obtained when only the variable Level 3-habitat is considered for the analysis. Node-1 and Node-2 habitats groups (see text).

Fig. 3. – Impact level predicted according to the distance from the Cape Palos marine reserve, depth and type of habitat.



Fishing impact on cartilaginous fish. • 73

SCI. MAR., 78S1, April 2014, 67-76. ISSN-L 0214-8358 doi: http://dx.doi.org/10.3989/scimar.04025.21A

(38.40, n=47, node 1) is 2.6 times higher than below 
(14.78, n=454, node 2).

The tree shown in Figure 2 only includes the lev-
el3-habitat variable. The interpretation of this tree is 
straightforward. The mean value of impact for the 501 
hauls (the full set) is 17.078 (node 0). The first splitting 
shows that the mean impact of the 360 hauls of the first 
group (10.528, node 1) is less than a third of the impact 
of the 141 hauls of the second group (33.8, node 2). 
The 360 hauls of the first group (referred to hereafter as 
the node-1 habitats group) were carried out on deep-sea 
or sublittoral mud, in the vicinity of moderate energy 
circalittoral rock, or on sublittoral mixed sediments. 
The 141 hauls of the second group (referred to here-
after as the node-2 habitats group), on the other hand, 
took place on deep-sea hard substrate, sublittoral sand 
or deep-sea sand. The tree shown in Figure 2 makes 
it possible to attribute a mean impact to each of these 
four groups of habitats, establishing a decreasing gra-
dient from node 6 to node 3.

Figure 3 shows a map representing the impact level 
predicted according to the distance from the Cape Pa-
los MPA combined with depth, and type of habitat. 
The histogram shown in Figure 4 shows that the taxo-
nomical composition of the node-1 and node-2 habitats 
groups differs widely.

The trend of the mean impact in the habitats of the 
node-2 habitats group throughout the full moon cy-

cle can be seen in Figure 5. It shows a clear pattern 
of influence of the moon cycle in the fishing impact 
on the cartilaginous fish of this habitats group. This 
pattern was identified by a tree not shown here. The 
influence of the moon cycle on the fishing impact on 
cartilaginous fish from the four other kinds of habitat 
(node-1 group) was not identified by a regression tree. 
However, Figure 6 shows that there is also a very clear 
and intriguing pattern of influence characterized by six 
main peaks that are surprisingly well distributed every 
5-6 days.

When the distance from the Cape Palos marine re-
serve and the kind of habitat are not considered for the 
analyses, a tree (not shown here) involving the vari-
ables state of the sea and depth is obtained. According 
to this tree, the state of the sea also affects the fishing 
impact, but only above 42.5 m depth. Below this depth 
the impact does not show significant differences with 
regard to the state of the sea. Above 42.5 m depth, 
however, the impact with smooth to rough sea (86.5, 
n=20) is more than 36 times the impact with calm or 
rippled sea (2.4, n=28). Depth by itself is also impor-
tant. Independently of the rest of factors, above 42 m 
the impact is significantly higher than below. 

When the analyses are performed without including 
any variables related to depth, habitat, substrate and 
state of the sea, no tree is obtained. This means that 
none of the rest of the variables have a significant ef-
fect on the impact, at least with the data available for 
this research.

DISCUSSION

Cartilaginous fish are generally considered sensitive 
and vulnerable species (e.g. Dulvy and Forrest 2010). 
However, some local cartilaginous fish populations in 
this study are far from being considered vulnerable, 
at least in comparison with the rest of the fish species 
from other taxa caught in the area. Six species of car-
tilaginous fish are less vulnerable than half of the 299 
species caught in the area, and three of them even be-
long to the least vulnerable quartile. On the other hand, 
there are 13 cartilaginous fish species whose popula-
tions in the southeastern Spain (western Mediterranean 
Sea) can be considered highly vulnerable.

According to the results of the analyses with regres-
sion trees, the main determining factor of the fishing 

Fig. 4. – Abundance of hauls including each of the 23 species of car-
tilaginous fish (log scale) from node-1 (black columns) and node-2 

(grey columns) habitats groups (see text).

Fig. 5. – Evolution throughout the full moon cycle of the mean im-
pact in the habitats of the node-2 habitats group (see text).

Fig. 6. – Evolution throughout a full moon cycle of the mean impact 
in the habitats of the node-1 habitats group (see text).
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impact on the local populations of cartilaginous fish 
in the study area is the distance from the Cape Palos 
MPA, although only in combination with depth. The 
fishing impact is highest in those areas that are within 
11 km (approx.) of the Cape Palos MPA, at less than 
42 m depth. Under these conditions, the mean impact 
is more than 20 times the mean impact of the hauls that 
were carried out in other conditions.

The state of the sea also affects the impact. As in the 
case of the distance from the reserve, the state of the 
sea only affects it above a depth of around 42 m (the 
tree selected exactly 42.5 m). Above that depth, when 
the sea has at least smooth wavelets (glassy or rippled), 
the impact is 36 times higher than with calm sea, when 
the impact is almost null.

Depth by itself is also important. Independently of 
the rest of the factors, above 42 m the impact is higher 
than below. Thus, there appears to be a threshold 
around this depth. Further research will be conducted 
in order to obtain a more detailed knowledge about the 
causes behind these finds.

The relationship between the impact and two com-
binations of factors, (1) depth and distance from the 
Cape Palos marine reserve, and (2) depth and state of 
the sea, could only be identified using globally opti-
mized regression trees but not with recursive regres-
sion trees. With recursive trees, the variable depth is 
not selected as the first variable so the two variables 
distance from the Cape Palos MPA and state of the sea 
do not become significant and are not selected. This 
finding shows that, at least in some cases, the global 
optimization of the trees is fundamental.

The kind of habitat is also an important factor, espe-
cially at the level of two main groups of habitats. From 
the tree shown in Figure 2, it can be concluded that (1) 
habitats associated with hard substrata and sandy beds 
show a higher impact than those associated with mud 
or sublittoral mixed sediments, or ones that are in the 
vicinity of moderate energy circalittoral rocks, (2) the 
impact in sand is higher than in mud, (3) in both sand 
and mud the impact is higher on deep-sea than sublitto-
ral bottoms, (4) in sublittoral areas the impact is higher 
in sand than in mixed sediments, and (5) the impact is 
higher in mixed sediments than in mud and also than in 
moderate energy circalittoral rocks.

This relationship of cartilaginous fish with depth 
and substrate is consistent with what is known about 
their ecology and ethology (Froese and Pauly 2011, 
Gouraguine et al. 2011, Pennino et al. 2013). Massutí 
and Moranta (2003), in addition, have shown that some 
assemblages of cartilaginous fish species are related to 
depth in the western Mediterranean, and Roel (1987) 
reached similar conclusions in Atlantic waters analys-
ing the species separately. We show here that it is not 
only depth but also habitat, associated with depth and 
substrate, that affects the presence of cartilaginous fish. 
Machine learning has allowed us to show, in addition, 
that different kinds of habitat are associated with dif-
ferent degrees of impact and also how different kinds 
of habitat interact with other factors.

In sublittoral sands and deep-sea hard substrata and 
sand, the pattern of influence of the moon cycle is differ-

ent than in habitats associated with muds or sublittoral 
mixed sediments, or in the vicinity of moderate energy 
circalittoral rocks. In both cases the temporal pattern is 
at day scale. The pattern of the first group (sublittoral 
sands and deep-sea hard substrata and sand) is mainly 
associated with the sublittoral sand habitat, whose 110 
hauls make up the majority of the 141 samples of the 
group. This group shows an outstanding impact peak 
at full moon, isolated between two periods of 9 days 
of relatively low impact. This outstanding peak is clear 
in both the sublittoral and deep-sea sand habitats but 
not in the deep-sea hard substrata habitat (with only 
11 hauls). At the other side of the moon cycle, from 
the 25th to the 5th moon day (the darkest days), there 
is a series of successive peaks almost every other day. 
Thus, the most vulnerable species are mainly captured 
during the dark period of the cycle. During the light 
period the impact is minimum, with the exception of 
the full moon (1 or 2 days), when there is something 
like an explosion of captures.

The effect of the moon on the second group of habi-
tats (mud, sublittoral mixed sediments and the vicinity 
of moderate energy circalittoral rocks) is very differ-
ent. In this case, the equidistance between the peaks, 
which occurs each 5 or 6 days, is the salient feature. A 
this pattern is characteristic only of the deep-sea mud 
habitat, the most abundant group, with 196 hauls.

The taxonomical composition of cartilaginous fish 
in both groups of habitats is different, so these patterns 
have to be related to the biology of their respective spe-
cies. However, the analysis of the species involved in 
the peaks of impact did not allow any conclusion to be 
reached.

There are many studies showing a significant re-
lationship between behavioural patterns in marine 
animals and the moon phase. In fishes, one of the best-
known examples of lunar periodicity could be that of 
the Californian grunion (Leuresthes tenuis), whose 
eggs spawn only on three or four nights after a full or 
new moon. Lunar rhythms in commercial fisheries have 
also been widely reported (e.g. Moore 1958, Wilson et 
al. 2010). Commercial trawl fishermen in northeastern 
New Zealand believe that at certain phases of the moon 
fish are more abundant, or at least more easily caught 
(McDowall 1969), and personal communication from 
local fishermen confirmed this close relationship be-
tween the abundance of the catch of different species 
and the phase of the moon. They even explained to us 
different patterns of influence on different species, in-
cluding some cartilaginous fish, clarifying that this re-
lationship seems to persist even on cloudy days. There 
are also some studies showing a significant relationship 
between the behaviour of some species of cartilaginous 
fish and the moon phase. Attacks on surfers in Recife 
(Brazil), for example, are much more common during 
new and full moons than during first and last quarters 
(Hazin et al. 2008). Moon phase also appears to have 
an important effect on shark catches in Atlantic waters 
(Hernandez-Milian et al. 2008) in the Pacific (Pallares 
and Garcia-Mamolar 1985, Bigelow et al. 1999) and 
the Mediterranean (Damalas et al. 2007). While most of 
these studies analyse the effect of the different phases 
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of the moon on individual species, our results show that 
the effect of the moon can (1) be even at a day scale, 
(2) affect groups of species from the same taxonomical 
group, and (3) be related to other factors such as the 
kind of habitat. Further research should be conducted 
in order to clarify the origin of these patterns.

A report made to the European Commission on 
Sensitive and Essential fish habitats in the Mediter-
ranean Sea (European Commission 2006) establishes 
that there is a need for the identification and mapping 
of marine habitats crucial for the conservation of com-
mercial fish in the Mediterranean Sea. This is even 
more important with the implementation of the Eu-
ropean Marine Strategy Framework Directive, which 
mandates to incorporate potential environmental driv-
ers and any other ecosystem knowledge into fisheries 
assessment and scientific advice. The present research 
makes it possible to determine which areas are consid-
ered to be more important in terms of protection. More-
over, it specifically takes into account the vulnerability 
of the local populations and how local abundance and 
distribution of this sensitive species can be linked to 
the environment and some particular sensitive areas. 

These results may therefore be helpful for fisheries 
management. Obtaining a global index of impact based 
on the relative vulnerability of each species, moreover, 
has allowed conclusions to be reached for a whole tax-
onomical group. The independent analysis of species 
could lead to conflicting advice, which would make it 
much more difficult to apply for fisheries management. 
Thus, both the global index of impact based on the 
relative vulnerability of the local population of each 
species and the machine learning approach constitute a 
suitable methodological advance for the identification 
of marine habitats considered crucial for conservation. 
Machine learning, and more specifically regression and 
classification trees, have been scarcely used in fisher-
ies (e.g. Mendoza et al. 2010, 2011, Pérez-Ortiz et al. 
2013). However, this approach has shown a clear ad-
vantage over traditional multivariate methods or GLM/
GAM approaches, mainly because the resulting trees 
are by themselves explicative models of the relation-
ship between the predictors and the response.
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