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SUMMARY: This paper describes the development of a multiparametric interpolation method and its application to anthro-
pogenic carbon (CANT) in the Atlantic, calculated by two estimation methods using the CARINA database. The multiparamet-
ric interpolation proposed uses potential temperature (θ), salinity, conservative ‘NO’ and ‘PO’ as conservative parameters 
for the gridding, and the World Ocean Atlas (WOA05) as a reference for the grid structure and the indicated parameters. 
We thus complement CARINA data with WOA05 database in an attempt to obtain better gridded values by keeping the 
physical-biogeochemical sea structures. The algorithms developed here also have the prerequisite of being simple and easy 
to implement. To test the improvements achieved, a comparison between the proposed multiparametric method and a pure 
spatial interpolation for an independent parameter (O2) was made. As an application case study, CANT estimations by two 
methods (jCTº and TrOCA) were performed on the CARINA database and then gridded by both interpolation methods 
(spatial and multiparametric). Finally, a calculation of CANT inventories for the whole Atlantic Ocean was performed with 
the gridded values and using ETOPO2v2 as the sea bottom. Thus, the inventories were between 55.1 and 55.2 Pg-C with the 
jCTº method and between 57.9 and 57.6 Pg-C with the TrOCA method.
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RESUMEN: Un método multiparamétrico de interpolación utilizando WOA05, aplicado al CO2 antropogéni-
co en el Atlántico. –  Este trabajo describe el desarrollo de un método de interpolación multiparamétrico, y su aplicación 
al carbono antropogénico CANT en el Atlántico, calculado por dos métodos de estimación sobre la base de datos de CARINA. 
La interpolación multiparamétrica propuesta utiliza temperatura potencial (θ), salinidad, ‘NO’ y ‘PO’ conservativo a modo 
de parámetros conservativos para el mallado, y el World Ocean Atlas (WOA05) como referencia tanto para la estructura de 
la malla, como para los parámetros indicados. De este modo, este trabajo complementa CARINA con la base de datos de 
WOA05, intentando obtener mejores valores interpolados por el hecho de mantener las estructuras físico-biogeoquímicas 
marinas. Además, los algoritmos desarrollados tienen el prerrequisito de ser sencillos y fáciles de implementar. Para compro-
bar las mejoras conseguidas, se ha realizado una comparación de un parámetro independiente (O2) entre el método multipa-
ramétrico y una interpolación puramente espacial. A modo de estudio de un caso de aplicación, se han realizado estimaciones 
de CANT mediante dos métodos (jCTº and TrOCA) sobre la base de datos de CARINA, y posteriormente interpolado mediante 
ambos métodos de interpolación (espacial y multiparamétrica). Por último, se ha realizado un cálculo de los inventarios de 
CANT para el Océano Atlántico completo con los valores interpolados y utilizando ETOPO2v2 como fondo marino. De este 
modo los inventarios obtenidos fueron de entre 55.1 y 55.2 PgG con la aproximación jCTº, y entre 57.9 y 57.6 Pg-C con la 
aproximación TrOCA.

Palabras clave: CARINA, WOA05, CO2, intepolación, multiparamétrico, carbono antropogénico, retrocálculo.
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INTRODUCTION

This work began as a contribution to the CARINA 
(Carbon in the Atlantic Ocean) Project, with the aim 
of developing an interpolation algorithm that would 

enhance the gridding in low coverage areas, but with 
the premise of being easy to apply. The algorithm 
would also help to build a large and comprehensive 
carbon system database for the Atlantic Ocean with 
the CARINA database. The development should con-
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tribute to estimate the CANT inventory of this ocean by, 
as part of a future work, gridding the CANT that can be 
calculated with the available approximation methods. 
Finally, the interpolation method could be used in the 
CARINA project to help to get the gridded product 
from the other available CARINA parameters. The 
interpolation algorithms developed here pursue the 
goal of being simple and easy to implement. After the 
seminal work of Gandin (1965) introducing objective 
analysis to produce gridded maps of meteorological 
variables in a systematic manner, objective interpola-
tion methods were transferred from meteorology to 
oceanography in the late 1970s (Bretherton et al., 
1976; Freeland and Gould, 1976; Jalickee and Ham-
ilton, 1977). Today, objective analysis appears in 
standard oceanography texts such as Bennett (1992) 
and Emery and Thomson (2001). In fact, one of the 
databases used in the present study, the World Ocean 
Atlas (WOA05, see Material and Methods section), 
was processed with these data analysis techniques. 
The present study uses a multiparametric inverse 
distance algorithm that was applied to the CARINA 
data (see the Material and Methods section) and took 
the WOA05 objective interpolated data as a reference 
to calculate the multiparametric distances. This ap-
proach provides a simple interpolation algorithm that 
is easy to use and to quality assess.

The CARINA Project has fed its dataset only from 
cruises in which carbon parameters were measured, 
so data coverage is low in certain regions, such as the 
Southern Ocean. Within this context, an interpolation 
method based only on geographical distances might 
perform poorly precisely on these regions due to the 
sparseness. A possible way to alleviate this problem 
is to incorporate more information in the interpola-
tion algorithm other than the spatial. Thus, the con-
sideration of fields of conservative properties for 
different water masses would become a benefit in this 
regard, providing better fits to real distributions than 
those generated from a purely spatial distance–based 
method. One additional advantage of this procedure 
is that the artefacts that may appear in the water mass 
distributions derived from plain spatial interpolations 
could be avoided.

The CARINA dataset is not distributed over 
a structured uniform grid, but is rather composed 
mainly from dispersed CTD stations organized in 
transoceanic sections. In terms of recorded variables, 
the dataset compiles many biogeochemical parame-
ters, including the ones needed for the calculation of 
CANT by different methods. In contrast, the WOA05 
dataset is structured in a homogenous three dimen-
sional grid with thermohaline and biogeochemical 
variables defined at the nodes of the grid, but it lacks 
many of the parameters needed for carbon calcula-
tions. Therefore, the generation of a multiparametric 
interpolation algorithm that combines the properties 
of the WOA05 and CARINA datasets appears to be 
the logical way to proceed. Applying this to CANT es-

timation should provide CANT interpolated data over 
the structured WOA05 grid, taking advantage of the 
common hydrographical information available in 
both datasets. 

As a way to evaluate the results, two versions of 
the interpolation method were compared; one based 
only on spatial distances and one that uses the physical 
and biogeochemical tracers (hereafter referred to as the 
Water Mass Properties [WMP] interpolation method). 
The contrast of the individual behaviour of the two 
methods was carried out using dependent variables (in-
terpolating variables included in the multiparametric 
distances) and one independent variable (oxygen, not 
included in the multiparametric distances).

As the quality tests of the WMP interpolation 
method yield positive results, a step forward was taken: 
interpolating anthropogenic carbon over the WOA05 
grid. The major role played by the oceans in the global 
carbon cycle is incontrovertible, since they have the 
capacity to sequestrate 2.2±0.4 Pg C per year, roughly 
a 25% of the total anthropogenic carbon (CANT) emit-
ted to the atmosphere (8.0±0.5 Pg yr-1) (Canadell et al., 
2007). Most outstandingly, the Atlantic Ocean stores 
38% of the oceanic anthropogenic carbon (Sabine et 
al., 2004), though it represents 29% of the global ocean 
surface area. The particular dynamics of the Atlantic 
Ocean allows the formation of deep waters in the North 
Atlantic and this enhances the uptake fluxes and storage 
capacity of CANT of this basin. Recently detected proc-
esses triggered by decadal changes of global climate, 
such as the slowdown of the Meridional Overturning 
Circulation, seem to have contributed significantly to 
reducing the sink capacity of CANT in both the North 
Atlantic and the Southern Ocean (Joos et al., 1999; 
Le Quéré et al., 2007). The juxtaposition of these op-. The juxtaposition of these op-
posed effects has dramatically magnified the need to 
accurately estimate the state of CANT inventories and 
has raised the importance of fine-tuning the CANT inter-
polation methods applied to sparse or geographically 
disperse datasets.

Two methods were used to obtain the estimation of 
CANT over the whole Atlantic Ocean, jCTº and TrOCA. 
The jCTº estimation method was chosen as it was 
developed by the authors (Vázquez-Rodríguez et al., 
2009a) and it was straightforward to apply and verify 
(the MATLAB script is publicly available for down-
load at http://oceano.iim.csic.es/co2group/). It is also 
an updated method and seems to perform well in com-
parison with other methods (Vázquez-Rodríguez et al., 
2009b). The TrOCA method (Touratier et al., 2007) 
was additionally considered as a support reference due 
to its ease of application. Consequently, anthropogenic 
carbon was calculated by applying these estimations 
to the CARINA dataset, and then gridded by both the 
WMP and Spatial interpolation methods. The next step 
taken was to calculate the volumes in order to obtain 
the inventories. ETOPO2v2 (U.S. Department of Com-(U.S. Department of Com-
merce, 2006) was chosen as reference for the ocean 
floor in these calculations.
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MATERIALS AND METHODS

Database

CARINA is a database of comprehensive carbon 
data, sourced from hydrographic cruises conducted in 
the Arctic, Atlantic and Southern Oceans. The project 
was initiated in 1999 as an essentially informal and 
unfunded project in Kiel, Germany, with the main goal 
of creating a database of relevant carbon variables to 
be used for accurate assessments of carbon inventories, 
transports and uptake rates. The CARINA data have 
been gathered from various sources and then put under 
rigorous quality controls (QC) to produce a consistent 
data product. Experience with previous synthesis ef-
forts like the Global Data Analysis Project (GLODAP) 
(Key et al., 2004) demonstrated that a consistent data 
product can be achieved from different cruises, per-
formed by different laboratories and in very different 
regions. The CARINA database includes data and 
metadata from 188 oceanographic cruises or projects, 
(Hoppema et al., 2009; Tanhua et al., 2009; Key et al., 
2010; Tanhua et al., 2010). In addition, 52 WOCE/
GLODAP cruises were included in the quality control 
to ensure consistency with historical data. Parameters 
included in the CARINA dataset are salinity (S), po-
tential temperature (θ), oxygen (O2), nitrate (NO3), 
phosphate (PO4), silicate (SiO4), total alkalinity (AT), 
fugacity of carbon dioxide (fCO2), total inorganic car-
bon (CT), pH, CFC-11, CFC-12, CFC-113 and CCl4. 
Due to the different origins of the data, the data density 
has heterogeneous distributions, being scarcer in the 
South Atlantic than in the North Atlantic.

The World Ocean Atlas 2005 (WOA05) has 
widely proven its usefulness to the oceanographic 
and atmospheric research communities. WOA05 of-
fers a gridded database interpolated from many dif-
ferent sources by oceanographic objective analysis 
techniques. The WOA05 climatological analyses 
were carried out on a 1º × 1º grid. This comes from 
the fact that higher resolution analyses are not justi-
fied for all the measured properties, and they should 
be analyzed in the same manner. For a description of 
the WOA05 data and statistical fields, refer to http://
www.nodc.noaa.gov/OC5/WOA05/pubwoa05.html. 
The site includes a list of values and statistical data 
in a one-degree latitude-longitude world grid (360 × 
180) at 33 standard depth levels from the surface to a 
maximum depth of 5500 m.

The WOA05 series include analysis of temperature 
(Locarnini et al., 2006), salinity (Antonov et al., 2006), 
dissolved oxygen, apparent oxygen utilization, oxygen 
saturation (Garcia et al., 2006a), and dissolved inor-, and dissolved inor-
ganic nutrients (Garcia et al., 2006b). The climatolo-. The climatolo-
gies defined here come from historical oceanographic 
profiles and selected data at different depths. Data used 
in the WOA05 were analyzed in a consistent, objec-
tive analysis mode and interpolated over a one-degree 
latitude-longitude grid at standard depth levels.

The aim of the WOA05 maps is to illustrate the 
large-scale characteristics of the distribution of ocean 
temperature. The fields used to generate these climato-
logical maps were computed by objective analysis of 
quality-controlled historical temperature data. Maps 
are presented for climatological composite periods 
(annual, seasonal, monthly, and monthly difference 
fields from the annual mean field, and the number of 
observations) at selected standard depths. The annual 
climatology was calculated using all data regardless of 
the month of the observation. Seasonal climatologies 
were calculated using only data from the defined sea-
son (regardless of year). However, in this study only 
the annual maps for the whole Atlantic Ocean (Lat: 
90ºS-90ºN, Lon: 81ºW-33ºE) were used.

For the CANT inventory calculations, the ETOPO2v2 
(USDC, NOAA, NGDC 2006) bathymetry was used as 
bottom reference to calculate the volume of the deepest 
boxes.

Interpolation Method

Hereafter var is the parameter that we wish to inter-
polate. The objective is to obtain for each node j of the 
structured WOA05 grid an average value of var, which 
is unavailable from this database. The known values of 
var from the CARINA unstructured-grid nodes i will 
be used to fill in the j WOA05 nodes. A classic inter-
polation scheme of inverse distance is applied, using a 
weighted estimation of the i neighbouring samples to 
the j WOA05 node:
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where several variables are pondered with arbitrary 
weights (wx). The specific values of the wx terms to 
produce the fi

j factors are subjected to the criteria of the 
researcher. The information concerning the geographi-
cal position is taken into account in the interpolation 
through the spatial coordinates of longitude (lon), 
latitude (lat) and depth (z). The interpolation factors 
are also determined using the information from four 
tracers: salinity (S), potential temperature (θ), ‘NO’ 
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and ‘PO’. Both ‘NO’ (=9[NO3]+[O2]) and ‘PO’ 
(=135[HPO4]+[O2]) are conservative parameters, and 
like potential temperature and salinity they are charac-
teristic of each water mass (Broecker, 1974; Ríos et al., 
1989; Pérez et al., 1993). The Δlat, Δlon and Δz appear-
ing in Equation (2) are the intervals of latitude, longi-
tude and depth. Three different intervals were taken as 
results of sample availability in the CARINA database. 
First, a ±2º × ±2º (Lat-Lon) window was used. A larger 
area of ±10º × ±10º (Lat-Lon) was chosen if fewer than 
20 samples were found in the previous boundary, and if 
again no samples were found within this interval, then 
the boundaries were expanded to an even bigger win-
dow of ±20º × ±20º (Lat-Lon). For depth, an interval 
of ±(150 + 0.1 × depth) metres was used. The tracer 
(S, θ, NO and PO) differences between the WOA05 
and CARINA nodes are normalized using the stand-
ard deviation from each tracer computed in the corre-
sponding equivalent volume defined by the intervals of 
latitude, longitude and depth. The quotient terms of the 
spatial or tracer differences with their spatial intervals 
or tracer standard deviations are then squared to con-
vert them into the classical inverse quadratic distance 
interpolation equation.

Two different kinds of interpolations were applied 
to produce three-dimensional O2 and CANT fields. The 
first one is designated as the “spatial interpolation” and 
is defined from the following weights: 

 wlat,wlon,wz,wθ,wS,wNO,wPO = (1,1,1,0,0,0,0) (3)

These factors avoid the influence of the tracer 
properties in the interpolation. On the other hand, the 
“WMP interpolation” stands for the interpolation with-
out weights in the spatial coordinates (latitude, longi-
tude and depth) and using only the tracer variables: 

 wlat,wlon,wz,wθ,wS,wNO,wPO = (0,0,0,1,1,1,1) (4)

CANT estimation methods

Two recently developed CANT back-calculation 
methods, jCTº and TrOCA, were selected to determine 
CANT in the present study. Both methods separate the 
contributions to total carbon (CT) from organic matter 
remineralization and CO3Ca dissolution in a similar 
mode. However, there are characteristic distinctions. 
The TrOCA method uses a constant Redfield ratio (RC) 
value of 1.35 (Kortzinger et al., 2001), while the jCTº 
method, following the ΔC* method, uses the constant 
RC ratio (1.45) proposed by Anderson and Sarmiento 
(1994). The most important difference between the two 
methods, though, lies in the way the reference for CANT-
free waters is obtained. The TrOCA method estimates 
CANT using the following simple relationship:

 C
TrOCA TrOCA

aANT =
−( )0

 (5)

where TrOCA represents a quasi-conservative tracer 
calculated from O2, CT and AT as follows:

 TrOCA = O2 + a (CT – 0.5 AT) (6)

The TrOCA0 reference represents the TrOCA tracer 
without any anthropogenic carbon influence, i.e. the 
pre-industrial TrOCA:

 TrOCA e
b c

d

AT0 2

=
+ +·θ

 (7)

The coefficients a, b, c and d in the above equa-
tions are properly defined and established in Touratier 
et al. (2007). The TrOCA0 equation is obtained from 
Δ14C and CFC-11 data in the global ocean. The Δ14C 
data are used to establish which water parcels can be 
assumed to be free of CANT. When the concentration 
of Δ14C<175‰, the age of the corresponding water 
mass is greater than 1400 years, long before the mas-
sive emissions of CO2 by humans had begun. The sam-
ples with maximum CFC-11 concentrations, typically 
between 262.9 and 271.3 pptv and corresponding to 
surface waters in 1992-1995 (maximum atmospheric 
pCFC-11), were also selected as part of the dataset to 
obtain the TrOCA0 expression. Touratier et al. (2007) 
estimated an uncertainty of ±6.2 µmol kg–1 in CANT 
determination for the TrOCA method, using an error 
propagation technique as in numerous previous studies 
(Gruber et al., 1996; Sabine et al., 1999).

The jCTº method (Vázquez-Rodríguez et al., 
2009a) shares similar fundamentals with the ΔC* 
back-calculation method (Lee et al., 2003). The 
sub-surface layer (100-200 m) is taken in the jCTº 
method as a reference for characterizing water mass 
properties at the moment of their formation. The air-
sea CO2 disequilibrium (ΔCdis) is parameterized at 
the sub-surface layer first using a short-cut method 
(Thomas and Ittekkot, 2001) to estimate CANT. Since 
the average age of the water masses in the 100-200 m 
depth domain, and most importantly in outcropping 
regions it is under 25 years, the use of the short-cut 
method to estimate CANT is appropriate (Matear et al., 
2003). The pre-industrial total alkalinity ATº and ΔCdis 
parameterizations (in terms of conservative tracers) 
obtained from sub-surface data are applied directly to 
calculate CANT in the water column for waters above 
the 5ºC isotherm and via an Optimum MultiParam-
eter analysis (OMP) for waters with θ<5ºC. This 
procedure especially improves the estimates in cold 
deep waters that are subject to strong and complex 
mixing processes between Arctic and Antarctic water 
masses. Waters below the 5ºC isotherm also represent 
an enormous volume of the global ocean (~86%). One 
important aspect of the jCTº method is that none of 
the ATº or ΔCdis parameterizations are CFC-reliant. 
In addition, the jCTº method proposes an approxima-
tion to the temporal and spatial variability of ΔCdis 
(ΔΔCdis) in the Atlantic Ocean in terms of CANT and 
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ΔCdis itself. Also, the small increase in ATº since 
the Industrial Revolution due to CaCO3 dissolution 
changes projected from models (Heinze, 2004), and 
the effect of rising sea surface temperatures on the 
parameterized ATº are accounted for in the param-
eterizations. These two last corrections are minor but 
should still be considered if one wished to avoid a 
maximum 4 µmol kg-1 bias (2 µmol kg-1 on average) 
in CANT estimates. The jCTº method expression for the 
calculation of CANT is as follows: 

 
C

C C
C

C

ANT
dis
t

dis
t

ANT
sat

=
−

+ϕ

Δ Δ
Δ

*

1 | |  (8)

The ΔC* method is defined after Gruber et al. (1996) 
as:

 C C
AOU

R
PA PA CT

c

T T T eq
* .= − − −( ) −0 5Δ 0 π

 (9)

The constant term j is a proportionality factor that 
stands for the ΔCdis /ΔCt

dis ratio and its value (0.55) 
is properly discussed in Vázquez-Rodríguez et al. 
(2009a). The ΔCt

dis and PAT
o terms are parameterized 

as a function of conservative parameters exclusively 
(Vázquez-Rodríguez et al., 2009a). The Csat

ANT stands for 
the theoretical CANT saturation concentration depend-
ing on the pCO2 at the time of water masses formation 
(WMF), and is defined as Csat

ANT = S/35 (0.85 θ + 46.0) 
(at present xCO2 air). Based on earlier uncertainty and 
error evaluations (Gruber et al., 1996; Sabine et al., 
1999; Lee et al., 2003; Touratier et al., 2007), an esti-, an esti-
mated overall uncertainty of ±5.2 mmol kg-1 is obtained 
for the jCTº method. This is in agreement with the av-

Table 1. – Mean and standard deviation (STD) of the interpolated data minus WOA05 data are computed for the whole Atlantic, for specific 
sub domains and for the spatial and WMP interpolation. The determination coefficient (r2) between WOA05 and interpolated fields is also 

provided. Temperature is in ºC, Salinity in psu and NO, PO and O2 in µmol kg-1.

  Total     θ>5ºC     θ<5ºC 
Total  r2 Mean Std   r2 Mean Std   r2 Mean Std

θspatial 0.964 0.34 1.02   0.856 0.23 0.62   0.914 0.55 1.48
θWMP 0.993 0.10 0.43   0.952 0.11 0.37   0.988 0.07 0.53
Sspatial 0.925 0.01 0.14   0.887 -0.02 0.07   0.905 0.04 0.22
SWMP 0.984 0.00 0.07   0.954 -0.01 0.05   0.981 0.00 0.09
NOspatial 0.948 0.8 18.8   0.845 3.8 15.5   0.918 -4.7 22.7
NOWMP 0.989 2.5 8.6   0.957 3.6 8.2   0.983 0.4 9.2
POspatial 0.956 -5.7 18.6   0.893 -4.3 15.3   0.919 -8.2 23.2
POWMP 0.991 -3.0 8.4   0.971 -3.1 8.1   0.984 -2.7 8.7
O2spatial 0.901 4.1 14.5   0.857 4.4 13.1   0.918 3.7 16.6
O2WMP 0.943 2.6 11.0   0.945 2.7 8.4   0.921 2.6 15.0
           
Lat>30ºN                      
θspatial 0.934 0.20 1.24   0.860 0.34 1.61   0.80 0.01 0.42
θWMP 0.987 0.06 0.55   0.987 0.06 0.55   0.82 0.04 0.41
Sspatial 0.832 0.02 0.20   0.752 0.03 0.27   0.72 0.00 0.06
SWMP 0.948 0.01 0.11   0.948 0.01 0.11   0.87 0.01 0.09
NOspatial 0.954 -1.0 12.7   0.916 -3.6 15.7   0.64 2.3 6.3
NOWMP 0.988 0.7 6.6   0.988 0.7 6.6   0.82 2.4 4.3
POspatial 0.937 -5.1 15.6   0.877 -6.3 19.6   0.57 -3.6 8.2
POWMP 0.988 -2.2 7.0   0.988 -2.2 7.0   0.82 -1.6 4.8
O2spatial 0.928 0.6 9.3   0.875 0.1 11.2   0.88 1.1 6.1
O2WMP 0.946 -0.6 8.2   0.946 -0.6 8.2   0.91 0.5 5.4
           
Tropical                      
θspatial 0.982 0.30 0.83   0.958 0.59 1.11   0.985 0.03 0.14
θWMP 0.998 0.06 0.27   0.995 0.11 0.38   0.994 0.02 0.08
Sspatial 0.956 0.01 0.12   0.943 0.03 0.17   0.981 -0.01 0.02
SWMP 0.995 0.00 0.04   0.994 0.00 0.06   0.993 0.00 0.01
NOspatial 0.981 1.6 11.0   0.968 -1.7 13.6   0.898 4.7 6.3
NOWMP 0.995 2.5 5.3   0.992 1.8 6.6   0.964 3.2 3.8
POspatial 0.979 -2.2 11.6   0.967 -5.1 13.4   0.858 0.6 8.6
POWMP 0.995 -1.0 5.7   0.992 -1.6 6.5   0.955 -0.5 4.8
O2spatial 0.926 5.7 14.1   0.83 8.0 19.0   0.970 3.5 5.8
O2WMP 0.937 5.7 12.8   0.86 6.6 17.2   0.963 4.8 6.5
           
Lat<30ºS                      
θspatial 0.92 0.44 1.05   0.82 0.77 1.93   0.74 0.38 0.75
θWMP 0.983 0.14 0.47   0.97 -0.04 0.66   0.92 0.17 0.43
Sspatial 0.77 0.00 0.13   0.82 0.09 0.22   0.75 -0.02 0.09
SWMP 0.96 -0.01 0.05   0.97 -0.01 0.09   0.94 -0.01 0.05
NOspatial 0.82 0.9 24.9   0.82 -13.5 39.9   0.53 3.7 19.5
NOWMP 0.96 3.4 11.1   0.96 -1.2 15.5   0.86 4.0 10.1
POspatial 0.85 -8.7 23.2   0.83 -18.2 38.5   0.65 -6.8 18.2
POWMP 0.97 -4.9 10.1   0.97 -5.8 13.2   0.90 -4.8 9.5
O2spatial 0.75 4.4 16.3   0.78 -1.4 14.5   0.73 5.6 16.3
O2WMP 0.91 1.7 9.8   0.83 -1.7 11.4   0.92 2.1 9.4
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erage uncertainty of 5.6 mmol kg-1 for ΔCdis (Vázquez-
Rodríguez et al., 2009a).

For the application case of CANT interpolation (var 
= CANT in equation 1) the computed CANT must be nor-
malized to a reference year (1994) using the following 
expression:

 C
C

C
CANT i

ANT
sat

ANT
sat year ANT i

y
,

,

, ,
1994

1994

= ear  (10)

The reason for doing this comes from the transient 
tracer nature of CANT and the fact that the CARINA 
database spans quite a long time period. Therefore, the 
interpolated CANT referenced to 1994 (C1994

ANT) is com-
puted as
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C f
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,
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which is valid for both CANT reconstruction methods.

RESULTS AND DISCUSSION

To assess the quality of both types of interpola-
tion, their results were evaluated against the WOA05 
data, i.e. the interpolated potential temperature, salin-
ity, ‘NO’ and ‘PO’ obtained from equation (1) were 
compared with the corresponding original values 
from WOA05 variables. Since these parameters were 
involved in factor’s calculation of the WMP interpola-
tion (Eqs. 2, 4), a more independent check was done by 
interpolating O2 and comparing it against the WOA05 

O2 data. When the interpolation methods had been as-
sessed, they were applied to CANT, using both jCTº and 
TrOCA methods, in order to get the 3D distribution and 
the total inventories.

The mean and standard deviation (STD) of the in-
terpolated data minus the reference WOA05 data (S, 
θ, ‘NO’, ‘PO’ and O2) were computed for the whole 
domain and for specific sub-domains (Table 1). Also, 
the correlation between interpolated and reference 
fields was characterized with the determination coeffi-
cient (r2). Three zones were selected depending on the 
general variability of water masses, namely: northern 
latitudes (lat >30ºN), tropical latitudes and southern 
latitudes (lat <30ºS). In addition, two depth levels 
were set with respect to the 5ºC isoterms: θ >5ºC and 
θ <5ºC. The 5ºC isotherm represents a coarse bound-
ary between the little-ventilated deep waters and the 
younger, more ventilated upper and intermediate wa-
ters. It also splits the CANT inventories in about half.

The climatological annual mean of WOA05 po-
tential temperature along the 28ºW section in WOA05 
(Fig. 1) is shown in Figure 2A. The spatially-inter-
polated potential temperature (θspatial) from the CA-
RINA data base is close to the WOA05 data (Fig. 
2B). However, some misfits do show up when the 
residuals are plotted (Fig. 2D). The larger residuals 
are located in the upper layer, where absolute values 
higher than 2ºC are reached. In the deep water there is 
a better agreement, although southward of 40ºS there 
is a large thick layer holding a systematic bias, higher 
than 1ºC. On the other hand, the potential temperature 

Fig. 1. – A, CARINA stations with available variables needed to estimate CANT and section 28ºW plotted. B, WOA05 data grid sample 
with θ (ºC). 

A B
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from the WMP interpolation (θWMP) (Fig. 2C) shows 
a better agreement and lower residuals than the spa-
tial interpolation. This time, as for θspatial, the best fit 
is found in deep waters, north of 45ºS. Statistically 
speaking, the best fit (Table 1) is obtained by the 
WMP interpolation irrespective of whether the whole 
Atlantic is included or the interpolation is restricted 
to the sub-domains previously defined. The largest 

differences between the two kinds of interpolation are 
located in the upper layer (θ >5ºC), where r2 increases 
noticeably when the WMP interpolation is used. More 
specifically, the best fits are obtained in the tropical 
region and northern latitudes, whereas the southern 
latitudes show the worst fits. This is probably due to 
the lower density of data that the CARINA database 
has in the Southern Ocean.

Fig. 2. – Potential temperature (ºC) variability along 28ºW from the WOA05 dataset (A), spatially interpolated from CARINA data (B). 
Residuals of WMP interpolated (C) and spatially interpolated (D) potential temperature both as interpolated minus WOA05.

Fig. 3. – Salinity variability along 28ºW from the WOA05 dataset (A), spatially interpolated from CARINA data (B). Residuals of WMP 
interpolated (C) and spatially interpolated (D) salinity, both as interpolated minus WOA05.
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Figure 3A shows the WOA05 climatological an-
nual mean of salinity along the vertical section defined 
by the 28ºW meridian (Fig. 1). As in the case of θspatial, 
the spatially interpolated salinity (Sspatial) from the CA-
RINA database is quite close to the WOA05 reference 
data (Fig. 3B). Some misfits can be observed when 
the residuals between the spatially interpolated and 
WOA05 salinity values are plotted for the 28ºW section 
(Fig. 3D). For instance, there is a considerable error 

located around the salinity minimum associated with 
the presence of Antarctic Intermediate Water (AAIW) 
(Mémery et al., 2000). Again, the greater residuals are 
found in the upper layers where absolute values higher 
than 0.2 psu are observed. Although in the deep waters 
the concordance is high in general, south of 40ºS there 
is still the same thick layer of large biases (higher than 
0.05 psu in this case) also observed with the θspatial. The 
WMP interpolation of salinity (SWMP) (Fig. 3C) shows 

Fig. 4. – NO (µmol kg-1) variability along 28ºW from the WOA05 dataset (A), spatially interpolated from CARINA data (B). Residuals of 
WMP interpolated (C) and spatially interpolated (D) NO, both as interpolated minus WOA05.

Fig. 5. – O2 (µmol kg-1) variability along 28ºW from the WOA05 dataset (A), spatially interpolated from CARINA data (B). Residuals of 
WMP interpolated (C) and spatially interpolated (D) O2, both as interpolated minus WOA05.
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better agreement and lower residuals than the Sspatial in-
terpolation in all sub-domains (Table 1), proving again 
a superior performance of the WMP over the purely 
spatial interpolation method. Generally, both interpo-
lation methods seem to perform better for salinity in 
the deep waters north of 45ºS (Fig. 3D). Quantitatively 
speaking, the best fit to WOA05 values is obtained by 
the WMP interpolation in the tropical region (Table 1). 
The largest discrepancies between results from the two 
interpolation algorithms are found in the upper layers 
(θ >5ºC) of North Atlantic waters. Here, the r2 obtained 
with the WMP algorithm are better by far than the ones 
produced by the spatial approach. However, the r2 

values obtained for S are generally slightly lower than 
those of θ.

The climatological annual mean of ‘NO’ is shown 
along 28ºW (Fig. 4A). Since ‘NO’ and ‘PO’ are highly 
correlated, the ‘PO’ fields are not shown for the sake 
of conciseness. The spatial interpolation of ‘NO’ (NOspa-

tial) is close to the WOA05 data (Fig. 4B), with a most 
noteworthy r2 of 0.948 (Table 1) for the whole Atlan-
tic. The upper layers of the ocean, and particularly the 
Southern Ocean (SO), display the largest anomalies, 
which exceptionally reach offsets of 50 µmol kg-1 (Fig. 
4D). In general, the NOWMP output shows better agree-
ment, lower standard deviations in residuals and higher 
determination coefficients than the NOspatial in every 
subdomain (Table 1). Unlike the θ case, the best fit is 
found in the upper warm layers of the Atlantic Ocean 
rather than in the deep ones. This is likely due to the 
relatively high variability of ‘NO’ observed in the up-
per layer. Conversely, the worst fit (lowest r2), is found 
in the deep layers of the Southern Ocean.

The interpolated oxygen fields can be used as a 
test to assess the quality of the interpolation from 
CARINA data, given that this variable is common to 
both datasets and it is not used in the interpolation 
algorithms. The concentration of oxygen is controlled 
by the biological and solubility pumps. The clima-
tological annual mean of O2 along the 28ºW section 
(Fig. 5A) exhibits a strong minimum in the upper 
layer in the tropical region caused by the reminerali-
zation of organic matter (biological pump predomi-
nance). The high values observed in the polar areas 
are the consequence of the high solubility of oxygen 
in cold surface waters (solubility pump prevails the 
biological processes). The spatially interpolated O2 
(O2spatial) (Fig. 5B) closely resembles the WOA05 O2 
distribution along the 28ºW vertical section (Fig. 5A). 
It is generally well correlated (r2 of 0.90, Table 1) 
in the Atlantic Ocean, though the purely-spatial in-
terpolation has a slight tendency to over-spline some 
O2 gradients in the southern latitudes. The largest 
differences and lowest correlations between the ob-
served and the O2spatial fields are located in the up-
per Atlantic layer (ranging from -25 to 20 µmol kg-1) 
and in the Southern Ocean, where offsets may reach 
up to 50 µmol kg-1 (Fig. 5D). The best fits obtained 
belong to the cold deep layers of the tropical region. 

The O2 WMP interpolation (O2WMP) (Fig. 5C) is in 
better agreement with direct observations, has lower 
residuals (Fig. 5C) and has higher r2 in general than 
the spatial interpolation (r2 of 0.94 vs. r2 of 0.90 re-
spectively, Table 1). Unlike for the rest of domains, 
in deep tropical waters the WMP interpolation seems 
not to perform up to its potential, as the results from 
the spatial interpolation appear to be more in accord-
ance with the observed fields. Most importantly, the 
WMP interpolation algorithm yields robust estimates 
in the Southern Ocean, where data coverage of the 
CARINA database is rather sparse.

As CANT is indistinguishable from natural CO2, 
there are no CANT benchmarks against which the esti-
mations can be compared. Figure 6 shows the spatial 
and WMP interpolations of CANT computed using the 
jCTº method. The general pattern of the distributions is 
similar to those given by Lee et al. (2003) and Vázquez-
Rodríguez et al. (2009b). Sabine et al. (2004), using 
GLODAP gridded database, produced a total inventory 
of CANT for the Atlantic of 40 Pg-C. Previously, Lee et 
al. (2003) obtained a total inventory of 47 Pg-C by us-(2003) obtained a total inventory of 47 Pg-C by us- obtained a total inventory of 47 Pg-C by us-
ing an ungridded GLODAP database. Using CFC data, 
Waugh et al. (2006) obtained a total inventory of 48 
Pg-C. A comparative study using five long transoce-
anic cruises was performed by Vázquez-Rodríguez et 
al. (2009b). They found that jCTº and TrOCA turn out 
55 and 51 Pg-C respectively. The results obtained here 
with CARINA gridded showed the same integrated 
inventories as Vázquez-Rodríguez et al. (2009b) for 
the jCTº method, but a higher value of 58 Pg-C for 
the TrOCA method. The main differences from the 
GLODAP gridded data (Lee et al., 2003; Key et al., 
2004) are located in the South Atlantic, where a large 
number of GLODAP estimates (obtained from the ΔC* 
method, Gruber et al., 1996) are negative. The GLO-
DAP values of CANT for the Southern Ocean are lower 
than the ones computed here. This negative bias in the 
CANT estimates from the GLODAP dataset has been 
identified by several authors (Lo Monaco et al., 2005; 
Waugh et al., 2006; Vázquez-Rodríguez et al., 2009b)
The discrepancies among the interpolation methods are 
rather low except in the upper layers and in the South-
ern Ocean (Fig. 6C). The WMP interpolation produces 
higher values of CANT than the spatial method in the 
deep Southern Ocean (θ <5ºC) and lower values in the 
upper layers where biases reach about ~8 µmol kg-1. In 
terms of CANT inventories the discrepancies are quite 
low and there are systematically lower (higher) values 
in the upper (lower) layer when the spatial interpola-
tion is used (Table 2). The estimated total inventory of 
jCTº CANT for the Atlantic is 55 Pg-C, independently of 
the interpolation method applied. Nevertheless, some 
minor discrepancies are found when the warm and cold 
water (θ above or below the 5ºC isotherm, respectively) 
inventories are examined separately (Table 2). 

The above-described pattern is quite similar to the 
one obtained when the TrOCA method is used to es-
timate CANT. The total inventory does not change too 
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much (roughly less than 5%, Table 2) when different 
interpolation methods are used, although the invento-
ries in the warm and cold layers for the whole Atlantic 
Ocean are around 1.5 Pg-C different depending on the 
interpolation method used. Using the TrOCA method 
produces a slightly higher CANT inventory. The TrOCA 
method gives higher values in the surface layer (higher 
penetration) and in the deep Northern North Atlantic 
(Fig. 7). In comparison, the jCTº method gives slightly 
higher values in practically all deep water masses and 
in the Southern Ocean, except for the Antarctic Bottom 
Water (AABW). Again, the major differences found 
in the southern latitudes are a consequence of the low 
density of carbon system data in this region.

Future work will be needed to improve the inter-
polation method and obtain an uncertainty assessment, 
and to iterate back and forth to the original data fol-
lowing a Barnes schema to fine-tune the interpolation. 
After these improvements have been achieved and 
with uncertainties available, the enhanced interpola-
tion method could be used to interpolate the param-
eters available in CARINA and GLODAP, in order 
to provide an enhanced gridded product. Also, more 
CANT estimation techniques such as TTD and ΔC* can 
be incorporated and applied to the CARINA database 
so that their inventories will be obtained.

CONCLUSIONS

The WMP interpolation method offers improve-
ments compared with a traditional spatial gridding, and 
even with an objective analysis spatial gridding. By 
using an auxiliary database (WOA05) constructed with 
more resolution data on bio-geochemical conservative 
parameters, the WMP method has more information 
for the gridding task than any other exclusively spatial 
alternative.

The total inventory of CANT (referred to 1994) for 
the Atlantic Ocean is estimated to be about 55-58 
Pg-C depending on the CANT estimation technique ap-
plied (jCTº or TrOCA, respectively). The interpolation 
methods used here (spatial and WMP) do not have 
significant effects on the estimates of CANT total inven-
tories, due to compensation effects between domains. 
Nevertheless, there exist some minor differences in the 

Table 2. – CANT inventories (Pg-C) in the Atlantic and in different 
latitudinal bands and layers using the TrOCA and jCTº methods.

CANT(Pg-C) 1994   jCTº    TrOCA 
Zone θ(ºC) Spatial WMP diff  Spatial WMP diff

Lat>30ºN <5 6.9 7.0 0.1  8.1 8.1 0.0
Lat>30ºN ≥5 6.0 5.8 -0.2  6.7 6.5 -0.2
Tropical <5 12.8 13.4 0.6  12.7 13.2 0.5
Tropical ≥5 10.2 9.7 -0.5  10.5 9.9 -0.6
Lat<30ºS <5 15.5 16.3 0.8  15.9 16.7 0.8
Lat<30ºS ≥5 3.7 3.1 -0.6  4.0 3.2 -0.8
Atlantic Ocean <5 35.2 36.7 1.4  36.6 38.0 1.4
Atlantic Ocean ≥5 19.9 18.6 -1.3  21.2 19.6 -1.7

Total  55.1 55.2 0.1  57.9 57.6 -0.2

Fig. 7. – CANT (µmol kg-1) determined by the TrOCA method along 
28ºW using spatial interpolation (A) and WMP interpolation (B). 
Residuals between the two interpolations are shown (C) as spatially 

interpolated minus WMP interpolated.

Fig. 6. – CANT (µmol kg-1) determined by the jCTº method along 
28ºW using spatial interpolation (A) and WMP interpolation (B). 
Residuals between the two interpolations are shown (C) as spatially 

interpolated minus WMP interpolated.
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results obtained by the different interpolation methods. 
The WMP interpolation method performs better than 
the spatial one, particularly in regions with less density 
of initial data (most importantly the Southern Ocean) 
from the CARINA dataset. Finally, the differences be-
tween the interpolation methods transcend to the realm 
of CANT estimation above and below the 5ºC isopleth. 
The spatial method tends to produce lower (higher) 
CANT values in the water below (above) the isotherm of 
5ºC than the WMP interpolation method.
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