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SUMMARY: We present a bottom trawl survey (BTS) field experience carried out off the Portuguese Continental shelf 
to test two sampling designs proposals previously analysed by simulation which implement a hybrid random-systematic 
and a systematic sampling strategy. We used a common base regular grid covering the survey area and overlapped it 
with the existent random design to build the hybrid design while the systematic design added a set of regular locations at 
smaller distances creating four denser sampling areas. We use hake (Merluccius merluccius) abundance and model-based 
geostatistics to compute measures such as mean abundance, µ, and the 95% percentile, p95, which summarise the areal 
behaviour; coverage of the prediction confidence interval, ξ, to assess the adequacy of the model; and a modified generalised 
cross validation index, p, to evaluate prediction precision. The hybrid design showed a lower coefficient of variation for µ 
(11.89% against 13.25%); a slightly higher coefficient of variation for p95 (11.31% against 11.09%); similar ξ (0.94); and 
lower π (16.32 against 18.82). We conclude that the hybrid design performs better, our procedure for building it can be used 
to adjust BTS designs to modern geostatistical techniques, and the statistics used constitute valuable tools for assessing BTS 
performance. 
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RESUMEN: Uso de herramientas geostadísticas para evaluar diseños de muestreo aplicado a una experiencia 
de campo de campaña de arrastre demersal en Portugal. – Presentamos una experiencia de campo mediante campañas 
de arrastre demersal (CAD) llevada a cabo en la plataforma continental portuguesa con el fin de evaluar dos propuestas de 
diseño de muestreo. Las dos propuestas se analizaron previamente mediante técnicas de simulación implementando dos 
estrategias de muestreo: estrategia híbrida aleatoria-sistemática y estrategia sistemática. Se utilizó una rejilla de celdas 
regular común cubriendo el área de estudio y se superpuso con el diseño aleatorio existente para construir el diseño híbrido, 
mientras que el diseño sistemático añade un conjunto de puntos de muestreo regulares a menor distancia para crear cuatro 
áreas de muestreo más densas. Se usa la abundancia de merluza (Merluccius merluccius) y técnicas geostadísticas basadas 
en modelo para calcular medidas como: abundancia media, µ, y el percentil 95%, p95, que resumen el comportamiento 
areal; la cobertura del intervalo de confianza de predicción, ξ, para evaluar la bondad del modelo; y un índice modificado de 
validación cruzada generalizada, p, para evaluar la precisión de la predicción. Se obtuvo un coeficiente de variación menor 
para µ con el diseño híbrido (11.89% frente a 13.25%); un coeficiente de variación ligeramente más alto para p95 (11.31% 
frente a 11.09%); una ξ similar (0.94); y menor π (16.32 contra 18.82). se concluye que el diseño híbrido funciona mejor y 
nuestro procedimiento para construirlo puede ser usado para ajustar diseños CAD a técnicas geostadísticas modernas, y que 
los estadísticos usados constituyen herramientas valiosas para evaluar el rendimiento de CAD.

Palabras clave: geostadística basada en modelo, merluza, diseño de muestreo, campaña de arrastre demersal. 
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INTRODUCTION

Designs for bottom trawl surveys (BTS) rely on 
previous knowledge of the spatial distribution and 
population structure of the target species combined 
with statistical analysis of preliminary data (e.g. Ault 
et al., 1999; Hata and Berkson, 2004) or simulation 
procedures (e.g. Schnute and Haigh, 2003; Anon., 
2005b). In defining the BTS sampling design, one is 
confronted with operational constraints such as the 
existence of trawlable grounds and vessel time avail-
able. The survey design is typically reviewed from 
time to time to adjust the stratification (e.g. Smith 
and Gavaris, 1993; Folmer and Pennington, 2000), 
tow duration (e.g. Cerviño and Saborido-Rey, 2006; 
Wieland and Storr-Paulsen, 2006), technical issues 
such as gear changes (e.g. Zimmermann et al., 2003; 
Cooper et al., 2004) and other factors which may 
change over the years. 

Several authors have discussed the advantages 
of systematic designs over random designs for sam-
pling spatial correlated variables such as fish abun-
dance (Cochran, 1960; Ripley, 1981; Thompson, 
1992; Cressie, 1993; Chiles and Delfiner, 1999; 
Kimura and Somerton, 2006; Diggle and Ribeiro Jr, 
2007). Nevertheless, in the case of spatial correlated 
variables there are two conflicting objectives that 
cannot be combined in a single criterion: estimation 
of the covariance function parameters and prediction 
(Müller, 2001). In the first situation it is important to 
have locations at short distances to inspect the behav-
iour of the correlation function close to the origin, 
and locations at distances close to the limit of spatial 
correlation to estimate the correlation range (Müller, 
2001). In the second situation the best predictions 
will result from the design with the highest covari-
ance with the locations to be predicted (Thompson, 
1992). In the case of predicting fish abundance it is 
common to require a complete map of the study area 
and the best choice will be a design that covers the 
area evenly. However, when the covariance func-
tion is unknown (a common characteristic of fish 
abundance analysis), it must be estimated from the 
data before predicting and the two objectives must 
be combined. Several authors suggest designs that 
mix a set of locations covering the area with ad-
ditional locations at short distances (Müller, 2001; 
Diggle and Lophaven, 2006; Zhu and Stein, 2006) to 
balance the two objectives. Such designs applied to 
bottom trawl surveys have received limited attention 
(Selzenmuller et al., 2005), although fish abundance 

characteristics fit well in the assumptions of these 
proposals. 

Our analysis adopts a model-based geostatisti-
cal method (Diggle et al., 1998; Diggle and Ribeiro 
Jr, 2007) to explicitly take into account spatial pat-
terns of abundance and provide a flexible modelling 
framework. It is worth mention previous work by 
Simard et al. (1992) and Petitgas (2001) wich also 
addressed the issue of sampling design, although not 
using model-based geostatistcs. 

The designs are accessed by a set of statistics to 
provide information about aspects of the data that 
are relevant for modelling fish abundance. In a glo-
bal perspective, referring to the entire study region, 
we use mean abundance and the 95% percentile to 
summarise the areal abundance, commonly used for 
studying time trends and building abundance indices 
for stock assessment. In a local perspective, refer-
ring to particular locations within the study area, we 
use the observed values to assess the suitability of 
the model by computing the coverage of the predic-
tion confidence interval, and the prediction precision 
by computing a modified generalised cross-valida-
tion index. Note that the assessment of the model 
suitability and the prediction precision are extremely 
valuable statistics, once that kriging is a linear pre-
dictor and the maps produced with it will be used 
to estimate the spatial distribution of abundance and 
the abundance index mentioned above. With relation 
to the analysis reported here we rely on our experi-
ence with bottom trawl surveys (Anon., 2002, 2003, 
2004, 2005a, 2006; Sousa et al., 2005; Mendes et 
al., 2007; Sousa et al., 2007) to provide contextual 
information which supports the adoption of a par-
ticular class of model, and avoid model mis-specifi-
cation as far as possible. 

The work described on this paper aims to: (i) 
report a BTS field experience for testing sampling 
designs, and (ii) describe geostatistical tools for as-
sessing the performance of sampling designs. 

MATERIAL

The Portuguese BTS started in June 1979, cover-
ing the continental shelf and following a stratified 
random design. In 1989 the stratification was defined 
by 12 sectors along the coast subdivided into 4 depth 
ranges: 20-100 m, 101-200 m, 201-500 m and 501-
750 m, with a total of 48 strata. Due to constraints 
in the vessel time available the sample size was set 
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to 97 locations evenly allocated to each stratum. The 
coordinates of the sampling locations were selected 
randomly, albeit constrained by the historical records 
of clear tow positions and other information about 
the sea floor, thus avoiding places where trawling 
was not possible. During this period haul duration 
was set to one hour but recent experiments proved 
that half-hour hauls provide the same information 
about length distributions (Cardador, pers. comm.). 
In light of this findings haul duration was reduced to 
half an hour and an additional set of hauls were avail-
able which led to a revision of the sampling design. 
The revision was split into a preliminary phase using 
simulations and geostatistical analysis (Jardim and 
Ribeiro Jr, 2007) and a second phase during which a 
field test was performed to provide real information 
about the proposed sampling designs. In the third 
phases the decision will be based on the scientific 
data provided and the existing financial and admin-
istrative constraints. 

The field experience was carried out during the 
summer of 2001, with R/V Noruega off the south-
west of the Portuguese Continental shelf (Fig. 1) 
using a Norwegian Campbell Trawl 1800/96 (NCT) 
with a codend of 20 mm, a mean vertical opening of 
4.8 m and a mean horizontal opening between wings 
of 15.5 m. The survey performed two sampling de-
signs selected from the simulation study reported by 
Jardim and Ribeiro Jr (2007). The survey area was 
limited in the south by the cape of S.Vicente (37.00º 
north), in the north by Setubal’s Canyon (38.30º 
north), in the east by the 20 m depth isoline and in 
the west by the 500 m isoline. The survey area was 
approximately 4300 km2 in size and the maximum 
distance within the area was approximately 150 km. 
The data collected in both designs and considered 
here consisted of date/time, geographical location 
and hake (Merluccius merluccius) catch in weight 
(kg). Geographical coordinates were transformed 
into UTM units and hake abundance was computed 
in kg∕km and assigned to the haul starting coordi-
nates. The area swept was computed using the haul 
start and ending positions to correct haul speed vari-
ations. 

METHODS

This section describes the sampling designs to 
be tested and how they were built. It also describes 
the geostatistical modelling framework and the ad-

justments considered to cope with the small dataset 
available—a common characteristic of BTS due to 
its high price. Finally, we describe the technical de-
tails of the performance statistics chosen. 

Sampling designs

Our sampling designs were built by mixing a 
set of operational constraints with the geostatistical 
principles described above and the need to keep the 
continuity of the survey history. In particular, the 
two designs tested were built to distinguish between 
a hybrid random-systematic sampling strategy and a 
systematic strategy. 

The sampling effort available for the candidate 
design was 36 locations. We built two candidate de-

Fig. 1. – Survey area on the southwest of the Portuguese Continental 
shelf between 20 m and 500 m. 
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signs using as a basis a regular grid with 19 loca-
tions covering the survey area, and added seventeen 
additional ones at shorter distances. Two candidate 
designs were built, a hybrid design that allocated 
the additional locations randomly and a systematic 

design that allocated them at regular locations. The 
hybrid design overlaps the regular grid with the ex-
istent random design, keeping some continuity with 
the survey historical records (top-left plot in Fig. 2). 
The systematic design includes regular locations at 

Fig. 2. – Study area on the Portuguese southwest coast. The top panels show information about the hybrid random-systematic design and the 
bottom panels about the systematic design. The leftmost plots show the sampling designs locations, the black triangles represent the regular 
grid common to both designs, and the open circles the additional locations. Follows the observations of hake abundance (kg/km2) and the 

predictions obtained by kriging, both on the square root scale. The rightmost plots present the kriging variance 
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smaller distances, creating 4 denser sampling areas 
(bottom-left plot in Fig. 2). The vessel time available 
did not allow other possibilities to be tested. 

Geostatistical model

Geostatistical observations consist of pairs (x,y) 
with elements (xi,yi) : i = 1,…,n, where xi denotes the 
coordinates of each of the n spatial locations within 
a study region A ⊂ R2 and yi the measurement of the 
corresponding observable study variable. We adopt-
ed the Box-Cox transformed Gaussian model with 
transformation parameter λ as presented in Chris-
tensen et al. (2001). Denoting by zi the transformed 
values, such that gλ(yi) = zi, the model for the vector 
of variables Z observed at locations x can be writ-
ten as a linear model Z(x) = S(x) + ε, where S is a 
stationary Gaussian stochastic process, with E[S(x)] 
= µ, Var[S(x)] = σ2 and an isotropic correlation func-
tion ρ(h) = Corr[S(x),S(x′)], where h = ||x-x′|| is the 
Euclidean distance between locations x and x′. The 
terms ε are assumed to be mutually independent and 
identically distributed, ε ∼ Gau(0,τ2). For the correla-
tion function ρ(h) we adopt the exponential function 
with algebraic form ρ(h) = exp{-h∕φ} where φ is the 
range parameter such that ρ(h) ∼ 0.05 when h = 3φ. 
Following usual geostatistical terminology (Isaaks 
and Srivastava, 1989) we call σt

2 = τ2 + σ2 the to-
tal sill, σ2 the partial sill, τ2 the nugget effect and 
3φ the practical range. Geometric anisotropy (Isaaks 
and Srivastava, 1989; Cressie, 1993) is considered 
an extension of this model with an extra parameter ψ 
= {ψA,ψR}, where ψA is the anisotropic angle and ψR 
is the anisotropic ratio. 

Hereafter we use [·] to denote the distribution of 
the quantity indicated within brackets. Following the 
adopted model, [gλ(Y)] ∼ MVGau(µ1,Σ), i.e. [Y ] is 
multivariate trans-Gaussian with expected value µ 
and covariance matrix Σ parametrised by {σ2,φ,τ2}. 
Parameter estimates can be obtained by maximum 
likelihood (Cressie, 1993; Diggle et al., 1998; Diggle 
and Ribeiro Jr, 2007) and used for spatial prediction. 
In its simplest format, spatial prediction given by 
the kriging predictor consists in obtaining expected 
values and associated variances at unsampled loca-
tions. More generally, the predictive distribution of 
quantities of interest can be obtained analytically, if 
possible, or by sampling from this distribution. Con-
sidering a prediction target T(x0) = gλ

–1(S(x0)), the 
realised value of the process in the original meas-
urement scale at spatial locations x0. Simulations 

from the conditional distribution [T(x0)|Y (x)] are ob-
tained by simulating from the multivariate Gaussian 
[S(x0)|Y(x)] and back transforming the simulated 
values to the original scale of measurement (Chiles 
and Delfiner, 1999; Diggle and Ribeiro Jr, 2007). 
These simulations are called conditional simulations 
referring to the fact they are obtained from the distri-
bution of the quantity of interest conditioned to the 
observed values Y (x). 

We split inference into two steps. First the Box-
Cox transformation parameter λ and the anisotropy 
parameter ψR are investigated by pooling all the ob-
servations in a single dataset and computing profile 
likelihoods (Diggle and Ribeiro Jr, 2007). We con-
sider the north-south coastal orientation of the study 
region as the direction of greatest spatial continuity 
and fix ψA in 0 degrees azimuthal angle. Afterward, 
having estimated these two parameters we regard 
their point estimates as constants in the model and 
proceed by computing, for each design, the maxi-
mum likelihood estimates of the remaining model 
parameters. The reasoning for the two-step proce-
dures is twofold. Pragmatically, it overcomes the 
difficulty of identifying all parameters with a small 
dataset. With regards to modelling assumptions it 
considers the transformation and anisotropy param-
eters as part of the model specification reflecting the 
nature of the data and contextual information, there-
fore not requiring to be identified by the designs. 
Thereafter, we compute kriging predictions on a 2 
× 2 km grid within the study area, x0, with a total of 
1070 locations, and obtain 1,000 conditional simula-
tions from [Y (x0)|Y ] for each design. 

Performance statistics

Consider E[Z(xi)] and σz
2 (xi) the kriging predictor 

and its variance on the Gaussian scale at location xi 
∈ x0. For a value of 0.5 of the transformation param-
eter λ, the back transformation to the original scale 
gives E[Y (xi)] = (1 + 0.5E[Z(xi)])

2 + 0.25σz
2 (xi) and 

the global mean is estimated by averaging the pre-
dicted values m̂ = m–1Σm

i=0 Ê [Y(xi)]. The variance of m̂, 
denoted by σ̂m

2, is computed by the mean of all terms 
in the covariance matrix ΣY (x0) = Var[Y (x0)|Y (x)], 
back transformed by ΣY (x0) = ΣZ(x0)[8

-1ΣZ(x0) + (1 + 
0.5E[Z(x)])2], where ΣZ(x0) is the covariance matrix 
of [S(x0)|Z(x)]. More generally, inferences on other 
quantities of interest T(x0) are obtained from the con-
ditional simulations. Denote by ts(x0), s = 1,…,S = 
1,000 conditional simulations from [T(x0)|Y (x)]. For 
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example, an α-th percentile is estimated by p̂ = S–1Ss 
p̂s where p̂s = pα(ts(x0)), the average of the empirical 
distribution p̂ obtained from the conditional simu-
lations. The variance of p̂ is given by σ̂p

2 = (S–1)–1 
Σs(p̂s – p̂)2. 

The coverage of the prediction confidence inter-
val, ξ, and the generalised cross validation index, 
π, were computed using cross-validation statistics 
(Hastie et al., 2001) combined with conditional sim-
ulations as follows. First, create a new data set by 
leaving one observation out at a location xi, simulate 
1,000 values of the variable at that location, and re-
peat this procedure visiting all data locations. Subse-
quently, consider y(xi) an observation of the process 
Y at location xi, i = 1,…,n; y(x(i)) the observed data set 
without the observation y(xi) and ts(xi) a conditional 
simulation s = 1,…,S of [T(xi)|Y = y(x(i))] at location 
xi. The predictive confidence interval is given by 
CI(xi) = [p2.5(ts(xi)),p97.5(ts(xi))] and the proportion of 
observations lying inside the intervals ξ = n-1 Si(y(xi) 
∈ CI(xi)) provides the coverage of the prediction con-
fidence interval. The cross validation index is given 
by π = n–1 Si(S

-1 Ss(ts(xi) – y(xi))
2), the average of the 

mean quadratic error at each location estimated us-
ing the full set of conditional simulations. 

RESULTS

The two sampling designs and the observations of 
hake abundance are presented in the leftmost panels 
of Figure 2, where the base regular design is repre-
sented by the black triangles. The abundance of hake 
observed showed that the distribution of abundance 
was spread over the area, with lower values in the 
north and a small number of zeros. 

The 95% confidence interval obtained for the 
Box-Cox transformation parameter was [0.12,0.55] 
and we set l̂ = 0.5, corresponding to a square root 
transformation. The profiled log-likelihood of the 
anisotropy ratio showed no evidence of anisotropy. 
Nevertheless, we carried out analysis using different 
values of ψR to check the sensitivity of the results, 
which proved negligible. 

Covariance parameter estimates showed higher 
values for the hybrid design than the corresponding 
ones given by the systematic design (Table 1). The 
total variance σ̂T

2  was 3.75, with σ̂2 = 0.75  and t̂2 
= 3.00; and f̂ = 16.64 . The systematic design esti-
mates were σ̂T

2 = 3.20, with σ̂2 = 0.61  and t̂2 = 2.59; 
and f̂ = 10.21. Considering t̂2

REL, which computes 

the relationship between the random variability and 
the spatial structure variability, and σ2φ–1, which 
give information about the “size” of the spatial proc-
ess. The two designs showed similar relative nug-
gets. However, the hybrid design showed a lower ra-
tio between sill and range, reflecting a higher spatial 
structure of the stochastic process. Notice that the 
practical range, 3φ, was ≈ 50 km for the hybrid and 
≈ 30 km for the systematic design. 

The rightmost panels of Figure 2 show the abun-
dance maps predicted and their variance for each de-
sign. Both predictions are similar and the spatial pat-
tern of variance reflects the influence of the observa-
tions, showing lower variability near the observed 
locations and higher variability in areas where ex-
trapolation was further extended. The hybrid design 
had higher variance in the centre-east of the study 
area and lower variance in the north due to a better 
coverage in this area. 

The estimates of µ and p95 were similar, although 
the hybrid design showed slightly lower values. The 
hybrid design showed a lower coefficient of varia-
tion for µ, CVµ = 11.89%, than the systematic de-
sign, CVµ = 13.25%. Sampling statistics computed 
for these designs showed a similar pattern (Table 
1). The p95 variance was slightly lower for the sys-
tematic design, CVp95 = 11.09%, than for the hybrid 
design, CVp95 = 11.31%. The coverage of the predic-
tion confidence intervals was 0.94 for both designs. 
These results reinforce our modelling choices given 
that if the model was wrong we would expect ξ to 
be different from the nominal value of the confi-
dence interval. The generalised cross validation in-
dex showed a lower estimate with the hybrid design, 
16.32, than with the systematic design, 18.82, indi-
cating a higher prediction precision of the hybrid de-
sign. The above results show that the higher spatial 
structure of the stochastic process estimated for the 
hybrid design exceeded its higher total variability 
with relation to the estimation of these performance 
statistics. 

DISCUSSION

Assessing sampling designs for BTS raises in-
teresting questions about appropriate methodologies 
for analysing data and obtaining statistics of interest, 
which are particularly relevant considering the mul-
tipurpose/multispecies nature of BTS and the small 
sample sizes. 



Geostatistics for assessing sampling designs • 629

SCI. MAR., 72(4), December 2008, 623-630. ISSN 0214-8358 doi: 10.3989/scimar.2008.72n4623

The adoption of a formal criteria and loss func-
tion to find an optimum design seems unrealistic in 
practice due to the multidimensionality of the data 
and the conflicting objectives of inference and pre-
diction. Here we followed a pragmatic approach to 
sampling design, starting with a design that joins a 
regular grid with the old random design, following 
with a design that uses the same regular grid but re-
allocates the random locations in a regular shape. 
Considering the wide literature that supports the 
use of systematic designs for spatial correlated vari-
ables, these designs implement the two most promis-
ing strategies and test the possibility of keeping the 
continuity with the historical time series. To com-
pare these proposals we rely on spatial modelling to 
compute statistics of primary interest and look for 
consistency among them, exploring several aspects 
of the same dataset. We advocate that the approach 
described above will provide valuable information 
to support the decision-making process. 

Although the results obtained are constrained by 
the characteristics of the area and the species ana-
lysed, we believe that the methodology defined by 
our approach can be applied to other areas and spe-
cies, providing an important source of information 
for revising sampling design. It would not be sur-
prising if similar results are found for other species, 
because the principles behind the construction of the 
sampling designs tested are quite generic and can be 
applied to most fish species. 

The performance statistics were selected to re-
flect relevant characteristics and different aspects 
of spatial prediction. The global mean is the most 
widely used index of abundance, often estimated by 
the sample average. We favour the geostatistical es-
timator presented and its variance as a measure of 
uncertainty, because it takes into account the spa-
tial dependency within the area and insights about 
the spatial process. The 95th percentile estimated by 
conditional simulations can be used to identify areas 
of high abundance, giving information about candi-
date areas to protect. The coverage of the prediction 
confidence intervals is a diagnostic tool. A small cov-
erage reflects an underestimation of the variance or 
the inadequacy of the model to explain the available 
data. The cross-validation index combined with con-
ditional simulations incorporates the prediction pre-
cision in the index, which is not taken into account 
by the traditional cross-validation. For example, if 
a location has the same value predicted by different 
designs but with different prediction variances, this 
index will distinguish the two situations. 

Our results showed that the hybrid design per-
formed better in all cases except for σp

2. A clear par-
allel can be established with the lattice plus closed 
pairs designs of Diggle and Lophaven (2006), the 
EK-optimal designs of Zimmerman (2006) and the 
DEA designs of Zhu and Stein (2006). Although fol-
lowing different construction, these designs cover 
the entire study areas in study, include a set of po-
sitions at small distance and performed better than 
their random or systematic competitors. Common 
to all these studies and our work is the fact that the 
analyses were carried out in situations in which the 
model parameters were considered unknown and 
needed to be estimated from the data, which made 
it clear that both parameter estimation and predic-
tion are important for the precision of the prediction 
target. 

In conclusion, we consider that our results indi-
cate that keeping the old random design and adding 

Table 1. – Sampling statistics, estimates of model parameters and 
performance statistics by design. Sampling statistics are: n, the sam-
ple size; Y

–
, the sampling mean; s2

Y–, the variance of the sampling 
mean. Model parameters are: t2, the short distance variance or nug-
get effect; σ2 the variance of the spatial process; σ2

T the total vari-
ance; φ the correlation range parameter; and the transformation pa-
rameters λ, the Box-Cox parameter and the anisotropy parameters 
{ψA,ψR}. The relative nugget, t2

REL, and the ratio between relative 
sill and range σ2φ-1, were computed to give more insights about the 
spatial process. Performance statistics are: m̂ and σ̂m

2, the mean and 
variance of the global abundance; p̂95 and σ̂p

2, the mean and variance 
of the 95th percentile of the global abundance; π, the generalised 
cross validation index and ξ, the coverage of the prediction confi-

dence interval with nominal level of 0.95. 

	 Hybrid	 systematic

sampling statistics
n	 36	 36
Y
–
	 4.21	 4.41

s2
Y–	 0.35	 0.35

cv	 14.04	 13.41
model parameters
t2	 0.75	 0.61
σ2	 3.00	 2.59
σ2

T	 3.75	 3.20
φ	 16.64	 10.21
t2

REL	 0.20	 0.19
σ2φ-1	 0.18	 0.25
ψA	 0.00	 0.00
ψR	 1.00	 1.00
λ	 0.5	 0.5
performance statistics
m̂	 4.07	 4.20
σ̂m

2	 0.23	 0.31
cv	 11.89	 13.25
p̂95	 11.01	 10.78
σ̂p

2	 1.55	 1.43
cv	 11.31	 11.09
ξ	 0.94	 0.94
π	 16.32	 18.82
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a regular grid to build a new design can be a good 
and pragmatic solution for adjusting BTS designs to 
modern geostatistical techniques. Secondly, the per-
formance statistics described above seem to capture 
the most important features of the data with relation 
to abundance estimation, constituting good measures 
for assessing BTS performance. 
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