Partial characterization and response under hyperregulating conditions of Na+-K+ ATPase and levamisole-sensitive alkaline phosphatase activities in chela muscle of the euryhaline crab Cyrtograpsus angulatus

Authors

  • Silvina Andrea Pinoni Departamento de Biología, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata
  • Alejandra Antonia López Mañanes Departamento de Biología, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata

DOI:

https://doi.org/10.3989/scimar.2008.72n115

Keywords:

alkaline phosphatase, Na -K ATPase, crabs, Cyrtograpsus angulatus, levamisole, muscle

Abstract


The occurrence, characteristics and response to changes in environmental salinity of Na+-K+ ATPase and levamisole-sensitive alkaline phosphatase (AP) activities were studied in chela muscle of the euryhaline crab Cyrtograpsus angulatus. Chela muscle exhibited an Na+-K+ ATPase activity which was strongly dependent on ATP concentration, pH and temperature of the reaction mixture. Maximal activity was found at 1 mM ATP, 30-37°C and pH 7.4. Levamisole-sensitive AP activity was characterised at physiological pH 7.4 and at pH 8.0. I50 for levamisole-sensitive AP activity was 8.8 mM and 8.0 mM at pH 7.4 and 8.0, respectively. At both pH levels, levamisole-sensitive AP activity exhibited Michaelis-Menten kinetics (Km=3.451 mM and 6.906 mM at pH 7.4 and 8.0, respectively). Levamisole-sensitive AP activities were strongly affected by temperature, exhibiting a peak at 37ºC. In crabs acclimated to low salinity (10; hyperegulating conditions), Na+-K+ ATPase activity and levamisole-sensitive AP activity at the physiological pH were higher than in 35 psu (osmoconforming conditions). The response to low salinity suggests that both activities could be components of muscle regulatory mechanisms at the biochemical level secondary to hyperegulation of C. angulatus. The study of these activities under hyperegulating conditions contributes to a better understanding of the complexity of biochemical mechanisms underlying the adaptive process of euryhaline crabs.

Downloads

Download data is not yet available.

References

Ali, A.T., C.B. Penny, J.E. Paiker, G. Psaras, F. Ikram and N.J. Crowther. – 2006a. The effect of alkaline phosphatase inhibitors on intracellular lipid accumulation in preadipocytes isolated from human mammary tissue. Ann. Clin. Bio., 43(3): 207-213. doi:10.1258/000456306776865179

Ali, A.T., C.B. Penny, J.E. Paiker, G. Psaras, F. Ikram and N.J. Crowther. – 2006b. The relationship between alkaline phosphatase activity and intracellular lipid accumulation in murine 3T3-L1 cells and human preadipocytes. Anal. Biochem., 354(2): 247-254. doi:10.1016/j.ab.2006.04.028

Amado, E.M., C.A. Freire and M.M. Souza. – 2006. Osmoregulation and tissue water regulation in the freshwater red crab Dilocarcinus pagei (Crustacea, Decapoda), and the effect of waterborne inorganic lead. Aquat. Toxicol., 79(1): 1-8. doi:10.1016/j.aquatox.2006.04.003

Anger, K., E. Spivak, C. Bas, D. Ismael and T. Luppi. – 1994. Hatching rhythms and dispersion of decapod crustacean larvae in a brackish coastal lagoon in Argentina. Helgol. Meeresunters, 48: 445-466.doi:10.1007/BF02366257

Ásgeirsson, B., R. Hartemink and J.F. Chlebowski. – 1995. Alkaline phosphatase from Atlantic cod (Gadus morhua). Kinetic and structural properties which indicate adaptation to low temperatures. Comp. Biochem. Physiol. B, 110(2): 315-329. doi:10.1016/0305-0491(94)00171-P

Bonting, S.L. – 1970. Sodium-potassium activated adenosine triphosphatase and cation transport. In: EE Bittar (ed.), Membranes and Ion Transport Vol 1, pp. 257-363. Wiley-Interscience, London.

Boschi, E.E. – 1964. Los crustáceos decápodos brachyura del litoral bonaerense (R. Argentina). Bol. Inst. Biol. Mar. (Mar del Plata), 6: 1-99.

Bradford, M.M. – 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein-dye binding. Anal. Biochem., 72: 248-254.doi:10.1016/0003-2697(76)90527-3

Calhau, C., F. Martel, C. Hipólito-Reis and I. Azevedo. – 2000. Differences between duodenal and jejunal rat alkaline phosphatase. Clin. Biochem., 33(7): 571-577. doi:10.1016/S0009-9120(00)00171-5

Castilho, P.C., I. Martins and A. Bianchini. – 2001. Gill Na+,K+-ATPase and osmoregulation in the estuarine crab, Chasmagnathus granulata Dana, 1851 (Decapoda, Grapsidae). J. Exp. Mar. Biol. Ecol., 256: 215-227. doi:10.1016/S0022-0981(00)00315-4

Chen, H.-T., L.-P. Xie, Z.-Y. Yu, G.-R. Xu, R.-Q. Zhang. – 2005. Chemical modification studies on alkaline phosphatase from pearl oyster (Pinctada fucata): a substrate reaction course analysis and involvement of essential arginine and lysine residues at the active site. Int. J. Biochem. Cell Biol., 37: 1446-1457. doi:10.1016/j.biocel.2005.02.002

Chen, Q.-X., W. Zhang, S.-X. Yan, T. Zhang and H.-M. Zhou. – 1997. Kinetic of the thermal inactivation of alkaline phosphatase from green crab (Scylla serrata). J. Enyme. Inhibition, 12: 123-131. doi:10.3109/14756369709035813

Chen, Q.-X., W.-Z. Zheng, J.-Y. Lin, Z.-T. Cai and H.-M. Zhou. – 2000. Kinetics of inhibition of green crab (Scylla serrata) alkaline phosphatase by vanadate. Biochemistry (Mosc), 65(9): 1105-1110.

Clausen, T. – 1996. Long- and short-term regulation of the Na+-K+ Pump in skeletal muscle. News Physiol. Sci., 11: 24-30.

Cooper, A.R. and S. Morris. – 1997. Osmotic and ionic regulation by Leptograpsus variegatus during hyposaline exposure and in response to emersion. J. Exp. Mar. Biol. Ecol., 214: 263-282. doi:10.1016/S0022-0981(96)02778-5

Corotto, F.S. and C.W. Holliday. – 1996. Branchial Na, K- ATPase and osmoregulation in the purple shore crab, (Hemigrapsus nudus). Comp. Biochem. Physiol. A, 113(4): 361-368. doi:10.1016/0300-9629(95)02076-4

D’Orazio S.E. and C.W. Holliday. – 1985. Gill Na,K- ATPase and osmoregulation in the sand fiddler crab, (Uca pugilator). Physiol. Zool., 58(4): 364-373.

Dore, B., D. Donna, G.E. Andreoletti, L. Savardi and G.A. Lodi. – 2000. Specific alkaline phosphatase of amphibia integument levamisole effect on short circuit current (SCC). Boll. Soc. Ital. Biol. Sper., 76(7-8): 45-50.

Funk, C.J. – 2001. Alkaline phosphatase activity in whitefly salivary glands and saliva. Arch. Insect Biochem. Physiol., 46: 165-174. doi:10.1002/arch.1026

Genovese, G., C.G. Luchetti and C.M. Luquet. – 2004. Na+/K+-ATPase activity and gill ultrastructure in the hyper-hypo-regulating crab Chasmagnathus granulatus acclimated to dilute, normal and concentrated seawater. Mar. Biol., 144: 111-118. doi:10.1007/s00227-003-1169-6

Hessle, L., K. Johnson, H.C. Anderson, S. Narisawa, A. Sali, J. Goding, R. Terkeltaub and J.L. Millán. – 2002. Tissue-nonspecific alkaline phosphatase and plasma cell membrane glycoprotein-1 are central antagonistic regulators of bone mineralization. Proc. Natl. Acad. Sci. USA, 99(14): 9445-9449. doi:10.1073/pnas.142063399

Holt, S.M. and S.T. Kinsey. – 2002. Osmotic effects on arginine kinase function in living muscle of the blue crab Callinectes sapidus. J. Exp. Biol., 205: 1775-1785.

Itoh, M., Y. Kanamori, M. Takao and M. Eguchi. – 1999. Cloning of soluble alkaline phosphatase cDNA and molecular basis of the polymorphic nature in alkaline phosphatase isozymes of Bombyx mori midgut. Insect Biochem. Mol. Biol., 29: 121–129. doi:10.1016/S0965-1748(98)00115-5

Kirschner, L.B. – 1991. Water and ions. In: L Prosser (ed.), Environmental and Metabolic Animal Physiology, pp. 13-107. Wiley-Liss, London.

Kirschner, L.B. – 2004. The mechanism of sodium chloride uptake in hyperregulating aquatic animals. J. Exp. Biol., 207: 1439-1452. doi:10.1242/jeb.00907

Lang, M.A. and H. Gainer. – 1969. Iso-osmotic intracellular regulation as a mechanism of volume control in crab muscle fibers. Comp. Biochem. Physiol., 30: 445-456. doi:10.1016/0010-406X(69)92014-3

López Mañanes, A.A., C.D. Meligeni and A.L. Goldemberg. – 2002. Response to environmental salinity of Na+- K+ ATPase activity in individual gills of the euryhaline crab Cyrtograpsus angulatus. J. Exp. Mar. Biol. Ecol., 274: 75-85. doi:10.1016/S0022-0981(02)00166-1

Lovett, D., D. Towle and J. Faris. – 1994. Salinity-sensitive alkaline phosphatase activity in gills of the blue crab, Callinectes sapidus Rathbun. Comp. Biochem. Physiol. B, 109(1): 163-173. doi:10.1016/0305-0491(94)90153-8

Lucu, C. and D.W. Towle. – 2003. Na+ + K+-ATPase in gills of aquatic crustacea. Comp. Biochem. Physiol. A, 135(2): 195-214.

Luvizotto-Santos, R., J. Lee, Z. Branco, A. Bianchini and L. Nery. – 2003. Lipids as energy source during salinity acclimation in the euryhaline crab Chasmagnathus granulata Dana, 1851 (Crustacea-Grapsidae). J. Exp. Zool. A, 295(2): 200-205. doi:10.1002/jez.a.10219

MacDonald, J.A. and K.B. Storey. – 1999. Regulation of ground squirrel Na+K+-ATPase activity by reversible phosphorylation during hibernation. Biochem. Biophys. Res. Commun., 254: 424-429. doi:10.1006/bbrc.1998.9960

Masui, D.C., R.P.M. Furriel, J.C. McNamara, F.L.M. Mantelatto, F.A. Leone. – 2002. Modulation by ammonium ions of gill microsomal (Na+,K+)-ATPase in the crab Callinectes danae: a possible mechanism for regulation of ammonia excretion. Comp. Biochem. Physiol. C, 132: 471-482.

Mazorra, M.T., J.A. Rubio and J. Blasco – 2002. Acid and alkaline phosphatase activities in the clam Scrobicularia plana: kinetic characteristics and effects of heavy metals. Comp. Biochem. Physiol. B, 131: 241-249. doi:10.1016/S1096-4959(01)00502-4

McCarter, F.D., J.H. James, F.A. Luchette, L. Wan, L. Friend, J.-K. King, J. Evans, M. George and J. Fischer. – 2001. Adrenergic blockade reduces skeletal muscle glycolysis and Na+,K+-ATPase activity during hemorrhage. J. Surgical. Res., 99: 235-244. doi:10.1006/jsre.2001.6175

Nakano, T., T. Shimanuki, M. Matsushita, I. Koyama, I. Inoue, S. Katayama, D.H. Alpers and T. Komoda. – 2006. Involvement of intestinal alkaline phosphatase in serum apolipoprotein B-48 level and its association with ABO and secretor blood group types. Biochim. Biophys. Res. Commun., 341: 33-38. doi:10.1016/j.bbrc.2005.12.145

Neufeld, G.J., C.W. Holliday and J.B. Pritchard. – 1980. Salinity adaptation of gill Na+/ K+- ATPase activity in the blue crab (Callinectes sapidus). J. Exp. Zool., 211: 215-224 doi:10.1002/jez.1402110210

Olsen, R.L., K. Øvervø, B. Myrnes. – 1991. Alkaline phosphatase from the hepatopancreas of shrimp (Pandalus borealis): a dimeric enzyme with catalytically active subunits. Comp. Biochem. Physiol. B, 99: 755-761. doi:10.1016/0305-0491(91)90139-5

Park, Y.-D., Y. Yang, Q.-X. Chen, H.-N. Lin, Q. Liu and H.-M. Zhou. – 2001. Kinetics of complexing activation by the magnesium ions on the activity of green crab (Scylla serrata) alkaline phosphatase. Biochem. Cell Biol., 79: 765-772. doi:10.1139/bcb-79-6-765

Pinoni, S.A. and A.A. López Mañanes. – 2004. Alkaline phosphatase activity sensitive to environmental salinity and dopamine in muscle of the euryhaline crab Cyrtograpsus angulatus. J. Exp. Mar. Biol. Ecol., 307: 35-46. doi:10.1016/j.jembe.2004.01.018

Pinoni, S.A., A.L. Goldemberg and A.A. López Mañanes. – 2005. Alkaline phosphatase activities in muscle of the euryhaline crab Chasmagnathus granulatus: Response to environmental salinity. J. Exp. Mar. Biol. Ecol., 326: 217-226. doi:10.1016/j.jembe.2005.06.004

Schein, V., Y. Wache, R. Etges, L.C. Kucharski, A. van Wormhoudt and R. Da Silva. – 2004. Effect of hyperosmotic shock on phosphoenolpyruvate carboxykinase gene expression and gluconeogenic activity in the crab muscle. FEBS Letters, 561: 202-206. doi:10.1016/S0014-5793(04)00162-0

Spivak, E., K. Anger, T. Luppi, C. Bas and D. Ismael. – 1994. Distribution and habitat preferences of two grapsid crab species in Mar Chiquita Lagoon (Province of Buenos Aires, Argentina). Helgol. Meeresunters., 48: 59-78. doi:10.1007/BF02366202

Towle, D.W. – 1997. Molecular approaches to understanding salinity adaptation of estuarine animals. Am. Zool., 37: 575-584.

Van Belle, H. – 1976. Alkaline phosphatase. I. Kinetics and inhibition by levamisole of purified isoenzymes from humans. Clin. Chem., 22(7): 972-6.

Venosa, R. – 1991. Hyposmotic stimulation of active Na+ transport in frog muscle: Apparent upregulation of Na+ pumps. J. Membrana Biol., 120: 97-104. doi:10.1007/BF01872392

Venosa, R. – 2003. Hypotonic stimulation of the Na+ active transport in frog skeletal muscle: role of the cytoskeleton. J. Physiol., 548(2): 451-459. doi:10.1113/jphysiol.2002.036830

Whiteley, N.M., J.L. Scott, S.J. Breeze and L. McCann. – 2001. Effects of water salinity on acid-base balance in decapod crustaceans. J. Exp. Biol., 204: 1003-1011.

Xiao, R., L.-P. Xie, J.-Y. Lin, C.-H. Li, Q.-X. Chen, H.-M. Zhou and R.-Q. Zhang. – 2002. Purification and enzymatic characterization of alkaline phosphatase from Pinctada fucata. J. Mol. Catalysis B: Enzymatic, 17(2): 65-74.

Downloads

Published

2008-03-30

How to Cite

1.
Andrea Pinoni S, López Mañanes AA. Partial characterization and response under hyperregulating conditions of Na+-K+ ATPase and levamisole-sensitive alkaline phosphatase activities in chela muscle of the euryhaline crab Cyrtograpsus angulatus. Sci. mar. [Internet]. 2008Mar.30 [cited 2024Mar.28];72(1):15-24. Available from: https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/727

Issue

Section

Articles