Free-diving underwater fish photography contests: a complementary tool for assessing littoral fish communities

Authors

DOI:

https://doi.org/10.3989/scimar.04781.14A

Keywords:

littoral fish assemblages, species richness, diversity, photography contests, Mediterranean Sea

Abstract


Characterizing fish communities must be a priority to safeguard resources and determine critical changes. Here, species richness and the spatial and temporal evolution in the structure of fish assemblages were analysed based on photos taken in underwater free-diving contests. A total of 29 contests held from 2008 to 2015 at four different locations along the northeastern Spanish coast, including a marine protected area were analysed. Contests reward the number of species per participant and photographic quality. Species image frequency from each tournament were standardized to catch image rate. A total of 88 taxa were recorded, including 32 cryptobenthic species, the highest number recorded in the Mediterranean littoral system so far. Cluster analyses yielded four major groups. Catch image rates in the marine protected area were significantly higher for seven species of high commercial interest and for two big labrids of recreational interest, including an endangered species (Labrus viridis). Overall, the study showed that photographic free-diving contest data are a potential tool for determining species richness in littoral systems since contest rules promote competition between participants to obtain maximum fish diversity. We believe that this type of cost-effective data can be applied worldwide as a complementary way of monitoring littoral fish assemblage.

Downloads

Download data is not yet available.

References

Ackerman J.L., Bellwood D.R. 2000. Reef fish assemblages: a re-evaluation using enclosed rotenone stations. Mar. Ecol. Prog. Ser. 206: 227-237. https://doi.org/10.3354/meps206227

Ashworth J., Ormond R. 2005. Effects of fishing pressure and trophic group on abundance and spillover across boundaries of a no-take zone. Biol. Conserv. 12: 333-344. https://doi.org/10.1016/j.biocon.2004.05.006

Azzurro E., Moschella P., Maynou F. 2011. Tracking Signals of Change in Mediterranean Fish Diversity Based on Local Ecological Knowledge. PLoS ONE 6: e24885. https://doi.org/10.1371/journal.pone.0024885 PMid:21966376 PMCid:PMC3178559

Bell J.D. 1983. Effects of depth and marine reserve fishing restrictions on the structure of a rocky reef fish assemblage in the north-western Mediterranean Sea. J. Appl. Ecol. 20: 357-369. https://doi.org/10.2307/2403513

Benedetti-Cecchi L., Pannacciulli F., Bulleri F., et al. 2001. Predicting the consequences of anthropogenic disturbance: large-scale effects of loss of canopy algae on rocky shores. Mar. Ecol. Prog. Ser. 214: 137-150. https://doi.org/10.3354/meps214137

Bianchi C.N., Morri C. 2000. Marine biodiversity of the Mediterranean Sea: situation, problems and prospects for future research. Mar. Pollut. Bull. 40: 367-376. https://doi.org/10.1016/S0025-326X(00)00027-8

Boada J., Sagué O., Gordoa A. 2017. Spearfishing data reveals the littoral fish communities' association to coastal configuration. Estuar. Coast. Shelf Sci. 199: 152-160. https://doi.org/10.1016/j.ecss.2017.10.007

Boudouresque C., Cadiou G., Le Diréac'h L. 2005. Marine protected areas: a tool for coastal areas management. Nato Science Series IV: Earth and Environmental Sciences. Springer Netherlands, pp. 29-52.

Brock R.E. 1982. A critique of the visual census method for assessing coral reef fish populations. Bull. Mar. Sci. 32: 269-276.

Bussotti S., Di Franco A., Francour P., et al. 2015. Fish assemblages of Mediterranean marine caves. PloS ONE 10: e0122632. https://doi.org/10.1371/journal.pone.0122632 PMid:25875504 PMCid:PMC4395268

Cappo M., Speare P., De'ath G. 2004. Comparison of baited remote underwater video stations (BRUVS) and prawn (shrimp) trawls for assessments of fish biodiversity in inter-reefal areas of the Great Barrier Reef Marine Park. J. Exp. Mar. Biol. Ecol. 302: 123-152. https://doi.org/10.1016/j.jembe.2003.10.006

Claudet J., Fraschetti S. 2010. Human-driven impacts on marine habitats: a regional meta-analysis in the Mediterranean Sea. Biol. Conserv. 143: 2195-2206. https://doi.org/10.1016/j.biocon.2010.06.004

Claudet J., Pelletier D., Jouvenel J.Y., et al. 2006. Assessing the effects of marine protected area (MPA) on a reef fish assemblage in a northwestern Mediterranean marine reserve: Identifying community-based indicators. Biol. Conserv. 130: 349-369. https://doi.org/10.1016/j.biocon.2005.12.030

Coll J., Linde M., García-Rubies A., et al. 2004. Spear fishing in the Balearic Islands (west central Mediterranean): species affected and catch evolution during the period 1975-2001. Fish. Res. 70: 97-111. https://doi.org/10.1016/j.fishres.2004.05.004

Coll J., Garcia-Rubies A., Morey G., et al. 2012. The carrying capacity and the effects of protection level in three marine protected areas in the Balearic Islands (NW Mediterranean). Sci. Mar. 76: 809-826.

Connell S.D., Samoilys M.A., Lincoln Smith M.P., et al. 1998. Comparisons of abundance of coral-reef fish: Catch and effort surveys vs visual census. Aust. J. Ecol. 23: 579-586. https://doi.org/10.1111/j.1442-9993.1998.tb00768.x

Consoli P., Esposito V., Battaglia P., et al. 2016. Fish Distribution and Habitat Complexity on Banks of the Strait of Sicily (Central Mediterranean Sea) from Remotely-Operated Vehicle (ROV) Explorations. PloS ONE 11: e0167809. https://doi.org/10.1371/journal.pone.0167809 PMid:27936221 PMCid:PMC5147987

Costanza R., de Groot R., Sutton P., et al. 2014. Changes in the global value of ecosystem services. Global Environ. Chang. 26: 152-158. https://doi.org/10.1016/j.gloenvcha.2014.04.002

Costello M.J., Coll M., Danovaro R., et al. 2010. A census of marine biodiversity knowledge, resources, and future challenges. PloS ONE 5: e12110. https://doi.org/10.1371/journal.pone.0012110 PMid:20689850 PMCid:PMC2914025

Dufour F., Guidetti P., Francour P. 2007. Comparison of fish inventory in Mediterranean marine protected areas: Influence of surface area and age. Cybium 31: 19-31

Elliott M., Hemingway K., Marshall S., et al. 2002. Data quality analysis and interpretation. In: Elliott M., Hemmingway K.L. (eds), Fishes in Estuaries. Blackwell Science, Oxford, pp. 510–554. https://doi.org/10.1002/9780470995228.ch9

Fairclough D., Brown J., Carlish B., et al. 2014. Breathing life into fisheries stock assessments with citizen science. Sci. Rep. 4: 7249. https://doi.org/10.1038/srep07249 PMid:25431103 PMCid:PMC5384193

Franco A., Pérez-Ruzafa A., Drouineau H., et al. 2012. Assessment of fish assemblages in coastal lagoon habitats: Effect of sampling method. Estuar. Coast. Shelf Sci. 112: 115-125. https://doi.org/10.1016/j.ecss.2011.08.015

Francour P. 1994. Pluriannual analysis of the reserve effect on ichthyofauna in the Scandola natural reserve (Corsica, Northwestern Mediterranean). Oceanol. Acta 17: 309-317.

Francour P. 1999. A critical review of adult and juvenile fish sampling techniques in Posidonia oceanica seagrass beds. Nat. Sicil. 23: 33-57.

Fraschetti S., Guarnieri G., Bevilacqua S., et al. 2011. Conservation of Mediterranean habitats and biodiversity countdowns: what information do we really need? Aquat. Conserv. 21: 299-306. https://doi.org/10.1002/aqc.1185

García-Rubies A., Zabala M. 1990. Effects of total fishing prohibition on the rocky fish assemblages of Medes Islands marine reserve (NW Mediterranean). Sci. Mar. 54: 317-328.

García-Rubies A., Hereu B., Zabala M. 2013. Long-Term Recovery Patterns and Limited Spillover of Large Predatory Fish in a Mediterranean MPA. PloS ONE 8: e73922. Glavi?i? I., Paliska D., Soldo A., et al. 2016. A quantitative assessment of the cryptobenthic fish assemblage at deep littoral cliffs in the Mediterranean. Sci. Mar. 80: 329-337. https://doi.org/10.3989/scimar.04307.23A

Gledhill C.T., Lyczkowski-Shultz J., Rademacher K., et al. 1996. Evaluation of video and acoustic index methods for assessing reef-fish populations. ICES J. Mar. Sci. 53: 483-485. https://doi.org/10.1006/jmsc.1996.0069

Gordoa A. 2009. Characterization of the infralittoral system along the north-east Spanish coast based on sport shore-based fishing tournament catches. Estuar. Coast. Shelf Sci. 82: 41-49. https://doi.org/10.1016/j.ecss.2008.11.024

Guidetti P., Fanelli G., Fraschetti S., et al. 2002. Coastal fish indicate human-induced changes in the Mediterranean littoral. Mar. Environ. Res. 53: 77-94. https://doi.org/10.1016/S0141-1136(01)00111-8

Guilhaumon F., Albouy C., Claudet J., et al. 2015. Representing taxonomic, phylogenetic and functional diversity: new challenges for Mediterranean marine protected areas. Divers. Distrib. 21: 175-187. https://doi.org/10.1111/ddi.12280

Halpern B.S., Warner R.R. 2003. Review paper. Matching marine reserve design to reserve objectives. Proc. R. Soc. B 270: 1871-1878. https://doi.org/10.1098/rspb.2003.2405 PMid:14561299 PMCid:PMC1691459

Harmelin-Vivien M., Harmelin J., Chauvet C., et al. 1985. The underwater observation of fish communities and fish populations. Methods and problems. Rev. Ecol. Terr. Vie 40: 466-539.

Harmelin-Vivien M., Le Diréach L., Bayle-Sempere J., et al. 2008. Gradients of abundance and biomass across reserve boundaries in six Mediterranean marine protected areas: Evidence of fish spillover? Biol. Conserv. 141: 1829-1839. https://doi.org/10.1016/j.biocon.2008.04.029

Holmlund C.M., Hammer M. 1999. Ecosystem services generated by fish populations. Ecol. Econ. 29: 253-268. https://doi.org/10.1016/S0921-8009(99)00015-4

Hutchings J.A., Baum J.K. 2005. Measuring marine fish biodiversity: temporal changes in abundance, life history and demography. Philos. Trans. R. Soc. B 360: 315-338. https://doi.org/10.1098/rstb.2004.1586 PMid:15814348 PMCid:PMC1569453

Illich I.P., Kotrschal K. 1990. Depth distribution and abundance of Northern Adriatic littoral rocky reef blennioid fishes (Blennidae and Trypterygion). Mar. Ecol. 11: 277-289. https://doi.org/10.1111/j.1439-0485.1990.tb00384.x

Kotrschal K. 1988. Blennies and endolithic bivalves: differential utilization of shelter in Adriatic Blenniidae (Pisces: Teleostei). Mar. Ecol. 9: 253-269. https://doi.org/10.1111/j.1439-0485.1988.tb00332.x

Kova?i? M., Patzner R.A., Schliewen U. 2012. A first quantitative assessment of the ecology of cryptobenthic fishes in the Mediterranean Sea. Mar. Biol. 159: 2731-2742.

Kova?i? M., Sanda R. 2016. A new species of Gobius (Perciformes: Gobiidae) from the Mediterranean Sea and the redescription of Gobius bucchichi. J. Fish Biol. 88: 1104-1124.

La Mesa G., Vacchi M. 1999. An analysis of the coastal fish assemblage of the Ustica Island Marine Reserve (Mediterranean Sea). Mar. Ecol. 20: 147-165. https://doi.org/10.1046/j.1439-0485.1999.00067.x

La Mesa G., Micalizzi M., Giaccone G., et al. 2004. Cryptobenthic fishes of the Ciclopi Islands marine reserve (central Mediterranean Sea): assemblage composition, structure and relations with habitat features. Mar. Biol. 145: 233-242. https://doi.org/10.1007/s00227-004-1315-9

La Mesa G., Di Muccio S., Vacchi M. 2006. Structure of a Mediterranean cryptobenthic fish community and its relationships with habitat characteristics. Mar. Biol. 149: 149-167. https://doi.org/10.1007/s00227-005-0194-z

La Mesa G., Molinari A., Tunesi L. 2010. Coastal fish assemblage characterisation to support the zoning of a new Marine Protected Area in north-western Mediterranean. Ital. J. Zool. 77: 197-210. https://doi.org/10.1080/11250000903413668

Lester S.E., Halpern B.S., Grorud-Colvert K., et al. 2009. Biological effects within no-take marine reserves: a global synthesis. Mar. Ecol. Prog. Ser. 384: 33-46. https://doi.org/10.3354/meps08029

Lincoln Smith M.P. 1989. Improving multispecies rocky reef fish censuses by counting different groups of species using different procedures. Environ. Biol. Fish. 26: 29-37. https://doi.org/10.1007/BF00002473

Lotze H.K., Lenihan H.S., Bourque B.J., et al. 2006. Depletion, degradation, and recovery potential of estuaries and coastal seas. Science 312: 1806-1809. https://doi.org/10.1126/science.1128035 PMid:16794081

MacNeil M.A., Tyler E.H., Fonnesbeck C.J., et al. 2008. Accounting for detectability in reef-fish biodiversity estimates. Mar. Ecol. Prog. Ser. 367: 249-260. https://doi.org/10.3354/meps07580

Macpherson E. 1994. Substrate utilization in a Mediterranean littoral fish community. Mar. Ecol. Prog. Ser. 114: 211-218. https://doi.org/10.3354/meps114211

Mallet D., Pelletier D. 2014. Underwater video techniques for observing coastal marine biodiversity: a review of sixty years of publications (1952-2012). Fish. Res. 154: 44-62. https://doi.org/10.1016/j.fishres.2014.01.019

Myers R.A., Baum J.K., Shepherd T.D., et al. 2007. Cascading effects of the loss of apex predatory sharks from a coastal ocean. Science 315: 1846-1850. https://doi.org/10.1126/science.1138657 PMid:17395829

Ordines F., Massuti E. 2009. Relationships between macro-epibenthic communities and fish on the shelf grounds of the western Mediterranean. Aquat. Conserv. 19: 370-383. https://doi.org/10.1002/aqc.969

Patzner R.A. 1999. Habitat utilization and depth distribution of small cryptobenthic fishes (Blenniidae, Gobiesocidae, Gobiidae, Tripterygiidae) in Ibiza (western Mediterranean Sea). Environ. Biol. Fish. 55: 207-214. https://doi.org/10.1023/A:1007535808710

Petrakis G., Stergiou K. 1995. Weight-length relationships for 33 fish species in Greek waters. Fish. Res. 21: 465-469. https://doi.org/10.1016/0165-7836(94)00294-7

Pickaver A.H. 2010. 10 Integrated coastal zone management progress and sustainability indicators. In: Telford T. (eds), Integrated Coastal Zone Management. Wiley-Blackwell, Oxford, UK. pp 226-250. https://doi.org/10.1680/czm.35164.0010

Prato G, Thiriet P., Di Franco A., et al. 2017. Enhancing fish Underwater Visual Census to move forward assessment of fish assemblages: An application in three Mediterranean Marine Protected Areas. PLoS ONE 12: e0178511. https://doi.org/10.1371/journal.pone.0178511 PMid:28594836 PMCid:PMC5464568

R Development Core Team. 2013. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org

Rousseeuw P.J. 1987. Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 20: 53-65. https://doi.org/10.1016/0377-0427(87)90125-7

Sahyoun R., Bussotti S., Di Franco A., et al. 2013. Protection effects on Mediterranean fish assemblages associated with different rocky habitats. J. Mar. Biol. Assoc. UK 93: 425-435. https://doi.org/10.1017/S0025315412000975

Sale P.F., Douglas W.A. 1981. Precision and accuracy of visual census technique for fish assemblages on coral patch reefs. Environ. Biol. Fish. 6: 333-339. https://doi.org/10.1007/BF00005761

Sano M. 2000. Stability of reef fish assemblages: responses to coral recovery after catastrophic predation by Acanthaster planci. Mar. Ecol. Prog. Ser. 198: 121-130. https://doi.org/10.3354/meps198121

Schindler D.E., Carpenter S.R., Cole J.J., et al. 1997. Influence of food web structure on carbon exchange between lakes and the atmosphere. Science 277: 248-251. https://doi.org/10.1126/science.277.5323.248

Seytre C., Francour P. 2008. Is the Cape Roux marine protected area (Saint-Raphaël, Mediterranean Sea) an efficient tool to sustain artisanal fisheries? First indications from visual censuses and trammel net sampling. Aquat. Living Resour. 21: 297-305. https://doi.org/10.1051/alr:2008043

Sheldon A.L. 1988. Conservation of stream fishes: patterns of diversity, rarity, and risk. Cons. Biol. 2: 149-156. https://doi.org/10.1111/j.1523-1739.1988.tb00166.x

Smith M.L. 1988. Effects of observer swimming speed on sample counts of temperate rocky reef fish assemblages. Mar. Ecol. Prog. Ser. 43: 223-231. https://doi.org/10.3354/meps043223

Smith-Vaniz W.F., Jelks H.L., Rocha L.A. 2006. Relevance of cryptic fishes in biodiversity assessments: a case study at Buck Island Reef National Monument, St. Croix. Bull. Mar. Sci. 79: 17-48.

Stobart B., García-Charton J.A., Espejo C., et al. 2007. A baited underwater video technique to assess shallow-water Mediterranean fish assemblages: Methodological evaluation. J. Exp. Mar. Biol. Ecol. 345: 158-174. https://doi.org/10.1016/j.jembe.2007.02.009

Støttrup J.G. 2009. The challenge towards sustainable utilisation of coastal fish resources. In: Moksness E., Dahl E., Støttrup J. (eds), Integrated Coastal Zone Management. John Wiley & Sons, pp. 25-34. https://doi.org/10.1002/9781444316285.ch2

Tessier E., Chabanet P. 2006. Using video techniques for estimating fish post-larvae abundance after mass settlement on artificial reefs. Proc. 10th Intl. Coral Reef Symp., Okinawa, Japan.

Tessier A., Pastor J., Francour P., et al. 2013. Video transects as a complement to underwater visual census to study reserve effect on fish assemblages. Aquat. Biol. 18: 229-241. https://doi.org/10.3354/ab00506

Tiralongo F., Tibullo D., Brundo M.V., et al. 2016. Habitat preference of combtooth blennies (Actinopterygii: Perciformes: Blenniidae) in very shallow waters of the Ionian Sea, South-Eastern Sicily, Italy. Acta Ichthyol. Piscat. 46: 65-75. https://doi.org/10.3750/AIP2016.46.2.02

Thiriet P.D., Di Franco A., Cheminée A., et al. 2016. Abundance and Diversity of Crypto-and Necto-Benthic Coastal Fish Are Higher in Marine Forests than in Structurally Less Complex Macroalgal Assemblages. PloS ONE 11: e0164121. https://doi.org/10.1371/journal.pone.0164121 PMid:27760168 PMCid:PMC5070871

Vanni M.J. 2002. Nutrient cycling by animals in freshwater ecosystems. Annu. Rev. Ecol. Syst. 33: 341-370. https://doi.org/10.1146/annurev.ecolsys.33.010802.150519

Willis T.J. 2001. Visual census methods underestimate density and diversity of cryptic reef fishes. J. Fish Biol. 59: 1408-1411. https://doi.org/10.1111/j.1095-8649.2001.tb00202.x

Willis T.J., Anderson M.J. 2003. Structure of cryptic reef fish assemblages: relationships with habitat characteristics and predator density. Mar. Ecol. Prog. Ser. 257: 209-221. https://doi.org/10.3354/meps257209

Willis T.J., Babcock R.C. 2000. A baited underwater video system for the determination of relative density of carnivorous reef fish. Mar. Freshwater Res. 51: 755-763. https://doi.org/10.1071/MF00010

Willis T.J., Millar R.B., Babcock R.C. 2000. Detection of spatial variability in relative density of fishes: comparison of visual census, angling, and baited underwater video. Mar. Ecol. Prog. Ser. 198: 249-260. https://doi.org/10.3354/meps198249

Winer B.J., Broan D.R., Michels K.M. 1991. Statistical Principles in Experimental Design. McGraw-Hill, New York.

Zander C., Heymer A. 1970. Tripterygion tripteronotus (Risso, 1810) and Tripterygion xanthosoma n sp., an ecological speciation (Pisces, Teleostei). Vie Milieu 21: 363-394.

Published

2018-06-30

How to Cite

1.
Gordoa A, Boada J, García-Rubies A, Sagué O. Free-diving underwater fish photography contests: a complementary tool for assessing littoral fish communities. Sci. mar. [Internet]. 2018Jun.30 [cited 2024Mar.29];82(2):95-106. Available from: https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1758

Issue

Section

Articles

Most read articles by the same author(s)