Feeding habits and dietary overlap during the larval development of two sandperches (Pisces: Pinguipedidae)

Authors

DOI:

https://doi.org/10.3989/scimar.04544.06A

Keywords:

Prolatilus jugularis, Pinguipes chilensis, sandperch, feeding, resource partitioning, Chile

Abstract


Two species of sandperch (Pinguipedidae: Perciformes), Prolatilus jugularis and Pinguipes chilensis, inhabit the coastal waters of the South Pacific. Both species have pelagic larvae with similar morphology, but their diet preferences are unknown. Diet composition, feeding success, trophic niche breadth and dietary overlap were described during larval stages for both species. In the austral spring, larval P. jugularis (3.83-10.80 mm standard length [SL]) and P. chilensis (3.49-7.71 mm SL) during their first month of life had a high feeding incidence ( > 70%) and fed mostly on copepod nauplii ( > 80% IRI), Rhincalanus nasutus metanauplii and Paracalanus indicus copepodites. The number of prey ingested was low (mean: 4-5 prey per gut) and independent of larval size; total prey volume and maximum prey width increased as larvae grew. Mouth opening and ingested prey were greater in larval P. jugularis than in P. chilensis, leading to significant differences in prey composition among larval species, in terms of prey number and volume. Pearre’s trophic niche breadth was narrow for both species (0.159±0.07 for P. jugularis; 0.156±0.03 for P. chilensis) and independent of larval size. Dietary overlap was high inter- and intra-species in larvae with a mouth gape < 900 μm. These results suggest the relative importance of both larval species as primary consumers of the pelagic web in nearshore environments of rocky temperate areas.

Downloads

Download data is not yet available.

References

Anderson M.J., Crist T.O., Chase J.M., et al. 2011. Navigating the multiple meanings of B diversity: a roadmap for the practicing ecologist. Ecol. Lett. 14: 19-28. https://doi.org/10.1111/j.1461-0248.2010.01552.x PMid:21070562

Aravena G., Broitman B., Stenseth N.C. 2014. Twelve years of change in coastal upwelling along the central-northern coast of Chile: Spatially heterogeneous responses to climatic variability. PLoS One 9: e90276. https://doi.org/10.1371/journal.pone.0090276 PMid:24587310 PMCid:PMC3938675

Arcos D.F., Cubillos L.A., Nú-ez S. 2001. The jack mackerel fishery and El Ni-o effects off Chile. Prog. Oceanogr. 49: 597-617. https://doi.org/10.1016/S0079-6611(01)00043-X

Bakun A. 2010. Linking climate to population variability in marine ecosystems characterized by non-simple dynamics: Conceptual templates and schematic constructs. J. Mar. Sys. 79: 361-373. https://doi.org/10.1016/j.jmarsys.2008.12.008

Balbontín F., Llanos A., Valenzuela V. 1997. Trophic overlap and feeding incidence in fish larvae from central Chile. Rev. Chil. Hist. Nat. 70: 381-390.

Bernal-Durán V., Landaeta M.F. 2017. Feeding variations and shape changes of a temperate reef clingfish during its early ontogeny. Sci. Mar. 81(2): Bogacka-Kapusta E., Kapusta A. 2014. Does diet overlap among larval and 0+ fish species decrease with ontogenetic development? Arch. Pol. Fish 22: 221-228.

Cass-Calay S.L. 2003. The feeding ecology of larval Pacific hake (Merluccius productus) in the California Current region: an updated approach using a combined OPC/MOCNESS to estimate prey biovolume. Fish. Oceanogr. 12: 34-48. https://doi.org/10.1046/j.1365-2419.2003.00206.x

Castro L.R., Salinas G.R., Hernández E.H. 2000. Environmental influences on winter spawning of the anchoveta Engraulis ringens off central Chile. Mar. Ecol. Prog. Ser. 197: 247-258. https://doi.org/10.3354/meps197247

Corrêa C.E., Hahn N.S., Delariva R.L. 2009. Extreme trophic segregation between sympatric fish species: the case of small sized body Aphyocharax in the Brazilian Pantanal. Hydrobiologia 635: 57-65. https://doi.org/10.1007/s10750-009-9861-2

Cortés E. 1997. A critical review of methods of studying fish feeding based on analysis of stomach contents: application to elasmobranch fishes. Can. J. Fish Aquat. Sci. 54: 726-738. https://doi.org/10.1139/f96-316

Costalago D., Garrido S., Palomera I. 2015. Comparison of the feeding apparatus and diet of European sardines Sardina pilchardus of Atlantic and Mediterranean waters: ecological implications. J. Fish. Biol. 86: 1348-1362. https://doi.org/10.1111/jfb.12645 PMid:25846858

Cushing D.H. 1990. Plankton production and year-class strength in fish populations: an update of the match/mismatch hypothesis. Adv. Mar. Biol. 26: 249-293. https://doi.org/10.1016/S0065-2881(08)60202-3

Dobroslavi? T., Zlatovi? A., Bartulovi? V., et al. 2013. Diet overlap of juvenile salema (Sarpa salpa), bogue (Boops boops) and common two-banded sea bream (Diplodus vulgaris) in the south-eastern Adriatic. J. Appl. Ichthyol. 29: 181-185.

Frederich B., Adriaens D., Vandewalle P. 2008. Ontogenetic shape changes in Pomacentridae (Teleostei, Perciformes) and their relationships with feeding strategies: a geometric morphometric approach. Biol. J. Linn. Soc. 95: 92-105. https://doi.org/10.1111/j.1095-8312.2008.01003.x

Gaughan D.J., Potter I.C. 1997. Analysis of diet and feeding strategies within an assemblage of estuarine larval fish and an objective assessment of dietary niche overlap. Fish. Bull. 95: 722-731.

Genin A., Green C., Haury L., et al. 2004. Zooplankton patchy dynamics: daily gap formation over abrupt topography. Deep Sea Res. I 41: 941-951. https://doi.org/10.1016/0967-0637(94)90085-X

Giesecke R., González H.E. 2008. Reproduction and feeding of Sagitta enflata in the Humboldt Current system of Chile. ICES J. Mar. Sci. 65: 361-370. https://doi.org/10.1093/icesjms/fsn030

Gisbert E., Cardona L., Castelló F. 1996. Resource partitioning among planktivorous fish larvae and fry in a Mediterranean coastal lagoon. Estuar. Coast Shelf Sci. 43: 723-735. https://doi.org/10.1006/ecss.1996.0099

González P., Oyarzún C. 2003. Diet of the Chilean sandperch, Pinguipes chilensis (Perciformes, Pinguipedidae) in southern Chile. J. Appl. Ichthyol. 10: 371-375. https://doi.org/10.1111/j.1439-0426.2003.00444.x

Hambright K.D. 1991. Experimental analysis of prey selection by largemouth bass: role of predator mouth width and prey body depth. Trans. Am. Fish. Soc. 120: 500-508. https://doi.org/10.1577/1548-8659(1991)120<0500:EAOPSB>2.3.CO;2

Hammer Ø., Harper D.A.T., Ryan P.D. 2001. Past. Paleontological Statistics Software Package for Education and Data Analysis. Paleontol. Electron. 4: 1-9.

Henríquez L.A., Daneri G., Mu-oz C.A., et al. 2007. Primary production and phytoplanktonic biomass in shallow marine environments of central Chile: Effect of coastal geomorphology. Estuar. Coast Shelf Sci. 73: 137-147. https://doi.org/10.1016/j.ecss.2006.12.013

Hernández-Miranda E., Palma A.T., Ojeda F.P. 2003. Larval fish assemblages in nearshore coastal waters off central Chile: temporal and spatial patterns. Estuar. Coast Shelf Sci. 56: 1075-1092. https://doi.org/10.1016/S0272-7714(02)00308-6

Hidalgo P., Escribano R. 2007. Coupling of life cycles of the copepods Calanus chilensis and Centropages brachiatus to upwelling induced variability in the central-southern region of Chile. Prog. Oceanogr. 75: 501-517. https://doi.org/10.1016/j.pocean.2007.08.028

Hidalgo P., Escribano R., Fuentes M., et al. 2012. How coastal upwelling influences spatial patterns of size-structured diversity of copepods off central-southern Chile (summer 2009). Prog. Oceanogr. 92-95: 134-145. https://doi.org/10.1016/j.pocean.2011.07.012

Keast A. 1978. Trophic and spatial interrelationships in the fish species of an Ontario temperate lake. Environ. Biol. Fish. 3: 7-31. https://doi.org/10.1007/BF00006306

Landaeta M.F., Castro L.R. 2012. Seasonal and annual variation in Chilean hake Merluccius gayi spawning locations and egg size off central Chile. Prog. Oceanogr. 92-95: 166-177. https://doi.org/10.1016/j.pocean.2011.07.002

Landaeta M.F., Suárez-Donoso N., Bustos C.A., et al. 2011. Feeding habits of larval Maurolicus parvipinnis (Pisces: Sternoptychidae) in Patagonian fjords. J. Plankton Res. 33: 1813-1824. https://doi.org/10.1093/plankt/fbr081

Landaeta M.F., Bustos C.A., Contreras J.E., et al. 2015. Larval fish feeding ecology, growth and mortality from two basins with contrasting environmental conditions of an inner sea of northern Patagonia, Chile. Mar. Environ. Res. 106: 19-29. https://doi.org/10.1016/j.marenvres.2015.03.003 PMid:25756898

Llanos-Rivera A., Herrera G., Bernal P. 2004. Food size selectivity and diet overlap in larvae of Clupeiform species from central Chile. Cah. Biol. Mar. 45: 1-8.

Lecomte F., Dodson J.J. 2005. Distinguishing trophic and habitat partitioning among sympatric populations of the estuarine fish Osmerus mordax Mitchell. J. Fish. Biol. 66: 1601-1623. https://doi.org/10.1111/j.0022-1112.2005.00702.x

Loy A., Bertelletti M., Costa C., et al. 2001. Shape changes and growth trajectories in the early stages of three species of the genus Diplodus (Perciformes, Sparidae). J. Morph. 250: 24-33. https://doi.org/10.1002/jmor.1056 PMid:11599013

Mark W., Hofer R., Wieser W. 1987. Diet spectra and resource partitioning in the larvae and juveniles of three species and six cohorts of cyprinids from a subalpine lake. Oecologia 71: 388-396. https://doi.org/10.1007/BF00378712 PMid:28312986

Meléndez R. 1989. Alimentación y consideraciones somatométricas de Prolatilus jugularis (Valenciennes) (Teleostei, Branchiostegidae). Bol. Mus. Nac. Hist. Nat. 47: 3-8.

Moser H.G. 1996. The early stages of fishes in the California Current Region. California Cooperative Oceanic Fisheries Investigations Atlas N°33. Kansas. Allen Press Inc., 1517 pp.

Moreno C.A., Zamorano J.H. 1980. Selectividad del alimento en dos peces bentófagos (Mugiloides chilensis y Calliclinus geniguttatus). Bol. Inst. Oceanogr. Sao Paulo 29: 245-290. https://doi.org/10.1590/S0373-55241980000200051

Neira F.J., Miskiewicz A.G., Trnski T. 1998. Larvae of Temperate Australian Fishes. Laboratory guide for larval fish identification. Nedlands. University of Western Australia Press, 474 pp.

Nunn A.D., Tewson L.H., Cowx I. 2012. The foraging ecology of larval and juvenile fishes. Rev. Fish. Biol. Fish. 22: 377-408. https://doi.org/10.1007/s11160-011-9240-8

Pearre Jr. S. 1986. Ratio-based trophic niche breadths of fish, the Sheldon spectrum, and the size-efficiency hypothesis. Mar. Ecol. Prog. Ser. 27: 299-314. https://doi.org/10.3354/meps027299

Reiss C.S., Anis A., Taggart C.T., et al. 2002. Relationships among vertically structured in situ measures of turbulence, larval fish abundance and feeding success and copepods on Western Bank, Scotian Shelf. Fish Oceanogr. 11: 156-174. https://doi.org/10.1046/j.1365-2419.2002.00194.x

Rosa I.L., Rosa R.S. 1997. Systematic revision of the South American species of Pinguipedidae. Rev. Bras. Zool. 14: 845-865. https://doi.org/10.1590/S0101-81751997000400009

Ross S.T. 1986. Resource partitioning in fish assemblages: a review of field studies. Copeia 1986: 352-388. https://doi.org/10.2307/1444996

Rowlands W.L., Dickey-Collas M., Geffen A.J., et al. 2008. Diet overlap and prey selection through metamorphosis in Irish Sea cod (Gadus morhua), haddock (Melanogrammus aeglefinus), and whiting (Merlangius merlangus). Can. J. Fish. Aquat. Sci. 65: 1297-1306. https://doi.org/10.1139/F08-041

Russo T., Pulcini D., O'Leary A., et al. 2008. Relationship between body shape and trophic niche segregation in two closely related sympatric fishes. J. Fish. Biol. 73: 809-828. https://doi.org/10.1111/j.1095-8649.2008.01964.x

Salas-Berríos F., Valdés-Aguilera J., Landaeta M.F., et al. 2013. Feeding habits and diet overlap of marine fish larvae from the peri-Antarctic Magellan region. Polar Biol. 36: 1401-1414. https://doi.org/10.1007/s00300-013-1359-8

Scharf F.S., Juanes F., Rountree R.A. 2000. Predator size – prey size relationships of marine fish predators: interspecific variation and effects of ontogeny and body size on trophic niche breadth. Mar. Ecol. Prog. Ser. 208: 229-248. https://doi.org/10.3354/meps208229

Schoener T.W. 1970. Non-synchronous spatial overlap of lizards in patchy habitats. Ecology 60: 703-710.

Sobarzo M., Bravo L., Donoso D., et al. 2007. Coastal upwelling and seasonal cycles that influence on the water column on the continental shelf off central Chile. Prog. Oceanogr. 75: 363-382. https://doi.org/10.1016/j.pocean.2007.08.022

Sun J., Liu D. 2003. Geometric models for calculating cell biovolume and surface area for phytoplankton. J. Plankton Res. 25: 1331-1346. https://doi.org/10.1093/plankt/fbg096

Swalethorp R., Kjellerup S., Malanski E., et al. 2014. Feeding opportunities of larval and juvenile cod (Gadus morhua) in a Greenlandic fjord: temporal and spatial linkages between cod and their preferred prey. Mar. Biol. 161: 2831-2846. https://doi.org/10.1007/s00227-014-2549-9

Valenzuela V., Balbontín F., Llanos A. 1995. Diet composition and prey size of the larvae of eight species of fishes from the coast of central Chile. Rev. Biol. Mar. 30: 275-291.

Vélez J.A., Watson W., Sandknop E.M., et al. 2003. Larval development of the Pacific sandperch (Prolatilus jugularis) (Pisces: Pinguipedidae) from the Independencia Bight, Pisco, Peru. J. Mar. Biol. Ass. UK 83: 1137-1142. https://doi.org/10.1017/S0025315403008397h

Vera-Duarte J., Landaeta M.F. 2016. Diet of the labrisomid blenny Auchenionchus variolosus (Valenciennes, 1836) (Labrisomidae) during its larval development off central Chile (2012- 2013). J. Appl. Ichthyol. 32: 46-54. https://doi.org/10.1111/jai.12935

Walkusz W., Paulic J.E., Wong S., et al. 2015. Spatial distribution and diet of larval snailfishes (Liparis frabicii, Liparis gibbus, Liparis tunicatus) in the Canadian Beaufort Sea. Oceanologia 58: 117-123. https://doi.org/10.1016/j.oceano.2015.12.001

Wallace R.K. 1981. An assessment of diet overlap indexes. Trans. Am. Fish. Soc. 100: 72-76. https://doi.org/10.1577/1548-8659(1981)110<72:AAODI>2.0.CO;2

Yañez-Rubio A., Llanos-Rivera A., Castro L.R., et al. 2011. Variations in type, width, volume and carbon content of anchoveta Engraulis ringens food items during the early larval stages. J. Mar. Biol. Ass. UK 91: 1207-1213.

Zar J.H. 1999. Biostatistical Analysis. Prentice Hall, Upper Saddle River, NJ, 663 pp.

Published

2017-06-30

How to Cite

1.
Vera-Duarte JA, Landaeta MF. Feeding habits and dietary overlap during the larval development of two sandperches (Pisces: Pinguipedidae). Sci. mar. [Internet]. 2017Jun.30 [cited 2024Mar.29];81(2):195-204. Available from: https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1706

Issue

Section

Articles

Most read articles by the same author(s)