Predation and anthropogenic impact on community structure of boulder beaches

Authors

  • Marcela Aldana Centro de Investigación e Innovación para el Cambio Climático (CiiCC), Facultad de Ciencias, Universidad Santo Tomás
  • Diego Maturana Departamento de Ecología y Biodiversidad, Facultad de Ecología y Recursos Naturales, Universidad Andrés Bello
  • José Pulgar
  • M. Roberto García-Huidobro Centro de Investigación e Innovación para el Cambio Climático (CiiCC), Facultad de Ciencias, Universidad Santo Tomás

DOI:

https://doi.org/10.3989/scimar.04444.27A

Keywords:

Management and Exploitation Areas for Benthic Resources, intertidal zone, boulder beaches, community structure, food web

Abstract


Predator impacts on intertidal community structure have been studied for rocky platforms, but intertidal boulder fields, a habitat with a greater extension and heterogeneity, have not yet been considered. Keeping in mind that disturbances are considered an important force in determining intertidal habitat diversity, the aims of this work were to describe and quantify boulder field community structure and to assess boulder field community dynamics by proposing possible food webs, taking into consideration predatory and anthropogenic impacts. These aims were achieved by installing predator-exclusion cages outfitted with rocks that were monitored monthly over one year in two study zones, a Management and Exploitation Area for Benthic Resources (MEABR, Playa Chica) and open-access area (OAA, Playa Grande). For both study zones, juveniles were the dominant observed ontogenetic state and invertebrate richness and density were higher inside exclusion cages. Furthermore, the MEABR had a differentiated impact on community structure and dynamics in comparison with the OAA. In conclusion, the roles played by boulder fields in intertidal diversity, especially in recruitment and as a nursery zone, are important to consider in management plans.

Downloads

Download data is not yet available.

References

Acuña F.H., Zamponi M.O. 1996. Ecología trófica de las anemonas intermareales Phymactis clematis dana, 1849, Aulactinia marplatensis (Zamponi 1977) y A. reynaudi (Milne-Edwards 1857) (Actiniaria: Actiniidae): relaciones entre las anemonas y sus presas. Cienc. Mar. 22: 397-413.

Agardy T. 2003. Dangerous targets? Unresolved issues and ideological clashes around marine protected areas. Aquat. Conserv. 13: 353-367. https://doi.org/10.1002/aqc.583

Aguilera M.A. 2011. The functional roles of herbivores in the rocky intertidal systems in Chile: A review of food preferences and consumptive effects. Rev. Chil. Hist. Nat. 84: 241-261. https://doi.org/10.4067/S0716-078X2011000200009

Aldana M., Pulgar J.M., Orellana N., et al. 2014. Increased parasitism of limpets by a trematode metacercaria in fisheries management areas of central Chile: effects on host growth and reproduction. Ecohealth 11: 215-226. https://doi.org/10.1007/s10393-013-0876-9 PMid:24142461

Alveal K. 1971. El ambiente costero de Montemar y su expresión biológica. Rev. Biol. Mar. Oceanogr. 14: 85–119.

Angel A., Ojeda F.P. 2001. Structure and trophic organization of subtidal fish assemblages on the northern Chilean coast: the effect of habitat complexity. Mar. Ecol. Prog. Ser. 217: 81-91. https://doi.org/10.3354/meps217081

Bennington C.C., Thayne W.V. 1994. Use and misuse of mixed model analysis of variance in ecological studies. Ecology 75: 717-722. https://doi.org/10.2307/1941729

Bertness M.D., Gaines S.D., Hay M.E. 2001. Marine community ecology. Sinauer Associates. PMCid:PMC64662

Camus P.A., Daroch K., Opazo F.L. 2008. Potential for omnivory and apparent intraguild predation in rocky intertidal herbivore assemblages from northern Chile. Mar. Ecol. Prog. Ser. 361: 35-45. https://doi.org/10.3354/meps07421

Castilla J.C. 1981. Perspectivas de investigación en estructura y dinámica de comunidades intermareales rocosas de Chile Central. II. Depredadores de alto nivel trófico. Medio ambiente 5: 190-215.

Castilla J.C., Durán L.R. 1985. Human exclusion from the rocky intertidal zone of central Chile: the effects on Concholepas concholepas (Gastropoda). Oikos 45: 391-399. https://doi.org/10.2307/3565575

Castilla J.C., Gelcich S. 2008. Management of the loco (Concholepas concholepas) as a driver for self-governance of small-scale benthic fisheries in Chile. In: Townsend R., Shotton R., Uchida H. (eds) Case studies in fisheries self-governance. FAO Fish. Tech., pp. 441-451.

Castilla J.C., Gelcich S., Defeo O. 2007. Successes, lessons, and projections from experience in marine benthic invertebrate artisanal fisheries in Chile. In: McClanahan T., Castilla J.C. (eds), Fisheries Management: Progress toward Sustainability. Blackwell, Oxford, UK, pp. 25-42. https://doi.org/10.1002/9780470996072.ch2

Chapin III F., Zavaleta E., Eviner V., et al. 2000. Consequences of changing biodiversity. Nature 405: 234-242. https://doi.org/10.1038/35012241 PMid:10821284

Chapman M.G. 2002a. Patterns of spatial and temporal variation of macrofauna under boulders in a sheltered boulder field. Austral. Ecol. 27: 211-228. https://doi.org/10.1046/j.1442-9993.2002.01172.x

Chapman M.G. 2002b. Early colonization of shallow subtidal boulders in two habitats. J. Exp. Mar. Biol. Ecol. 275: 95-116. https://doi.org/10.1016/S0022-0981(02)00134-X

Chapman M.G. 2005. Molluscs and echinoderms under boulders: Tests of generality of patterns of occurrence. J. Exp. Mar. Biol. Ecol. 325: 65-83. https://doi.org/10.1016/j.jembe.2005.04.016

Chapman M.G. 2012. Restoring intertidal boulder-fields as habitat for "specialist" and "generalist" animals. Restor. Ecol. 20: 277-285. https://doi.org/10.1111/j.1526-100X.2011.00789.x

Chapman M.G., Underwood A.J. 1996. Experiments on effects of sampling on biota under intertidal and shallow subtidal boulders. J. Exp. Mar. Biol. 207: 103-126. https://doi.org/10.1016/S0022-0981(96)02652-4

Clarke K.R., Warwick R.M. 2001. A further biodiversity index applicable to species lists: variation in taxonomic distinctness. Mar. Ecol. Prog. Ser. 216: 265-278. https://doi.org/10.3354/meps216265

Contreras S., Castilla J.C. 1987. Feeding behaviour and morphological adaptations in two sympatric sea urchins in central Chile. Mar. Ecol. Prog. Ser. 38: 217-224. https://doi.org/10.3354/meps038217

Durán L.R., Castilla J.C. 1989. Variation and persistence of the middle rocky intertidal community of central Chile, with and without human harvesting. Mar. Biol. 103: 555-562. https://doi.org/10.1007/BF00399588

García-Huidobro M.R., Pulgar J., Pulgar V.M., et al. 2015. Impact of predators and resource abundance on the physiological traits of Fissurella crassa (Argeogastropoda). Hidrobiologica 25: 165-173.

Gelcich S., Godoy N., Prado L., et al. 2008. Add-on conservation benefits of marine territorial user rights fishery policies in central Chile. Ecol. Appl. 18: 273-281. https://doi.org/10.1890/06-1896.1 PMid:18372572

Halpern B.S., Walbridge S., Selkoe K.A., et al. 2008. A global map of human impact on marine ecosytems. Nature 319: 948-952.

Henríquez L.A., Daner I.G., Mu-oz C.A., et al. 2007. Primary production and phytoplanktonic biomass in shallow marine environments of central Chile: Effect of coastal geomorphology. Estuar. Coast. Shelf. 73: 137-147. https://doi.org/10.1016/j.ecss.2006.12.013

Hooper D.U., Adair E.C., Cardinale B.J., et al. 2012. A global synthesis reveals biodiversity loss as a major driver of ecosystem change. Nature 486: 105-109. https://doi.org/10.1038/nature11118

Le Hir M., Hily C. 2005. Macrofaunal diversity and habitat structure in intertidal boulder fields. Biodivers. Conserv. 14: 233-250. https://doi.org/10.1007/s10531-005-5046-0

Lieberman M., John D.M., Lieberman D. 1979. Ecology of subtidal algae on seasonally devastated cobble substrates off Ghana. Ecology 60: 1151-1161. https://doi.org/10.2307/1936963

Littler M.M., Littler D.S. 1984. Relationships between macroalgal functional form groups and substrata stability in a subtropical rocky-intertidal system. J. Exp. Mar. Biol. Ecol. 74: 13-34. https://doi.org/10.1016/0022-0981(84)90035-2

Lubchenco J., Menge B.A. 1978. Community development and persistence in a low rocky intertidal zone. Ecol. Monograph. 48: 67-94. https://doi.org/10.2307/2937360

Mace A.J., Morgan S.G. 2006. Larval accumulation in the lee of the small headland: implications for the design of marine reserves. Mar. Ecol. Prog. Ser. 318: 19-29. https://doi.org/10.3354/meps318019

McGuinness K.A. 1987. Disturbance and organisms on boulders. I. Patterns in the environment and the community. Oecologia 71: 409-419. https://doi.org/10.1007/BF00378715

McGuinness K.A., Underwood A.J. 1986. Habitat structure and the nature of communities on intertidal boulders. J. Exp. Mar. Biol. Ecol. 104: 97-123. https://doi.org/10.1016/0022-0981(86)90099-7

Menge B. 1976. Organization of the New England rocky intertidal communities: role of predation competition, and environmental heterogeneity. Ecol. Monogr. 46: 355-393. https://doi.org/10.2307/1942563

Molina P., Ojeda P., Aldana M., et al. 2014. Spatial and temporal variability in subtidal macroinvertebrates diversity patterns in a management and exploitation area for benthic resources (MEABRs). Ocean. Coast. Manage. 93: 121-128. https://doi.org/10.1016/j.ocecoaman.2014.03.005

Mu-oz A., Ojeda F.P. 2000. Ontogenetic changes in the diet of the herbivorous Scartichthys viridis in a rocky intertidal zone in central Chile. J. Fish. Biol. 56: 986-998. https://doi.org/10.1111/j.1095-8649.2000.tb00887.x

Navarrete S.A., Castilla J.C. 1990. Barnacle walls as mediators of intertidal mussel recruitment: effects of patch size on the utilization of space. Mar. Ecol. Prog. Ser. 68: 113-119. https://doi.org/10.3354/meps068113

Navarrete S.A., Manzur T. 2008. Individual- and population- level responses of a keystone predator to geographic variation in prey. Ecology 89: 2005-2018. https://doi.org/10.1890/07-1231.1 PMid:18705386

Navarrete S.A., Menge B.A., Daily B. 2000. Species interactions at high trophic levels: intraguild predation or exploitation competition? Ecology 81: 2264-2277. https://doi.org/10.1890/0012-9658(2000)081[2264:SIIIFW]2.0.CO;2

Ojeda F.P., Mu-oz A. 1999. Feeding selectivity of the herbivorous fish Scartichthys viridis: Effects on macroalgal community structure in a temperate rocky intertidal coastal zone. Mar. Ecol. Progr. Ser. 184: 219-229. https://doi.org/10.3354/meps184219

Otaíza R.D., Santelices B. 1985. Vertical distribution of chitons (Mollusca: Polyplacophora) in the rocky intertidal zone of central Chile. J. Exp. Mar. Biol. Ecol. 86: 229-240. https://doi.org/10.1016/0022-0981(85)90105-4

Paine R.T. 1966. Food Web Complexity and Species Diversity. Am. Nat. 100: 65-75. https://doi.org/10.1086/282400

Paine R.T. 1994. Marine rocky shores and community ecology: An experimentalist's perspective. Ecology Institute, Oldendorf, Luhe, Germany.

Palma A., Henriquez L.A., Ojeda F.P. 2009. Phytoplanktonic primary production modulated by coastal geomorphology in a highly dynamic environment of central Chile. Rev. Biol. Mar. Oceanogr. 44: 325-334. https://doi.org/10.4067/S0718-19572009000200006

Santelices B. 1990. Patterns of organization of intertidal and shallow subtidal vegetation in wave exposed habitats in Central Chile. Hydrobiologia 192: 35-57. https://doi.org/10.1007/BF00006226

Santelices B., Correa J. 1985. Differential survival of macroalgae to digestion by intertidal herbivore molluscs. J. Exp. Mar. Biol. Ecol. 88: 183-191. https://doi.org/10.1016/0022-0981(85)90037-1

Santelices B., Vasquez J., Meneses I. 1986. Patrones de distribución y dietas de un gremio de moluscos herbívoros en hábitats intermareales expuestos de Chile central. Monogr. Biol. 4: 147–171.

Santelices B., Cancino J., Montalva S., et al. 1977. Estudios ecológicos en la zona costera afectada por contaminación del "Northern Breeze". II. Comunidades de playas de rocas. Medio Ambiente 2: 65-83.

Sebens K.P., Paine R.T. 1978. Biogeography of anthozoans along the west coast of South America: habitat, disturbance and prey availability. In: Proc. Int. Symp. Mar. Biogeogr. and Ecol. in the Southern Hemisphere. Vol. I., N. Zealand Dept. of Scientific and Industrial. Res. Inf. Ser. 137: 219-237.

Smith K.A., Otway N.M. 1997. Spatial and temporal patterns in abundance and the effects of disturbance on under-boulder chitons. Molluscan. Res. 18: 43-57. https://doi.org/10.1080/13235818.1997.10673680

Sousa W.P. 1979a. Experimental investigations of disturbance and ecological succession in a rocky intertidal algal community. Ecol. Monograph. 49: 227-254. https://doi.org/10.2307/1942484

Sousa W.P. 1979b. Disturbance in marine intertidal boulder fields: The nonequilibrium maintenance of species diversity. Ecology 60: 1225-1239. https://doi.org/10.2307/1936969

Sousa W.P. 1984. Intertidal mosaics: Patch size, propagule availability, and spatial variable patterns of succession. Ecology 65: 1918-1935. https://doi.org/10.2307/1937789

Steneck R.S. 1998. Human influences on coastal ecosystems: Does overfishing create trophic cascades? Trends Ecol. Evol. 13: 429-430. https://doi.org/10.1016/S0169-5347(98)01494-3

Steneck R.S., Dethier M. 1994. A functional group approach to the structure of algal-dominated communities. Oikos 69: 476-498. https://doi.org/10.2307/3545860

Werner E.E., Peacor S.D. 2003. A review of trait-mediated indirect interactions in ecological communities. Ecology 84: 1803-1100. https://doi.org/10.1890/0012-9658(2003)084[1083:AROTII]2.0.CO;2

Zamponi M.O. 1979. Sobre la alimentación en Actiniaria (Coelenterata, Anthozoa). Neotropica 25: 195-202.

Published

2016-12-30

How to Cite

1.
Aldana M, Maturana D, Pulgar J, García-Huidobro MR. Predation and anthropogenic impact on community structure of boulder beaches. Sci. mar. [Internet]. 2016Dec.30 [cited 2024Mar.28];80(4):543-51. Available from: https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1685

Issue

Section

Articles