Predicting Pollicipes pollicipes (Crustacea: Cirripedia) abundance on intertidal rocky shores of SW Portugal: a multi-scale approach based on a simple fetch-based wave exposure index

Authors

  • David Jacinto MARE - Marine and Environmental Sciences Centre, Laboratório de Ciências do Mar, Universidade de Évora
  • Teresa Cruz MARE - Marine and Environmental Sciences Centre, Laboratório de Ciências do Mar, Universidade de Évora - Departamento de Biologia, Escola de Ciências e Tecnologia, Universidade de Évora

DOI:

https://doi.org/10.3989/scimar.04330.27A

Keywords:

Pollicipes pollicipes, abundance, wave exposure, GIS, SW Portugal

Abstract


Understanding and predicting patterns of distribution and abundance of marine resources is important for conservation and management purposes in small-scale artisanal fisheries and industrial fisheries worldwide. The goose barnacle (Pollicipes pollicipes) is an important shellfish resource and its distribution is closely related to wave exposure at different spatial scales. We modelled the abundance (percent coverage) of P. pollicipes as a function of a simple wave exposure index based on fetch estimates from digitized coastlines at different spatial scales. The model accounted for 47.5% of the explained deviance and indicated that barnacle abundance increases non-linearly with wave exposure at both the smallest (metres) and largest (kilometres) spatial scales considered in this study. Distribution maps were predicted for the study region in SW Portugal. Our study suggests that the relationship between fetch-based exposure indices and P. pollicipes percent cover may be used as a simple tool for providing stakeholders with information on barnacle distribution patterns. This information may improve assessment of harvesting grounds and the dimension of exploitable areas, aiding management plans and supporting decision making on conservation, harvesting pressure and surveillance strategies for this highly appreciated and socio-economically important marine resource.

Downloads

Download data is not yet available.

References

Abràmoff M.D., Magalhães P.J., Ram S.J. 2004. Image processing with Image. J. Biophotonics Int. 11: 36-42.

Airoldi L. 2003. The effects of sedimentation on rocky coast assemblages. Oceanogr. Mar. Biol. an Annu. Rev. 41: 161-236.

Bald J., Borja A., Muxika I. 2006. A system dynamics model for the management of the gooseneck barnacle (Pollicipes pollicipes) in the marine reserve of Gaztelugatxe (Northern Spain). Ecol. Model. 194: 306-315. http://dx.doi.org/10.1016/j.ecolmodel.2005.10.024

Ballantine W. 1961. A biologically-defined exposure scale for the comparative description of rocky shores. F. Stud. J. 1: 1-19.

Barnes M. 1996. Pedunculate cirripedes of the genus Pollicipes. Oceanogr. Mar. Biol. Annu. Rev. 34: 303-394.

Bekkby T., Rinde E., Erikstad L., et al. 2009. Spatial predictive distribution modelling of the kelp species Laminaria hyperborea. ICES J. Mar. Sci. 66: 2106-2115. http://dx.doi.org/10.1093/icesjms/fsp195

Borja A., Muxika I., Bald J. 2000. Protection of the goose barnacle Pollicipes pollicipes Gmelin, 1790 population: the Gaztelugatxe Marine Reserve (Basque Country, northern Spain). Sci. Mar. 70: 235–242. http://dx.doi.org/10.3989/scimar.2006.70n2235

Borja A., Liria P., Muxika I., et al. 2006. Relationships between wave exposure and biomass of the goose barnacle (Pollicipes pollicipes, Gmelin, 1790) in the Gaztelugatxe Marine Reserve (Basque Country, northern Spain). ICES J. Mar. Sci. 63: 626-636. http://dx.doi.org/10.1016/j.icesjms.2005.12.008

Boukaici M., Bergayou H., Kaaya A., et al. 2012. Pollicipes pollicipes (Gmelin, 1789) (Cirripède, Lepadomorphe): étude de la croissance et de la dynamique des populations dans la région de Mirleft (sud ouest Marocain). Crustaceana. 85: 1073-1097. http://dx.doi.org/10.1163/156854012X651259

Burrows M., Harvey R., Robb L. 2008. Wave exposure indices from digital coastlines and the prediction of rocky shore community structure. Mar. Ecol. Prog. Ser. 353: 1-12. http://dx.doi.org/10.3354/meps07284

Denny M. 1988. Biology and the mechanics of the wave-swept environment. Princeton University Press, Princeton, NJ. http://dx.doi.org/10.1515/9781400852888

Ekebom J., Laihonen P., Suominen T. 2003. A GIS-based step-wise procedure for assessing physical exposure in fragmented archipelagos. Estuar. Coast. Shelf Sci. 57: 887-898. http://dx.doi.org/10.1016/S0272-7714(02)00419-5

Hearn C., Atkinson M., Falter J. 2001. A physical derivation of nutrient-uptake rates in coral reefs: Effects of roughness and waves. Coral Reefs. 20: 347-356. http://dx.doi.org/10.1007/s00338-001-0185-6

Hill N.A., Pepper A.R., Puotinen M.L., et al. 2010. Quantifying wave exposure in shallow temperate reef systems: Applicability of fetch models for predicting algal biodiversity. Mar. Ecol. Prog. Ser. 417: 83-95. http://dx.doi.org/10.3354/meps08815

Hurd C.L. 2000. Water motion, marine macroalgal physiology, and production. J. Phycol. 36: 453-472. http://dx.doi.org/10.1046/j.1529-8817.2000.99139.x

Instituto Hidrográfico. 2006. Roteiros da Costa de Portugal - Portugal Continental - Do Cabo Carvoeiro ao Cabo de São Vicente. Instituto Hidrográfico, Lisboa.

Kingsbury J.M. 1962. The effect of waves on the composition of a population of attached marine algae. Bull. Torrey Bot. Club. 89: 143-160. http://dx.doi.org/10.2307/2482562

Lewis J. 1964. The ecology of rocky shores. The English Universities Press, London.

Lindegarth M., Gamfeldt L. 2005. Comparing Categorical and Continuous Ecological Analyses: Effects of "Wave Exposure" on Rocky Shores. Ecology. 86: 1346-1357. http://dx.doi.org/10.1890/04-1168

McQuaid C., Branch G. 1985. Trophic structure of rocky intertidal communities response to wave action and implications for energy flow. Mar. Ecol. Prog. Ser. 22: 153-161. http://dx.doi.org/10.3354/meps022153

Menge B., Sutherland J. 1987. Community regulation: variation in disturbance, competition, and predation in relation to environmental stress and recruitment. Am. Nat. 130: 730-757. http://dx.doi.org/10.1086/284741

Parada J.M., Outeiral R., Iglesias E., et al. 2012. Assessment of goose barnacle (Pollicipes pollicipes Gmelin, 1789) stocks in management plans: Design of a sampling program based on the harvesters' experience. ICES J. Mar. Sci. 69: 1840-1849. http://dx.doi.org/10.1093/icesjms/fss157

Schiel D.R., Wood S.A., Dunmore R.A., et al. 2006. Sediment on rocky intertidal reefs: Effects on early post-settlement stages of habitat-forming seaweeds. J. Exp. Mar. Bio. Ecol. 331: 158-172. http://dx.doi.org/10.1016/j.jembe.2005.10.015

Sousa A., Jacinto D., Penteado N., et al. 2013. Patterns of distribution and abundance of the stalked barnacle (Pollicipes pollicipes) in the central and southwest coast of continental Portugal. J. Sea Res. 83: 187-194. http://dx.doi.org/10.1016/j.seares.2013.04.005

Sundblad G., Bekkby T., Isæus M., et al. 2014. Comparing the ecological relevance of four wave exposure models. Estuar. Coast. Shelf Sci. 140: 7-13. http://dx.doi.org/10.1016/j.ecss.2014.01.008

West J.M., Salm R.V. 2003. Resistance and Resilience to Coral Bleaching: Implications for Coral Reef Conservation and Management. Conserv. Biol. 17: 956-967. http://dx.doi.org/10.1046/j.1523-1739.2003.02055.x

Wood S.N. 2006. Generalized additive models: an introduction with R. Chapman and Hall/CRC. Series: Chapman & Hall/CRC Texts in Statistical Science.

Zuur A., Ieno E., Smith G. 2007. Analysing ecological data. Springer, New York. http://dx.doi.org/10.1007/978-0-387-45972-1 PMCid:PMC2039845

Published

2016-06-30

How to Cite

1.
Jacinto D, Cruz T. Predicting Pollicipes pollicipes (Crustacea: Cirripedia) abundance on intertidal rocky shores of SW Portugal: a multi-scale approach based on a simple fetch-based wave exposure index. Sci. mar. [Internet]. 2016Jun.30 [cited 2024Mar.29];80(2):229-36. Available from: https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1633

Issue

Section

Articles

Most read articles by the same author(s)