Chemical bioactivity of sponges along an environmental gradient in a Mediterranean cave

Authors

  • Xavier Turon Centre d’Estudis Avançats de Blanes (CEAB, CSIC)
  • Ruth Martí Centre d’Estudis Avançats de Blanes (CEAB, CSIC)
  • Maria J. Uriz Centre d’Estudis Avançats de Blanes (CEAB, CSIC)

DOI:

https://doi.org/10.3989/scimar.2009.73n2387

Keywords:

sponges, bioactivity, natural toxicity, Microtox® assay, temporal variation, ecological variation, caves, western Mediterranea

Abstract


The bioactivity of the most abundant sponges from three communities in a Mediterranean cave was assessed by Microtox® assay in two seasons, spring (June) and autumn (November). We quantified bioactivity as a proxy for the investment in production of biologically active substances, and we related sponge bioactivity to growth form, growth rates, and physical contacts of each species with other species. We established a threshold for classifying a species as bioactive based on a comparison between the results of the Microtox® and the sea urchin embryo toxicity bioassay. A total of 30 species were included in the study, of which 50% were bioactive in some community or season. Significant ecological (between communities) and seasonal variation in mean bioactivity was found. When sponge bioactivity was related to sponge growth shape, it was found that the encrusting species tended to be more toxic than the non-encrusting ones. There was a negative relationship between bioactivity and sponge growth, suggesting a trade-off in energy allocation to defence and to other biological functions. Furthermore, a negative correlation was found between bioactivity and positive associations with other species. These results highlight the important role of chemically-mediated interactions in cave communities.

Downloads

Download data is not yet available.

References

Agell, G., M.J. Uriz, E. Cebrian and R. Martí. – 2001. Does stress protein induction by copper modify natural toxicity in sponges? Environ. Toxicol. Chem., 20: 2588-2593. doi:10.1897/1551-5028(2001)020<2588:DSPIBC>2.0.CO;2 PMid:11699786

Amade, P., C. Charroin, C. Baby and J. Vacelet. – 1987. Antimicrobial activities of marine sponges from the Mediterranean Sea. Mar. Biol., 94: 271-275. doi:10.1007/BF00392940

Becerro, M.A., M.J. Uriz and X. Turon. – 1995. Measuring toxicity in marine environment: critical appraisal of three commonly used methods. Experientia, 51: 414-418. doi:10.1007/BF01928907

Becerro, M.A., X. Turon and M.J. Uriz. – 1997a. Multiple functions for secondary metabolites in encrusting marine invertebrates. J. Chem. Ecol., 23: 1527-1547. doi:10.1023/B:JOEC.0000006420.04002.2e

Becerro, M.A., M.J. Uriz and X. Turon. – 1997b. Chemically–mediated interactions in benthic organisms: the chemical ecology of Crambe crambe (Porifera, Poesilosclerida). Hydrobiologia, 356: 77-89. doi:10.1023/A:1003019221354

Becerro, M.A., V.J. Paul and J. Starmer. – 1998. Intracolonial variation in chemical defenses of the sponge Cacospongia sp. And its consequences on generalist fish predators and the specialist nudibranch predator Glossodoris pallida. Mar. Ecol. Prog. Ser., 168: 187-196. doi:10.3354/meps168187

Becerro, M.A., R.W. Thacker, X. Turon, M.J. Uriz and V.J. Paul. – 2003. Biogeography of sponge chemical ecology: comparisons of tropical and temperate defenses. Oecologia, 135: 91-101.

Betancourt-Lozano, M., F. Gónzalez-Farias, B. Gónzalez-Acosta, A. García-Gasca and J.R. Bastida-Zavala. – 1998. Variation of antimicrobial activity of the sponge Aplysina fistularis (Pallas, 1766) and its relation to associated fauna. J. Exp. Mar. Biol. Ecol., 223: 1-18. doi:10.1016/S0022-0981(97)00153-6

Bibiloni M.A., M.J. Uriz and J.M. Gili. – 1989. Sponge communities in three submarine caves of the Balearic Islands (Western Mediterranean): adaptations and faunistic composition. P.S.Z.N. I Mar. Ecol., 10: 317-334 doi:10.1111/j.1439-0485.1989.tb00076.x

Blunt J.W., B.R. Copp, W.P. Hu, M.H.G. Munro, P. Northcote and M.R. Prinsep. – 2008. Marine Natural Products. Nat. Prod. Rep., 25: 35-94. doi:10.1039/b701534h PMid:18250897

Botsford, J.L. – 2002. A comparison of ecotoxicological tests. Altern. Lab. Anim., 30: 539-550.

Burns, E., I. Ifrach, S. Carmeli, J.R. Pawlik and M. Ilan. – 2003. Comparison of anti-predatory defenses of Red Sea and Caribbean sponges. I. Chemical defense. Mar. Ecol. Prog. Ser., 25: 105-114. doi:10.3354/meps252105

Chanas, B. and J.R. Pawlik. – 1995. Defenses of Caribbean sponges against predatory reef fish. II. Spicules, tissue toughness, and nutritional quality. Mar. Ecol. Prog. Ser., 127: 195-211. doi:10.3354/meps127195

Conover, W.O. and R.L. Iman. – 1981. Rank transformation as a bridge between parametric and nonparametric statistics. Am. Stat., 35: 124. doi:10.2307/2683975

Cronin, G. – 2001. Resource allocation in seaweeds and marine invertebrates: chemical defense patterns in relation to defense theories. In: J.B. McClintock and B.J. Baker (eds.), Marine Chemical Ecology, pp. 325-353. CRC press, Boca Raton.

De Caralt, S., M.J. Uriz and R.H. Wijffels. – 2008. Grazing, differential size-class dynamics and survival of a Mediterranean sponge species: Corticium candelabrum (Demospongiae: Homosclerophorida). Mar. Ecol. Progr. Ser., 360: 97-106. doi:10.3354/meps07365

De Nys, R., S.A. Dworjanyn and P.D. Steinberg. – 1998. A new method for determining surface concentrations of marine natural products on seaweeds. Mar. Ecol. Prog. Ser., 162: 79-87. doi:10.3354/meps162079

Engel, S. and J.R. Pawlik. – 2000. Allelopathic activities of sponge extracts. Mar. Ecol. Prog. Ser., 207: 273-281. doi:10.3354/meps207273

Engel, S. and J.R. Pawlik. – 2005a. Interactions among Florida sponges. I. Reef habitats. Mar. Ecol. Progr. Ser., 303: 133-144. doi:10.3354/meps303133

Engel, S. and J.R. Pawlik. – 2005b. Interactions among Florida sponges. II. Mangrove habitats. Mar. Ecol. Progr. Ser., 303: 145-152. doi:10.3354/meps303145

Garrabou, J. and M. Zabala. – 2001. Growth dynamics in four Mediterranean demosponges. Est. Coast. Shelf Sci., 52: 293-303. doi:10.1006/ecss.2000.0699

Garson, M.J. – 2001. Ecological perspectives on marine natural product biosynthesis. In: J.B. McClintock and B.J. Baker (eds.), Marine Chemical Ecology, pp. 71-114. CRC Press, Boca Raton.

Gili, J.M., T. Riera and M. Zabala. – 1986. Physical and biological gradients in a submarine cave on the Western Mediterranean coast (north-east Spain). Mar. Biol., 90: 291-297. doi:10.1007/BF00569141

Green, G., P. Gomez and G.J. Bakus. – 1985. Antimicrobial and ichthyotoxic properties of marine sponges from Mexican waters. In: K. Rutzler (ed.), New perspectives in sponge biology, pp. 109-114. 3rd Int. Sponge Conf. Smithsonian Institution Press. Washington.

Jackson, J.B.C. – 1977. Competition on marine hard substrata: the adaptive significance of solitary and colonial strategies. Am. Nat., 111: 743-767. doi:10.1086/283203

Jackson, J.B.C. – 1979. Morphological strategies of sessile animals. In: G. Larwood and B.R. Rosen (eds.), Biology and systematics of colonial organisms II, pp. 499-555. Academic press, London.

Jackson, J.B.C. and L.W. Buss. – 1975. Allelopathy and spatial competition among coral reef invertebrates. Proc. Nat. Acad. Sci. USA, 72: 5160-5163. doi:10.1073/pnas.72.12.5160

Knoke, D. and P.J. Burke. – 1991. Log-Linear Models. Quantitative applications in the social sciences, Vol. 20. Sage, Newbury Park.

López-Legentil, S., N. Bontemps-Subielos, X. Turon and B. Banaigs. – 2007. Secondary metabolite and inorganic contents in Cystodytes sp. (Ascidiacea): temporal patterns and association with reproduction and growth. Mar. Biol., 151: 293-299. doi:10.1007/s00227-006-0472-4

Martí, R., A. Fontana, M.J. Uriz and G. Cimino. – 2003. Quantitative assessment of natural toxicity in sponges: toxicity bioassay versus compound quantification. J. Chem. Ecol., 29: 1307-1318. doi:10.1023/A:1024201100811 PMid:12918917

Martí, R., M.J. Uriz and X. Turon. – 2004a. Seasonal and spatial variation of species toxicity in Mediterranean seaweed communities: correlaton to biotic and abiotic factors. Mar. Ecol. Prog. Ser., 282: 73-85. doi:10.3354/meps282073

Martí. R., M.J. Uriz, E. Ballesteros and X. Turon. – 2004b. Benthic assemblages along two Mediterranean caves: species diversity and coverage as a function of abiotic parameters and geographic distance. J. Mar. Biol. Ass. UK, 84: 557-572.

Martí. R., M.J. Uriz, E. Ballesteros and X. Turon. – 2004c. Temporal variation of several structure descriptors in animal-dominated benthic communities in two Mediterranean caves. J. Mar. Biol. Ass. UK, 84: 573-580.

Martín, D. and M.J. Uriz. – 1993. Chemical bioactivity of Mediterranean benthic organisms against embryos and larvae of marine invertebrates. J. Exp. Mar. Biol. Ecol., 173: 11-27. doi:10.1016/0022-0981(93)90205-3

Newbold, R.W., P.R. Jensen, W. Fenical and J.R. Pawlik. – 1999. Antimicrobial activity of Caribbean sponges extracts. Aquat. Microb. Ecol., 19: 279-284. doi:10.3354/ame019279

Pawlik, J.R., B. Chanas, B., R.J. Toonen and W. Fenical. – 1995. Defenses of Caribbean sponges against predatory reef fish. I. Chemical deterrency. Mar. Ecol. Prog. Ser., 127: 183-194. doi:10.3354/meps127183

Porter, J.W., N.M. Targett. – 1988. Allelochemical interactions between sponges and corals. Biol. Bull., 175: 230-239. doi:10.2307/1541563

Potvin, C. and D.A. Roff. – 1993. Distribution-Free and robust statistical methods: viable alternatives to parametric statistics? Ecology, 74, 1617-1628. doi:10.2307/1939920

Ribo, J.M and K.L.E. Kaiser. – 1987 Photobacterium phosphoreum toxicity bioassay. I. Test methods and procedures. Toxic. Assess., 2: 305-323. doi:10.1002/tox.2540020307

Ribo, J.M. and F. Rogers. – 1990. Toxicity of mixtures of aquatic contaminants using the luminescent bacteria bioassay. Toxic. Assess., 5: 135-152. doi:10.1002/tox.2540050203

Schupp, P., C. Eder, V.J. Paul and P. Proksch. – 1999. Distribution of secondary metabolites in the sponge Oceanapia sp. and its ecological implications. Mar. Biol., 135: 573-580. doi:10.1007/s002270050658

Thacker, R.W., M.A. Becerro, W.A. Lumbang and V.J. Paul. – 1998. Allelopathic interactions between sponges on a tropical reef. Ecology, 79: 1740-1750.

Thompson, J.E. – 1985. Exudation of biologically active metabolites in the sponge Aplysina fistularis. I. Biological evidence. Mar. Biol., 88: 23-26. doi:10.1007/BF00393039

Thompson, J.E., P.T. Murphy, P.R. Bergquist and E.A. Evans. – 1987. Environmentally induced variation in diterpene composition of the marine sponge Rhopaloeides odorabile. Biochem. System. Ecol., 15: 596-606. doi:10.1016/0305-1978(87)90111-6

Turon, X., M.A. Becerro, M.J. Uriz and J. Llopis. – 1996a. Smallscale association measures in epibenthic communities as a clue for allelochemical interactions. Oecologia, 108, 351-360.

Turon, X., M.A. Becerro and M.J. Uriz. – 1996b. Seasonal patterns of toxicity in benthic invertebrates: the encrusting sponge Crambe crambe (Poecilosclerida). Oikos, 75: 33-40. doi:10.2307/3546318

Turon, X., I. Tarjuelo and M.J. Uriz. – 1998. Growth dynamics and mortality of the encrusting sponge Crambe crambe (Poecilosclerida) in contrasting habitats: correlation with population structure and investment in defences. Funct. Ecol., 12, 631-639. doi:10.1046/j.1365-2435.1998.00225.x

Turon, X., M.A. Becerro and M.J. Uriz. – 2000. Distribution of brominated compounds within the sponge Aplysina aerophoba: coupling of X-ray microanalysis with cryofixation techniques. Cell Tiss. Res., 301: 311-322. doi:10.1007/s004410000233 PMid:10955726

Uriz, M.J., D. Martin, X. Turon, E. Ballesteros, R. Hughes and C. Acebal. – 1991. An approach to the ecological significance of chemically mediated bioactivity in Mediterranean benthic communities. Mar. Ecol. Prog. Ser., 70: 175-188. doi:10.3354/meps070175

Uriz, M.J., D. Martín and D. Rosell. – 1992. Relationships of biological and taxonomic characteristics to chemically mediated bioactivity in Mediterranean littoral sponges. Mar. Biol., 113: 287-297.

Uriz, M.J., X. Turon, M.A. Becerro, J. Galera and J. Lozano. – 1995. Patterns of resource allocation to somatic, defensive, and reproductive functions in the Mediterranean encrusting sponge Crambe crambe (Demospongiae, Poecilosclerida). Mar. Ecol. Prog. Ser., 124: 159-170. doi:10.3354/meps124159

Uriz, M.J., M.A. Becerro, J.M. Tur and X. Turon. – 1996. Location of toxicity within the Mediterranean sponge Crambe crambe (Demospongiae, Poecilosclerida). Mar. Biol., 124: 583-590. doi:10.1007/BF00351039

Vacelet, J., T. Perez and J.N.A. Hooper. – 2002. Demospongiae incertae sedis: Mycelospongia Vacelet and Peres, 1998. In: J.N.A. Hooper and R.W.M. van Soest (eds.), Systema Porifera: a guide for the classification of sponges, pp. 1099-1101. Kluve Academic/Plenum Publisher, New York.

Walker, R.P., J.E. Thompson and D.J. Faulkner. – 1985. Exudation of biologically-active metabolites in the sponge Aplysina fistularis. II. Chemical evidence. Mar. Biol., 88: 27-32. doi:10.1007/BF00393040

Willenz, P. and S.A. Pomponi. – 1996. A new deep sea coralline sponge from Turks and Caicos Islands: Willardia caicosensis gen. et sp. Nov (Demospongiae: Hadromerida). Bull. Inst. Roy. Sci. Nat. Belgique, 66 Suppl: 205-218.

Zabala, M., T. Riera, J.M. Gili, M. Barangué, A. Lobo and J. Peñuelas. – 1989. Water flow, trophic depletion, and benthic macrofauna impoverishment in a submarine cave from the western Mediterranean. P.S.Z.N. I Mar. Ecol., 10: 271-287. doi:10.1111/j.1439-0485.1989.tb00478.x

Downloads

Published

2009-06-30

How to Cite

1.
Turon X, Martí R, Uriz MJ. Chemical bioactivity of sponges along an environmental gradient in a Mediterranean cave. Sci. mar. [Internet]. 2009Jun.30 [cited 2024Apr.26];73(2):387-9. Available from: https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1071

Issue

Section

Articles