Inter-population differences in otolith morphology are genetically encoded in the killifish Aphanius fasciatus (Cyprinodontiformes)

Authors

  • Ali Annabi Laboratoire de Recherche: Génétique, Biodiversité et Valorisation des Bioressources (LR 11/ES 41), Institut Supérieur de Biotechnologie de Monastir, Université de Monastir
  • Khaled Said Laboratoire de Recherche: Génétique, Biodiversité et Valorisation des Bioressources (LR 11/ES 41), Institut Supérieur de Biotechnologie de Monastir, Université de Monastir
  • Bettina Reichenbacher Department of Earth and Environmental Sciences, Palaeontology and Geobiology, Ludwig-Maximilians-University Munich

DOI:

https://doi.org/10.3989/scimar.03763.02A

Keywords:

Cyprinodontidae, phylogeography, gene flow, local adaptation, otolith morphometry, mitochondrial markers

Abstract


Inter-population differences in otolith shape, morphology and chemistry have been used effectively as indicators for stock assessment or for recognizing environmental adaptation in fishes. However, the precise parameters that affect otolith morphology remain incompletely understood. Here we provide the first direct support for the hypothesis that inter-population differences in otolith morphology are genetically encoded. The study is based on otolith morphology and two mitochondrial markers (D-loop, 16S rRNA) of three natural populations of Aphanius fasciatus (Teleostei: Cyprinodontidae) from Southeast Tunisia. Otolith and genetic data yielded congruent tree topologies. Divergence of populations likely results from isolation events in the course of the Pleistocene sea level drops. We propose that otolith morphology is a valuable tool for resolving genetic diversity also within other teleost species, which may be important for ecosystem management and conservation of genetic diversity. As reconstructions of ancient teleost fish faunas are often solely based on fossil otoliths, our discoveries may also lead to a new approach to research in palaeontology.

Downloads

Download data is not yet available.

References

Afli A., Ayari R., Zaabi S. 2008. Ecological quality of some Tunisian coast and lagoon locations, by using benthic community parameters and biotic indices. Estuar. Coast. Shelf. Sci. 80: 269-280. http://dx.doi.org/10.1016/j.ecss.2008.08.010

Astolfi L., Dupanloup I., Rossi R., Bisol P.M., Faure E., Congiu L. 2005. Mitochondrial variability of sand smelt Atherina boyeri populations from north Mediterranean coastal lagoons. Mar. Ecol. Prog. Ser. 297: 233-243. http://dx.doi.org/10.3354/meps297233

Astraldi M., Gasparini G.P., Vetrano A., Vignudelli S. 2002. Hydrographic characteristics and interannual variability of water masses in the central Mediterranean: a sensitivity test for long-term changes in the Mediterranean Sea. Deep-Sea Res. I 49: 661-680. http://dx.doi.org/10.1016/S0967-0637(01)00059-0

Astraldi M., Balopoulos S., Candela J., Font J., Gacic M., Gasparini G.P., Manca B., Theocharis A., Tintoré J. 1999. The role of straits and channels in understanding the characteristics of Mediterranean circulation. Progr. Oceanogr. 44: 65-108. http://dx.doi.org/10.1016/S0079-6611(99)00021-X

Bekkevold D., André C., Dahlgren T.G., Clausen L.A., Torstensen E., Mosegaard H., Carvalho G.R., Christensen T.B., Norlinder E., Ruzzante D.E. 2005. Environmental correlates of population differentiation in Atlantic herring. Evolution 59: 2656-2668. PMid:16526512

Béranger K., Mortier L., Crépon M. 2005. Seasonal variability of water transport through the Straits of Gibraltar, Sicily and Corsica, derived from a high-resolution model of the Mediterranean circulation. Progr. Oceanogr. 66: 341-364. http://dx.doi.org/10.1016/j.pocean.2004.07.013

Bernardi G. 2000. Barriers to gene flow in Embiotoca jacksoni, a marine fish lacking a pelagic larval stage. Evolution 54: 226-237. PMid:10937199

Brown W.M. 1983. Evolution of animal mitochondrial DNAs. In: Nei M., Koehn R.K. (eds), Evolution of Genes Proteins. Sinauer, Sunderland, MA. pp. 62-88. PMid:6311850

Brown W.M., George M., Wilson A.C. 1979. Rapid evolution of animal mitochondrial DNA. Proc. Natl. Acad. Sci. USA 76: 1967-1971. http://dx.doi.org/10.1073/pnas.76.4.1967 PMid:109836 PMCid:PMC383514

Campana S. 1999. Chemistry and composition of fish otoliths: pathways, mechanisms and applications. Mar. Ecol. Prog. Ser. 188: 263-297. http://dx.doi.org/10.3354/meps188263

Carvalho G.R. 1993. Evolutionary aspects of fish distribution: genetic variability and adaptation. J. Fish Biol. 43: 53-73. http://dx.doi.org/10.1111/j.1095-8649.1993.tb01179.x

Castonguay M., Simard P., Gagnon P. 1991. Usefulness of Fourier analysis of otolith shape for Atlantic mackerel (Scomber scombrus) stock discrimination. Can. J. Fish. Aquat. Sci. 48: 296-302. http://dx.doi.org/10.1139/f91-041

Clarke L.M., Thorrold S.R., Conover D.O. 2011. Population differences in otolith chemistry have a genetic basis in Menidia menidia. Can. J. Fish. Aquat. Sci. 68: 105-114. http://dx.doi.org/10.1139/F10-147

Excoffier L., Laval G., Schneider S. 2005. Arlequin ver. 3.0: An integrated software package for population genetics data analysis. Evol. Bioinform. Online 1: 47-50. PMCid:PMC2658868

Ferrito V., Maltagliati F., Mauceri A., Adorno A., Tigano C. 2003. Morphological and genetic variation in four Italian populations of Aphanius fasciatus (Teleostei, Cyprinodontidae). It. J. Zool. 70: 115-121.

Ferrito V., Mannino M.C., Pappalardo A.M., Tigano C. 2007. Morphological variation among populations of Aphanius fasciatus Nardo, 1827 (Teleostei, Cyprinodontidae) from the Mediterranean. J. Fish Biol. 70: 1-20. http://dx.doi.org/10.1111/j.1095-8649.2006.01192.x

Frankham R. 1995. Conservation genetics. Annu. Rev. Gen. 29: 305-327. http://dx.doi.org/10.1146/annurev.ge.29.120195.001513 PMid:8825477

Fuller R.C. 2008. Genetic incompatibilities in killifish and the role of environment. Evolution 62: 3056-3068. http://dx.doi.org/10.1111/j.1558-5646.2008.00518.x PMid:18786184

Ghigliotti L., Mazzei F., Ozouf-Costaz C., Christiansen J.S., Fevolden S.E., Pisano E. 2008. First cytogenetic characterization of the sub-arctic marine fish Mallotus villosus (Müller, 1776), Osmeriformes, Osmeridae. Genet. Mol. Biol. 31: 180-187. http://dx.doi.org/10.1590/S1415-47572008000200003

Girone A., Nolf D. 2009. Fish otoliths from the Priabonian (Late Eocene) of North Italy and South-East France – Their paleobiogeographical significance. Rev. Micropal. 52: 195-218. http://dx.doi.org/10.1016/j.revmic.2007.10.006

Gouy M., Guindon S., Gascuel O. 2010. SeaView version 4: A multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol. Biol. Evol. 27: 221-224. http://dx.doi.org/10.1093/molbev/msp259 PMid:19854763

Guindon S., Gascuel O. 2003. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst. Biol. 52: 696-704. http://dx.doi.org/10.1080/10635150390235520 PMid:14530136

Hall T.A. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41: 95-98.

Hrbek T., Meyer A. 2003. Closing of the Tethys sea and phylogeny of Eurasian killifishes (Cyprinodontiformes: Cyprinodontidae). J. Evol. Biol. 16: 17-36. http://dx.doi.org/10.1046/j.1420-9101.2003.00475.x PMid:14635877

Huelsenbeck J. P., Ronquist F. 2001. MRBAYES: Bayesian inference of phylogeny. Bioinform. 17: 754-755. http://dx.doi.org/10.1093/bioinformatics/17.8.754

Humboldt F.H.A., Valenciennes A. 1821. Recherches sur les poissons fluviatiles de l'Amérique Equinoxiale. In: Humboldt F.H.A., de Bonpland A.J.A. (eds), Voyage de Humboldt et Bonpland, Vol. 2. Schoell et Dufour, Paris, p. 160.

Kishino H., Miyata T., Hasegawa M. 1990. Maximum likelihood inference of protein phylogeny and the origin of chloroplasts. J. Mol. Evol. 30: 151-160. http://dx.doi.org/10.1007/BF02109483

Kumar S., Tamura K., Nei M. 2004. MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform. 5: 150-163. http://dx.doi.org/10.1093/bib/5.2.150 PMid:15260895

Lambeck K., Esat T.M., Potter E.K. 2002. Links between climate and sea levels for the past three million years. Nature 419: 199-206. http://dx.doi.org/10.1038/nature01089 PMid:12226674

Leis J.M., Van Herwerden L., Patterson H.M. 2011. Estimating connectivity in marine fish populations: What works best? Oceanogr. Mar. Biol. Annu. Rev. 49: 193-234.

Lombarte A., Palmer M., Matallanas J., Gómez-Zurita J., Morales-Nin B. 2010. Ecomorphological trends and phylogenetic inertia of otolith sagittae in Nototheniidae. Environ. Biol. Fish. 89: 607-618. http://dx.doi.org/10.1007/s10641-010-9673-2

Maltagliati F. 1999. Genetic divergence in natural populations of the Mediterranean brackish-water killifish Aphanius fasciatus. Mar. Ecol. Prog. Ser. 179: 155-162. http://dx.doi.org/10.3354/meps179155

Maltagliati F., Domenici P., Franch Fosch C., Cossu P., Casu M., Castelli A. 2003. Small-scale morphological and genetic differentiation in the Mediterranean killifish Aphanius fasciatus (Cyprinodontidae) from a coastal brackish-water pond an adjacent pool in northern Sardinia. Oceanol. Acta 26: 111-119. http://dx.doi.org/10.1016/S0399-1784(02)01236-7

Martin C.H., Wainwright P.C. 2011. Trophic novelty is linked to exceptional rates of morphological diversification in two adaptive radiations of Cyprinodon pupfish. Evolution 65: 2197-2212. http://dx.doi.org/10.1111/j.1558-5646.2011.01294.x PMid:21790569

Mejri R., Brutto S.L., Hassine O.K.B., Arculeo M. 2009. A study on Pomatoschistus tortonesei Miller 1968 (Perciformes, Gobiidae) reveals the Siculo-Tunisian Strait (STS) as a breakpoint to gene flow in the Mediterranean basin. Mol. Phyl. Evol. 53: 596-601. http://dx.doi.org/10.1016/j.ympev.2009.04.018 PMid:19422922

Mérigot B., Letourneur Y., Lecomte-Finiger R. 2007. Characterization of local populations of the common sole Solea solea (Pisces, Soleidae) in the NW Mediterranean through otolith morphometrics and shape analysis. Mar. Biol. 151: 997-1008. http://dx.doi.org/10.1007/s00227-006-0549-0

Messaoudi I., Kessabi K., Kacem A., Said K. 2009. Incidence of spinal deformities in natural populations of Aphanius fasciatus Nardo, 1827 from the Gulf of Gabes, Tunisia. Afr. J. Ecol. 47: 360-366. http://dx.doi.org/10.1111/j.1365-2028.2008.00972.x

Milana V., Franchini P., Sola L., Angiulli E., Rossi A.R. 2012. Genetic structure in lagoons: the effects of habitat discontinuity and low dispersal ability on populations of Atherina boyeri. Mar. Biol. 159: 399-411. http://dx.doi.org/10.1007/s00227-011-1817-1

Monteiro L.R., Di Beneditto A.P.M., Guillermo L.H., Rivera L.A. 2005. Allometric changes and shape differentiation of sagitta otoliths in sciaenid fishes. Fish. Res. 74: 288-299. http://dx.doi.org/10.1016/j.fishres.2005.03.002

Nolf D. 1985. Otolithi piscium. Handbook of paleoichthyology. Gustav Fischer, Stuttgart, New York. PMid:4057322

Nolf D. 1995. Studies on fossil otoliths - The state of the art. In: Secor D.H., Dean J.M., Campana S.E. (eds), Recent Developments in Fish Otolith Research. University of South Carolina Press, Columbia, SC, pp. 513-544.

Pappalardo A.M., Ferrito V., Messina A., Guarino F., Patarnello T., de Pinto V., Tigano C. 2008. Genetic structure of the killifish Aphanius fasciatus, Nardo 1827 (Teleostei, Cyprinodontidae), results of mitochondrial DNA analysis. J. Fish Biol. 72: 1154-1173. http://dx.doi.org/10.1111/j.1095-8649.2007.01748.x

Popper A.N., Ramcharitar J.U., Campana S.E. 2005. Why otoliths? Insights from inner ear physiology and fisheries biology. Mar. Fresh. Res. 56: 497-504. http://dx.doi.org/10.1071/MF04267

Posada D. 2008. jModelTest: Phylogenetic Model Averaging. Mol. Biol. Evol. 25: 1253-1256. http://dx.doi.org/10.1093/molbev/msn083 PMid:18397919

Reichenbacher B., Sienknecht U. 2001. Allopatric divergence and genetic diversity of Recent Aphanius iberus and fossil Prolebias meyeri (Teleostei, Cyprinodontidae) from southwest and western Europe, as indicated by otoliths. Geobios 34: 69-83. http://dx.doi.org/10.1016/S0016-6995(01)80047-4

Reichenbacher B., Feulner G.R., Schulz-Mirbach T. 2009a. Geographic Variation in Otolith Morphology Among Freshwater Populations of Aphanius dispar (Teleostei, Cyprinodontiformes) from the Southeastern Arabian Peninsula. J. Morph. 270: 469-484. http://dx.doi.org/10.1002/jmor.10702 PMid:19117063

Reichenbacher B., Kamrani E., Esmaeili H.R., Teimori A. 2009b. The endangered cyprinodont Aphanius ginaonis (Holly, 1929) from southern Iran is a valid species: evidence from otolith morphology. Environ. Biol. Fish. 86: 507-521. http://dx.doi.org/10.1007/s10641-009-9549-5

Reichenbacher B., Sienknecht U., Küchenhoff H., Fenske N. 2007. Combined otolith morphology and morphometry for assessing taxonomy and diversity in fossil and extant killifish (Aphanius, †Prolebias). J. Morph. 268: 898-915. http://dx.doi.org/10.1002/jmor.10561 PMid:17674357

Rocco L., Ferrito V., Costagliola D., Marsilio A., Pappalardo A.M., Stingo V., Tigano C. 2007. Genetic divergence among and within four Italian populations of Aphanius fasciatus (Teleostei, Cyprinodontiformes). It. J. Zool. 74: 371-379.

Ronquist F., Huelsenbeck J.P. 2003. MrBayes 3, Bayesian phylogenetic inference under mixed models. Bioinform. 19: 1572-1574. http://dx.doi.org/10.1093/bioinformatics/btg180

Ronquist F., Huelsenbeck J.P., Van der Mark P. 2005. MrBayes 3.1 Manual. Available at http://mrbayes.csit.fsu.edu/ Accessed date May 2007.

Rozas J., Sánchez-Delbarrio J.C., Messeguer X., Rozas R. 2003. DnaSP, DANN polymorphism analyses by the coalescent and other methods. Bioinform. 19: 2496-2497. http://dx.doi.org/10.1093/bioinformatics/btg359

Schwarzhans W., Bratishko A. 2011. The otoliths from the middle Paleocene of Luzanivka (Cherkasy district, Ukraine). N. Jb. Geol. Pal. Abh. 261: 83-110. http://dx.doi.org/10.1127/0077-7749/2011/0154

Shimodaira H., Hasegawa H. 1999. Multiple comparisons of loglikelihoods with applications to phylogenetic inference. Mol. Biol. Evol. 16: 1114-1116. http://dx.doi.org/10.1093/oxfordjournals.molbev.a026201

Smale M.J., Watson G., Hecht T. (eds). 1995. Otolith atlas of southern African marine fishes (Ichthyological Monographs). J.L.B. Smith Institute of Ichthyology, Grahamstown.

Sollner-Webb B., Mougey E.B. 1991. News from the nucleolus: rRNA gene expression. Trends Biochem. Sci. 16: 58-62. http://dx.doi.org/10.1016/0968-0004(91)90025-Q

SPSS Inc. 2011. SPSS. Ver. 19.0. Base. Chicago, IL: SPSS, Inc.

Stepien C. A., Rosenblatt R.H., Bargmeyer B.A. 2001. Phylogeography of the spotted sand bass, Paralabrax maculatofasciatus: divergence of Gulf of California and Pacific coast populations. Evolution 55: 1852-1862. PMid:11681740

Stransky C., Baumann H., Fevolden S.E., Harbitz A., Høie H., Nedreaas K.H., Salberg A.B., Skarstein T. 2008. Separation of Norwegian coastal cod and Northeast Arctic cod by outer otolith shape analysis. Fish. Res. 90: 26-35. http://dx.doi.org/10.1016/j.fishres.2007.09.009

Swofford D.L. 2003. PAUP*: Phylogenetic analysis using parsimony (* and other methods), version 4.0b10. Sinauer Associates, Sunderland, MA. PMid:18428704

Tamura K., Nei M. 1993. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol. Biol. Evol. 10: 512-526. PMid:8336541

Teimori A., Schulz-Mirbach T., Esmaeili H.R., Reichenbacher B. 2012a. Geographical differentiation of Aphanius dispar (Teleostei: Cyprinodontidae) from Southern Iran. J. Zool. Sys. Evol. Res. 50: 289-304. http://dx.doi.org/10.1111/j.1439-0469.2012.00667.x

Teimori A., Jawad L.A.J., Al-Kkarusi L.H., Al-Mamry J.N., Reichenbacher B. 2012b. Late Pleistocene to Holocene diversification and zoogeography of the Arabian killifish Aphanius dispar inferred from otolith morphology. Sci. Mar. 76: 637-645.

Tigano C., Ferrito V., Nicosia R. 1999. Morphological analysis of the pharyngeal jaws in two populations of Aphanius fasciatus Valenciennes, 1821 (Teleostei: Cyprinodontidae). J. Morph. 241: 107-114. http://dx.doi.org/10.1002/(SICI)1097-4687(199908)241:2<107::AID-JMOR1>3.0.CO;2-0

Tigano C., Ferrito V., Adorno A., Mannino M.C., Mauceri A. 2001. Pharyngeal and oral jaw differentiation in five populations of Aphanius fasciatus (Teleostei, Cyprinodontidae). It. J. Zool. 68: 201-206.

Tigano C., Canapa A., Ferrito V., Barucca M., Arcidiacono I., Olmo E. 2004. Osteological and molecular analysis of three Sicilian populations of Aphanius fasciatus (Teleostei, Cyprinodontidae). It. J. Zool. 71: 107-113.

Tigano C., Canapa A., Ferrito V., Barucca M., Arcidiacono I., Deidon A., Schembri P.J., Olmo E. 2006. A study of osteological and molecular differences in populations of Aphanius fasciatus Nardo, 1827, from the central Mediterranean (Teleostei, Cyprinodontidae). Mar. Biol. 149: 1539-1550. http://dx.doi.org/10.1007/s00227-006-0300-x

Torres G.J., Lombarte A., Morales-Nin B. 2000. Sagittal otolith size and shape variability to identify intraspecific differences in three species of the genus Merluccius. J. Mar. Biol. Ass. U.K. 80: 333-342. http://dx.doi.org/10.1017/S0025315499001915

Torres-Machorro A.L., Hernandez R., Cevallos A.M., Lopez-Villasenor I. 2010. Ribosomal RNA genes in eukaryotic microorganisms: witnesses of phylogeny? FEMS Microbiol. Rev. 34: 59-86. http://dx.doi.org/10.1111/j.1574-6976.2009.00196.x PMid:19930463

Triantafyllidis A., Leonardos I., Bista I., Kyriazis I.D., Stoumboudi M.T., Kappas I., Amat F., Abatzopoulos T.J. 2007. Phylogeography and genetic structure of the Mediterranean killifish Aphanius fasciatus (Cyprinodontidae). Mar. Biol. 152: 1159-1167. http://dx.doi.org/10.1007/s00227-007-0760-7

Tuset V.M., Lombarte A., Assis C. 2008. Otolith atlas for the western Mediterranean, north and central eastern Atlantic. Sci. Mar. 72S1: 7-198.

Vignon M., Morat F. 2010. Environmental and genetic determinant of otolith shape revealed by a nonindigenous tropical fish. Mar. Ecol. Prog. Ser. 411: 231-241. http://dx.doi.org/10.3354/meps08651

Villwock W. 1994. On micropopulations in fish and their effects on differentiation and speciation. In: Remmer H. (ed.), Minimum Animal Populations. Ecol. Stud. 106. Springer, Berlin, pp. 51-65. http://dx.doi.org/10.1007/978-3-642-78214-5_5

Volpedo A.V., Cirelli A.F. 2006. Otolith chemical composition as a useful tool for sciaenid stock discrimination in the southwestern Atlantic. Sci. Mar. 70: 325-334.

Volpedo A.V., Echeverría D.D. (eds) 2000. Catálogo y claves de otolitos para la identificación de peces del Mar Argentino. 1. Peces de importancia comercial. Editorial Dunken, Buenos Aires.

Wildekamp R.H. 1993. The genus Aphanius Nardo. In: Watters B.R. (ed.), A World of Killies, Atlas of the Oviparous Cyprinodontiform Fishes of the World. American Killifish Association, Mishawaka, IN., pp. 19-67.

Williams D.A., Brown S.D., Crawford D.L. 2008. Contemporary and historical influences on the genetic structure of the estuarine-dependent Gulf killifish Fundulus grandis. Mar. Ecol. Prog. Ser. 373: 111-121. http://dx.doi.org/10.3354/meps07742

Wilson A.C., Cann R.L., Carr S.M., Geroge M., Gyllensten U.B., Helm-Bychowski K.M., Higuchi R.G., Palumbi S.R., Prager E.M., Sage R.D., Stoneking M. 1985. Mitochondrial DNA and two perspectives on evolutionary genetics. Biol. J. Linn. Soc. 26: 375-400. http://dx.doi.org/10.1111/j.1095-8312.1985.tb02048.x

Woods R.J., Macdonald J.I., Crook D.A, Schmidt D.J., Hughes J.M. 2010. Contemporary and historical patterns of connectivity among populations of an inland river fish species inferred from genetics and otolith chemistry. Can. J. Fish. Aquat. Sci. 67: 1098-1115. http://dx.doi.org/10.1139/F10-043

Downloads

Published

2013-06-30

How to Cite

1.
Annabi A, Said K, Reichenbacher B. Inter-population differences in otolith morphology are genetically encoded in the killifish Aphanius fasciatus (Cyprinodontiformes). Sci. mar. [Internet]. 2013Jun.30 [cited 2024Mar.28];77(2):269-7. Available from: https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1458

Issue

Section

Articles

Most read articles by the same author(s)