Using sagittal otoliths and eye diameter for ecological characterization of deep-sea fish: Aphanopus carbo and A. intermedius from NE Atlantic waters

Authors

  • Víctor Manuel Tuset Departamento de Biología Pesquera, Instituto Canario de Ciencias Marinas (ICCM-ACIISI) - Institut de Ciències del Mar (CSIC)
  • Silvia Piretti Departamento de Biología Pesquera, Instituto Canario de Ciencias Marinas (ICCM-ACIISI)
  • Antoni Lombarte Institut de Ciències del Mar (CSIC)
  • José Antonio González Departamento de Biología Pesquera, Instituto Canario de Ciencias Marinas (ICCM-ACIISI)

DOI:

https://doi.org/10.3989/scimar.2010.74n4807

Keywords:

ecology, morphometry, otolith, Aphanopus carbo, Aphanopus intermedius, teleosts

Abstract


The sagittal otolith and eye diameter of two sympatric species of the genus Aphanopus, A. carbo and A. intermedius, from North Atlantic waters were investigated. The study objectives were to find morphometric variables of otoliths to identify the two species and relate ecomorphological characters of otolith and eye diameter to the depth distribution of each species. The otoliths of the two species are very similar, although significant differences in shape, otolith height and weight and the sulcus acusticus area were detected. The ratio between eye diameter and cephalic length (ED:CL ratio) was also significantly different. In both analyses A. carbo obtained higher values, which suggests that A. carbo and A. intermedius live in different spatial niches, and that A. carbo inhabits deeper waters. The ratio between the sulcus and otolith areas (S:O) was low compared to other fish species, which suggests that the hearing capacity of Aphanopus spp. is adapted to low frequency sound. This adaptation may be related to the oceanographic conditions in which these species live, and in particular to the characteristics of sound transmission in the “SOFAR channel”.

Downloads

Download data is not yet available.

References

Aguirre, H. and A. Lombarte. – 1999. Ecomorphological comparisons of sagittae in Mullus barbatus and M. surmuletus. J. Fish Biol., 55: 105-114.

Arellano, R.V., O. Hamerlynck, M. Vinex, J. Mees, K. Hostens and W. Gijselinck. – 1995. Changes in the ratio of the sulcus acusticus area to the sagitta area of Pomatoschistus minutus and P. lozanoi (Pisces, Gobiidae). Mar. Biol., 122: 355-360. doi:10.1007/BF00350868

Atema, J., R.R. Fay, A.N. Popper and W.N. Tavolga. – 1988. Sensory biology of aquatic animals. Springer-Verlag, New York.

Blaxter, J.H.S. – 1988. Sensory performance, behavior and ecology of fish. In: J. Atema, R.R. Fay, A.N. Popper and W.N. Tavolga (eds.), Sensory biology of aquatic animals, pp. 203-222. Springer-Verlag, New York.

Bock, W.J. – 1990. From biologische anatomie to ecomorphology. Netherlands J. Zool., 40: 254-277. doi:10.1163/156854289X00291

Bozzano, A., R. Murgia, S. Vallerga, J. Hirano and S. Archer. – 2001. Functional adaptations of the photoreceptor system in the retinae of two species of dogfish: relationships with feeding habits and depth distribution. J. Fish Biol., 59: 1258-1278.

Clarke, M.W., C.J. Kelly, P.L. Connolly and J.P. Molloy. – 2003. A life history approach to the assessment and management of deepwater fisheries in the Northeast Atlantic. J. Northwest Atl. Fish. Sci., 31: 401-411.

Fay, R.R. – 1988. Hearing in vertebrates, a psychophysics databook. Heffernan Press, Massachusetts.

Fernald, R.D. – 1988. Aquatic adaptation on eye design. In: J. Atema, R.R. Fay, A.N. Popper and W.N. Tavolga (eds.), Sensory biology of aquatic animals, pp. 435-466. Springer-Verlag, New York.

Figueiredo, I., P.B. Machado, S. Reis, D. Sena-Carvalho, T. Blasdale, A. Newton and L.S. Gordo. – 2003. Observations on the reproductive cycle of the black scabbardfish (Aphanopus carbo Lowe, 1839) in the NE Atlantic. ICES J. Mar. Sci., 60(4): 774-779. doi:10.1016/S1054-3139(03)00064-X

Gauldie, R.W. – 1988. Function, form and time-keeping properties of fish otoliths. Comp. Biochem. Physiol., 91: 395-402. doi:10.1016/0300-9629(88)90436-7

Gordo, L.S. – 2009. Black scabbardfish (Aphanopus carbo Lowe, 1839) in the southern Northeast Atlantic: considerations on its fishery. Sci. Mar., 73S2: 11-16.

Gordon, J.D.M. – 2001. Deep-water fisheries at the Atlantic Frontier. Cont. Shelf Res., 21: 987-1003. doi:10.1016/S0278-4343(00)00121-7

Howe, K.M., D.L. Steine and C.E. Bond. – 1979. First records off Oregon of the pelagic fishes Paralepis atlantica, Gonostoma atlanticum and Aphanopus carbo, with notes on the anatomy of Aphanopus carbo. Fish. Bull., 77(3): 700-703.

Lombarte, A. – 1992. Changes in otolith area: sensory area ratio with body size and depth. Environ. Biol. Fish., 33: 405-410. doi:10.1007/BF00010955

Lombarte A. and A. Popper. – 1994. Quantitative analyses of postembryonic hair cell addition in the otolithic end organs of the inner ear of the European hake, Merluccius merluccius (Gadiformes, Teleostei). J. Comp. Neurol., 345: 419-428. doi:10.1002/cne.903450308 PMid:7929910

Lombarte, A. and H. Aguirre. – 1997. Quantitative differences in the chemoreceptors systems in the barbels of two species of Mullidae (Mullus surmuletus and M. barbatus) with different bottom habitats. Mar. Ecol. Prog. Ser., 150: 57-64. doi:10.3354/meps150057

Lombarte A. and A. Cruz. – 2007. Otolith size trends in marine communities from different depth strata. J. Fish. Biol., 71: 53-76. doi:10.1111/j.1095-8649.2007.01465.x

Lorance, P., S. Souissi, F. Uiblein and R. Castillo-Eguía. – 2001. Distribution and density of carnivorous fish species around Lanzarote and Fuerteventura, Canary Islands. Sci. Counc. Res. Doc. NAFO, 01/168: 1-14.

Martins, M.R. and C. Ferreira. – 1995. Line fishing for black scabbardfish Aphanopus carbo Lowe, 1839 and other deep water species in the eastern mid Atlantic to the north of Madeira. In: A.G. Hoppe (ed.), Deep Water Fisheries of the North Atlantic Oceanic Slope, pp. 323-325. Kluwer Academic Publishers, Dordrecht, The Netherlands.

Martins, M.M., M.R. Martins and F. Cardador. – 1994. Evolution of the Portuguese fishery of black scabbard fish Aphanopus carbo Lowe, 1839 during the period 1984-1993. pp. 1-12 (ICES CM 1994/G: 28).

Mauchline, J. and J.D.M. Gordon. – 1984. Occurrence and feeding of berycomorphid and percomorphid teleost fish in the Rockall Trough. ICES J. Cons., 41: 239-247.

Morales-Nin, B. and D. Sena-Carvalho. – 1996. Age and growth of the black scabbard fish Aphanopus carbo off Madeira. Fish. Res., 2: 239-251. doi:10.1016/0165-7836(95)00432-7

Morales-Nin, B., A. Canha, M. Casas, I. Figuereido, L.S. Gordo, J.M. Gordon, D. Gouveia, C.G. Piñeiro, S. Reis, A. Reis and S.C. Swan. – 2002. Intercalibration of age readings of deepwater black scabbardfish, Aphanopus carbo (Lowe, 1839). ICES J. Mar. Sci., 59: 352-364. doi:10.1006/jmsc.2001.1154

Nakamura, I. and N.V. Parin. – 1993. FAO Species Catalogue, vol. 15. Snake mackerels and cutlassfishes of the world (Families Gempylidae and Trichiuridae). An annotated and illustrated catalogue of the snake mackerels, snoeks, escolars, gemfishes, sackfishes, domine, oilfish, cutlassfishes, scabbardfishes, hairtails, and frostfishes known to date. FAO Fish. Synop., 125: 1-136.

Neves, A., A.R. Vieira, I. Farias, I. Figueiredo, V. Sequeira and L.S. Gordo. – 2009. Reproductive strategies in black scabbardfish (Aphanopus carbo Lowe, 1839) from the NE Atlantic. Sci. Mar., 73S2: 19-31.

Norton, S.F., J.J. Luczkovich and P.J. Motta. – 1995. The role of ecomorphological studies in the comparative biology of fishes. Environ. Biol. Fish., 44: 287-304. doi:10.1007/BF00005921

Pajuelo, J.G., J.A. González, J.I Santana, J.M. Lorenzo, A. García-Mederos and V.M. Tuset. – 2008. Biological parameters of the bathyal fish black scabbardfish (Aphanopus carbo Lowe, 1839) off the Canary Islands, Central-east Atlantic. Fish. Res., 92: 140-147. doi:10.1016/j.fishres.2007.12.022

Parin, N.V. – 1995. Three new species and new records of cutlass fishes of the genus Aphanopus (Trichiuridae). J. Ichthyol., 35(2): 128-138.

Paxton, J.R. – 2000. Fish otoliths: do sizes correlate with taxonomic group, habitat and/or luminescence? Philos. Trans. R. Soc. Lond. B, 355: 1299-1303. doi:10.1098/rstb.2000.0688 PMid:11079419    PMCid:1692828

Popper, A.N. and Z. Lu. – 2000. Structure-function relationships in fish otolith organs. Fish. Res., 46: 15-25. doi:10.1016/S0165-7836(00)00129-6

Pshenichny, B.P., A.N. Kotlyar, and A.A. Glukhov. – 1986. Fish resources of the Atlantic Ocean thalassobathyal. In: Biological resources of the Atlantic Ocean, pp. 230-252. Nauka Press, Moscow.

Recasens, L., A. Lombarte, B. Morales-Nin and G. Torres. – 1998. Spatio-temporal variation in the population structure of the European hake in the NW Mediterranean. J. Fish. Biol., 53: 387-401. doi:10.1111/j.1095-8649.1998.tb00988.x

Reichenbacher, B., U. Sienknecht, H. Ku.chenhoff and N. Fenske. – 2007. Combined otolith morphology and morphometry for assessing taxonomy and diversity in fossil and extant Killifish (Aphanius, †Prolebias). J. Morph., 268: 898-915. doi:10.1002/jmor.10561 PMid:17674357

Rogers, P.H. and M. Cox. – 1988. Underwater sound as a biological stimulus. In: J. Atema, R.R. Fay, A.N. Popper and W.N. Tavolga (eds.), Sensory biology of aquatic animals, pp. 131-149. Springer-Verlag, New York.

Schoener, T.W. – 1974. Resource partitioning in ecological communities. Science, 1985: 27-39. doi:10.1126/science.185.4145.27 PMid:17779277

Schulz-Mirbach, T., C. Stransky, J. Schlickeisen and B. Reichenbacher.– 2008. Differences in otolith morphologies between surface- and cave-dwelling populations of Poecilia mexicana (Teleostei, Poeciliidae) reflect adaptations to life in an extreme habitat. Evol. Ecol. Res., 10: 537-558.

Seehausen, O., Y. Terai, I.S. Magalhaes, K.L. Carleton, H.D.J. Mrosso, R. Miyagi, I. Van der Sluijs, M.V. Schneider, M.E. Maan, H. Tachida, H. Imai and N. Okada. – 2008. Speciation through sensory drive in cichlid fish. Nature, 455: 230-625. doi:10.1038/nature07285 PMid:18833272

Shotton, R. – 2005. Pesquerías en aguas profundas. In: Examen de la situación de los recursos pesqueros marinos mundiales. FAO Doc. Téc. Pesca, 457: 1-260.

Stefanni, S. and H. Knutsen. – 2007. Phylogeography and demographic history of the deep-sea fish, Aphanopus carbo (Lowe, 1839), in the NE Atlantic: vicariance followed by secondary contact or speciation? Mol. Phylog Evol., 42: 38-46. doi:10.1016/j.ympev.2006.05.035 PMid:16876444

Torres, G.J., A. Lombarte and B. Morales-Nin. – 2000. Variability of the sulcus acusticus in the sagittal otolith of the genus Merluccius (Merluciidae). Fish. Res., 46: 5-13. doi:10.1016/S0165-7836(00)00128-4

Tuset, V.M, A. Lombarte, J.A. González, J.F. Pertusa and M.J. Lorente. – 2003. Comparative morphology of the sagittal otolith in Serranus spp. J. Fish Biol., 63: 1491-1504. doi:10.1111/j.1095-8649.2003.00262.x

Tuset, V.M., A. Lombarte and C.A. Assis. – 2008. Otolith atlas for the western Mediterranean, north and central eastern Atlantic. Sci. Mar., 72S1: 1-203.

Volpedo, A.V. and D.D. Echeverría. – 2003. Ecomorphological patterns of the sagitta in fish on the continental shelf off Argentine. Fish. Res., 60: 551-560. doi:10.1016/S0165-7836(02)00170-4

Warrant, E.J. and A. Locket. – Vision in the deep sea. Biol. Rev., 79: 671-712. doi:10.1017/S1464793103006420 PMid:15366767

Weissburg, M.J. – 2005. Sensory biology: linking the internal and external ecologies of marine organisms. Introduction. Mar. Ecol. Prog. Ser., 287: 263-265. doi:10.3354/meps287263

Zar, J.H. – 1996. Biostatistical Analysis. New Jersey: Prentice-Hall International.

Downloads

Published

2010-12-30

How to Cite

1.
Tuset VM, Piretti S, Lombarte A, González JA. Using sagittal otoliths and eye diameter for ecological characterization of deep-sea fish: Aphanopus carbo and A. intermedius from NE Atlantic waters. Sci. mar. [Internet]. 2010Dec.30 [cited 2024Apr.19];74(4):807-14. Available from: https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1207

Issue

Section

Articles

Most read articles by the same author(s)

1 2 > >>