Physiological study of larval fishes: challenges and opportunities

WARREN BURGGREN and TARA BLANK

Department of Biological Sciences, 1155 Union Circle #305220, University of North Texas, Denton TX 76203-5017, USA. E-mail: Burggren@unt.edu

SUMMARY: Physiological studies of larval fishes have lagged far behind those of adults, yet offer tremendous opportunities for expanding our knowledge of the basic biology of both marine and freshwater fishes. Physiological studies of larval fishes can also improve research and management in areas of applied science, such as aquaculture, fisheries, and environmental assessment. Additionally, larval fishes can be highly effective as general animal models for understanding evolution, development and disease processes in vertebrates. While the small size of larval fishes may initially seem to preclude detailed physiological measurements, physiologists have taken advantage of larval transparency and permeability to drugs and toxins to collect many forms of quantitative physiological data. In this essay we present a number of microtechniques currently employed in larval fish to study the cardiovascular, muscular, neurological, and ionoregulatory systems. Several interesting phenomena, including allometry, developmental plasticity and epigenetic effects, are then discussed from the perspective of the specific contributions that have been or can be made by studies of fish larvae. Ultimately, the integration of larval fish physiology with studies of morphology and behaviour, is both highly feasibly and likely to strengthen basic and applied research in fishes.

Keywords: larval fish, physiological techniques, allometry, development, evolution, epigenetics.

INTRODUCTION: WHY STUDY LARVAL FISH PHYSIOLOGY?

The physiology of adult fishes has been studied for centuries, but the investigation of physiological processes in larval fishes is a somewhat modern emphasis, enabled in part by technological advances. Consequently, answers to long-standing questions surrounding larval fishes are rapidly emerging and have been reported in a number of recent syntheses, most notably by Finn and Kappor (2008). Such research helps expand basic ichthyological knowl-
edge—for example, by increasing our understanding of niche exploitation in marine and freshwater habitats. Evolutionary insights are also provided through physiological studies of larval fish because, in spite of the preferential studies of adults, embryonic and larval forms are an integral part of a species’ evolutionary history. Studies of larval fish physiology can also be invaluable in terms of increasing the effectiveness of aquaculture research and fisheries management. Indeed, studies of energetics, growth and assimilation, and metabolism—to name a just few areas of physiological focus—can provide important details of life history not available from population counts, morphological measurements or observations of mortality. Finally, larval fish can also serve as a “bellwether” for the impacts of global climate change. Understanding the physiological responses of larval fishes to altered temperature, pH, salinity, and oxygen concentration (as found in marine “dead zones”, for example) may prove invaluable in managing the maintenance or recovery of fish populations.

While studying larval fishes to gain broader insights into fish biology is obvious, perhaps less obvious is the tremendous opportunity that larval fishes present as general animal models for understanding vertebrate development. Larval fishes can serve as broadly applicable models because early stages of development are surprisingly similar across vertebrate taxa. These similarities can be exploited and extrapolated so that discoveries made in a larval fish model could, for example, be transferred to research into human disease. The zebrafish (Danio rerio) is a wonderful example. A series of genetic screens (e.g. the 2000 Tübingen genetic screen) has led to the identification of several thousand mutations in the zebrafish heart, blood, blood vessels, bone, cartilage, nervous system, immune system and other cells, tissues and organs (http://zfin.org/). The ease of obtaining, maintaining, and breeding the zebrafish, along with its high fecundity and relatively short generation time, has rocketed the zebrafish to the forefront of developmental biology, and is helping to create new treatments for human disease.

While the zebrafish may have become the gold standard for modelling vertebrate development and studying disease processes, its characteristics and responses cannot, of course, be extrapolated to all vertebrates or even to all fishes, bearing in mind the complex interplay of environmental factors on growth, development, reproduction, and survival. Marine fishes, for example, exhibit a wide variety of thresholds of tolerance for salinity, and many temperate freshwater fishes display a much broader range of thermal tolerance than does the tropical freshwater zebrafish. Acknowledging the need for a number of many diverse piscine models for studying developmental and environmental responses will only increase the value of larval fish research.

Having given just a few of the many possible answers to the question “Why study larval fish physiology”, we now move on 1) to consider the many challenges presented by physiological investigation of larval fishes, and then 2) to present solutions to these challenges offered by the burgeoning field of micro-physiological techniques. We conclude this paper with a final section containing a few illustrative examples of studies of larval fish physiology.

STUDYING LARVAL PHYSIOLOGY: TECHNOLOGICAL CHALLENGES AND SOLUTIONS

Among the largest and most obvious challenge in studying the physiological processes of larval fishes is their extremely small size. Although physiological techniques abound for adult fishes, the reduced size of the embryonic and larval forms has made it necessary to rethink and reinvent methodologies for data collection. Ironically, however, characteristics of tiny larval fishes may offer the determined researcher advantages over studying adult fishes. Foremost, the body wall of embryos and early larval stages of almost all fishes is nearly transparent, enabling the visualization of most internal organs with relative ease using basic microscopic techniques. From these images a surprisingly diverse array of physiological measures can be made. The cardiovascular system of developing fishes is commonly studied with optical techniques, but other systems include muscles, neurons and sensory organs, and organs of the digestive system. Below we will introduce several possibilities for physiological measurements in marine and freshwater fish larvae, and provide basic citations allowing the readers to delve further themselves into the techniques.

Cardiovascular system

During vertebrate development the cardiovascular system is the first organ system to become fully
Almost any casual observer has noted the early beating of the newly formed heart when a larva is viewed with a microscope. Measurements of heart rate can be made in vivo by simply counting beats per minute using a stopwatch, or for a more permanent record for analysis, using a video camera attached to a microscope. Furthermore, many common hand-held video cameras with powerful zoom lenses can just be placed in a tripod and positioned over the eyepiece of a microscope without a dedicated camera and microscope lens attachment.

Moving beyond simple heart rate, measurement of additional parameters may be more technically demanding, but can also provide a more detailed record of embryonic/larval cardiovascular function and how it varies over time. Cardiac output of larval fishes, for example, can be derived in vivo from heart rate and stroke volume, the latter determined from dimensional changes of the heart during its systolic and diastolic cycling (Hou and Burggren, 1995; Fritsche and Burggren, 1996; Schwerte and Pelster, 2000; Schwerte and Fritsche, 2003; Burggren and Bagatto, 2008). Observations of blood velocity enables the quantitative calculation of blood flow and tissue perfusion, and can be determined in larval fishes and other tiny animals by laser Doppler flow probes (Koyama et al., 1975; Pelster and Bemis, 1991; Schwerte et al., 1997; Pelster and Burggren, 1996), spectroscopic analysis (Altimiras et al., 1995) and digital particle image velocimetry (Hove et al., 2003).

Continuous, dynamic recordings of larval blood pressure can be made using a servo-null micropressure system based on the insertion into the circulation of a tiny glass microelectrode similar to that used in neurophysiological recordings (Pelster and Bemis, 1991; Pelster and Burggren, 1996). When blood flow and blood pressure measurements are made concurrently, peripheral resistance values can be calculated, taking the analysis of integrated vascular function to a far higher level. Figure 1 indicates concurrently measured blood velocity and blood pressure in the little skate,

![Fig. 1. Cardiovascular measurements in a 44 d old, 120 mg larva of the little skate, Raja erinacea. Intraventricular blood pressure was measured with a micro-pressure measurement system. Arterial blood velocity was determined with a bare pulsed Doppler crystal monitoring flow ejected from the anterior end of the conus arteriosus. Heart rate was derived from the primary blood pressure signal. Such measurements, innovative when Pelster and Bemis (1991) carried them out, are now routine. See text for additional details.](image1)

![Fig. 2. A computer-generated “vascular cast” of the microcirculation of a zebrafish larva. By capturing the pathway of moving erythrocytes, fine details of the perfused vasculature can be generated. Panel A reveals the overall circulation of the larva, including distinct vertebral vessels for each myotome in the trunk. Panel B shows in more detail the axial artery and vein. (After Fritsche et al., 2000)](image2)
In vivo measurements of red blood cell concentration and blood perfusion can be made via digital motion analysis (Schwerte and Pelster, 2000; Schwerte et al., 2003), labelled erythrocytes/corpuscles (Weinstein et al., 1996), and by the use of GFP transgenic animals (Long et al., 1997). Even in vivo measurements of blood oxygenation and changes in blood oxygen transport may be performed by using spectroscopic ratio imaging (Shiga et al., 1990).

This section has provided just a snapshot of the techniques available for cardiovascular measurements in larval fishes. For a more thorough review of cardiovascular physiology microtechniques in small vertebrates, including larval fishes, see Schwerte and Fritsche (2003) and Burggren and Bagatto (2005).

Haematology and hemostasis

The development of red blood cells, white blood cells and platelets is crucial to physiological function through a fish’s life span. However, the development of the process of hematopoiesis (blood cell formation) is still somewhat poorly understood in larval fishes (see Burggren and Bagatto, 2008). Fish share many biochemical pathways with humans, including those involved in blood coagulation (Van Vliet et al., 1985; Jagadeeswaran et al., 1999; Jagadeeswaran and Sheehan, 1999). To exploit these similarities, novel methods for studying the process of hemostasis (blood clotting) have been developed for larval fishes (primarily the zebrafish but readily transferrable to other species), including artificial induction of haemophilia (Jagadeeswaran and Liu, 1997) and the use of a mini-laser to induce thrombosis in tiny, regionalized areas of the circulation (Gregory et al., 2002; Jagadeeswaran et al., 2006). These techniques, in conjunction with larval exposure to a wide range of compounds, have proven useful for identifying substances that can reduce clotting time at the injury site—data that may eventually make their way into clinical trials for humans. However, understanding the clotting processes in fishes in general, and larvae in particular, may also be vitally important for understanding outbreaks of haemolytic diseases in marine fish populations and aquaculture settings (e.g. Guieng et al., 2006).

Respiratory and Metabolic Physiology

The respiratory and metabolic physiology of embryonic and larval fishes is also highly amenable to study, and investigations in these areas have actually made broad contributions to vertebrate physiology (e.g. Wieser, 1995, 2002; Hunt von Herbing, 2006). While the notion of measuring whole animal oxygen consumption in an animal as small as a young fish larva may seen intimidating, in fact whole animal oxygen consumption in very small fishes (or any other very small aquatic animal) can be readily measured by employing an appropriately sized glass syringe as a closed respirometer (e.g. Barrionuevo and Burggren, 1999). After a specified amount of time at a controlled temperature, a small volume of water from the syringe is injected into an oxygen electrode, yielding the oxygen partial pressure (PO2) of the water in the respirometer. Knowing the volume of the water in the respirometer (determined from the markings on the syringe), the volume of the animal, the elapsed time in the respirometer, and the water PO2 before and after the measurement period, the oxygen consumption of the embryo or larva can be accurately determined (for a comprehensive description of both open and closed respirometry see Lighton, 2008). This method can also be used to determine the critical PO2 (PCrit)—the PO2 at which the larva makes the transition from an “oxygen regulator,” capable of maintaining its oxygen consumption, to an “oxygen conformer”, where its oxygen consumption falls along with the ambient PO2. By allowing the animal’s metabolism to reduce the PO2 in the respirometer over several successive measurements, the PCrit can be readily revealed. These respirometry methods can be extended to include activity metabolism during swimming in individual larval fishes (Hunt von Herbing and Boutilier, 1996; Bagatto et al., 2001; Bagatto, 2005; Ruizicka and Gallager, 2006). Larvae are introduced into a sealed glass swim tunnel in which water is circulated at a known velocity. An oxygen probe monitoring water in the swim tunnel allows for constant evaluation of the water’s oxygen content (Fig. 3). By determining the rate of oxygen decline during swimming bouts, the oxygen consumption, metabolic scope and other measurements can be determined in unrestrained, actively swimming larvae.

Microcalorimetry provides yet another avenue for obtaining metabolic rate, allowing the total metabolic rate (aerobic plus anaerobic) to be calculated from measurements of total heat output via direct calorimetry (McCullum et al., 2006). Microcalorimetry has been shown to be reliably used in studies of larval fishes (Finn et al., 1996; McCullum et al., 2006).
Embryonic and larval fishes exchange gases significantly, if not primarily, across their skin (Rombough, 1988). Microelectrodes can be used to determine area-specific cutaneous regions of intense oxygen consumption by determining the \(\text{PO}_2 \) gradient in the diffusive boundary layer at various locations on the skin surface (Rombough, 1998).

Osmoregulation and ionoregulation

Understanding osmoregulation in embryonic and larval fishes is key to the effective management of natural populations of many marine species, which early in their life cycle may be exposed to considerable variation in salinity (e.g. in estuaries or in the rivers where anadromous species breed). In freshwater fish larvae, osmoregulation represents a major energetic cost, and understanding the trade-offs between energy expenditure on osmoregulation and energy expenditure on assimilation may lead to important insights into fish development and growth (for a recent review see Kaneko and Hiroi, 2008).

The main site of ion exchange in adult fish is the gills, where chloride cells are responsible for active ion transport across the gill epithelia (e.g. Foskett and Scheffey, 1982). More recently, it has been proposed that the major function of the gills of late larval and juvenile zebrafish is ionoregulation, with the additional role of gas exchange only developing subsequently (Rombough, 2002, 2007a; Varsamos, 2005). Even before branchial development, however, chloride cells can also be found in the yolk-sac membrane and other body surfaces (Kaneko et al., 1995; Rombough, 2007a). The physiology of osmoregulation and the specific role of these cells (also referred to as mitochondria-rich cells or ionocytes), can be investigated with several methods, including fluorescent microscopy using a dye specific for mitochondria (e.g. DASPEI) or by immunochemistry with a specific antiserum for Na\(^+\), K\(^+\)-ATPase (Kaneko and Hiroi, 2008). Such techniques have been employed, for example, to reveal that chloride cells of the yolk-sac membrane of embryos and larvae of the Mozambique tilapia, Oreochromis mossambicus, differ in size and density between those adapted to freshwater and those adapted to seawater (Ayson et al., 1994). Additional differences in the fine structure of these cells has been studied with both scanning and transmission electron microscopy (Shiraishi et al., 1997). The ion secreting and absorbing functions of the chloride cells can be detected with the vibrating probe technique (Foskett and Scheffey, 1982) and the chloride test, in which Cl reacts with Ag\(^+\) resulting in photosensitive AgCl (Kaneko and Shiraishi, 2001). Furthermore, the diffusion permeability coefficients of water, sodium, and chloride ions can be measured in larval fishes using radioisotope tracing techniques (Tytler and Bell, 1989).

Collectively, these and other tools and techniques are enabling expanded studies in larval fishes of osmoregulation, water balance and nitrogen excretion.

Muscle physiology

During early ontogeny, larval fishes experience extremely high rates of mortality, primarily as a result of predation. Thus, the rapid development of functional axial musculature is of fundamental importance in supporting the escape mechanism imperative for larval survival and has been the focus of intense study (see Müller, 2008 for a recent review). Of course, the morphology of muscle development can be studied in larval fishes using a number of well-established techniques, including histological preparations, which allow measurements of key muscle parameters. For example, mounting of white muscle and subsequent staining with toluidine blue can reveal distribution of white-fibre cross-sectional area, total white-muscle cross-sectional area, and...
total white-muscle fibre number (e.g. Albokhadaim et al., 2007). Red-muscle area can be obtained via succinate dehydrogenase staining (Nachlas et al., 1957). Electron microscopy reveals even more detail of muscle structure, including volume densities of mitochondria, myofibrils, the sarcotubular system, and sarcoplasm (Pelster et al., 2003).

Moving from morphology to physiology, the ontogeny of larval muscle function can be analyzed via high speed video recordings, which can reveal many aspects of larval swimming, including latency and initial muscle contraction times, tail-beat amplitude and frequency, stride length and swimming speed (e.g. Batty and Blaxter, 1992). Lateral displacement and curvature profiles can be created from the video recordings, enabling further evaluation of swimming kinematics (Müller and van Leeuwen, 2004). Examination of muscle function following acute or chronic exposure to environmental factors such as temperature (Martell and Kieffer, 2007), hypoxia (Matschak et al., 1995), and water velocity (Pelster et al., 2003) can indicate the extent to which muscle morphology and function can be altered in development. For a review of environmental effects on myogenesis in teleost fish, see Johnston (2006).

Nervous System Physiology

Proper development of the nervous system is crucial for the early survival of all animals. In larval fishes the peripheral nervous system is not only responsible for maintaining internal homeostasis, but also imperative for predatory avoidance and escape and food detection and acquisition. Reviews of the numerous sensory components of larval fishes can be found in Finn and Kapoor (2008).

Researchers have numerous techniques at their disposal for studying sensory and motor function during development in larval fishes. For example, non-invasive electroretinography permits measurements of the electrical response of the larval retina to light stimulation (Makhanov et al., 2004). In vivo recordings of synaptic potentials and action potentials are possible via intracellular labelling and patch clamp recording from individual sensory neurons, motoneurons and interneurons (Drapeau et al., 1999). Neural pathway mapping, investigation of neural development and testing for axonal regeneration are possible in larval fishes using double- or triple-labelling techniques with fluorescent tracers (Zhang and McClellan, 1998) or even transgenic zebrafish larva expressing fluorescent proteins in central nervous system neurons (Higashijima, 2008; McClean and Fetcho, 2008).

Exploiting pharmacological permeability

Many of the experimental approaches mentioned above can be profitably expanded by the use of pharmacological agonists and antagonists. The thought of injecting pharmaceuticals into such small animals is daunting, but the body surface of many embryonic and larval fishes is highly permeable to a wide variety of substances, and this cutaneous permeability is being exploited by researchers as a way of introducing substances to the interior of the larva. Peptides, hormones, pharmaceuticals, organs and neurotransmitters can all be absorbed to varying degrees through the body wall and gills. The zebrafish embryo, for example, has been shown to be quite permeable to compounds ranging from warfarin to aspirin, and glucose to insulin (e.g. Jagadeeswaran and Sheehan, 1999; Jagadeeswaran et al., 2007). This innate permeability lends itself to a number of studies, ranging from basic development of regulatory systems to organized high-throughput screening of a myriad of biologically interesting substances including cardio-active drugs, antibiotics, growth hormones, and environmental pollutants.

Immobilizing larvae for optical physiological measurements

The physiological study of living larval fishes is often enhanced when they can be immobilized for observation, particularly if video images of internal process are being acquired. Immobilization can be achieved through anaesthetics such as MS-222 and ethanol (see Rombough, 2007b), muscle synapse block with curare or mechanical limitations to movement (e.g. placement in a glass capillary tube). Immobilization can also be achieved by placing larva into special low-melting-point agar in its liquid form, which typically occurs above 25-27°C. After immersion, the agar is quickly cooled to the desired temperature, immobilizing the larva in a now-solid agar block. The block can then be whittled down to the minimum size, and the surrounding gaseous or aquatic atmosphere adjusted to enhance oxygen diffusion through the agar and into the constrained larva. This technique allows the researcher to maintain the larva in a position favourable for micro-
scopic examination without damaging the larva or significantly altering its short-term physiological status (van Raamsdonk et al., 1979; Schwerte and Pelster, 2000; Bagatto and Burggren, 2006).

Having discussed techniques for overcoming and even exploiting the small size of larval fishes, we now turn to especially promising opportunities that they present.

PHYSIOLOGICAL STUDIES OF LARVAL FISHES: EXAMPLES OF INSIGHTS

Fishes in general have many interesting characteristics that deserve further physiological analysis. While recent compilations indicate the burgeoning interest in fish larval physiology (e.g. Finn and Kapoor, 2008), most of what we know about fish physiology is still limited to the adult form. Although the possibilities of areas for expanding the physiology of larval fishes are nearly limitless, here we discuss just three possible areas of focus: allometry, developmental plasticity, and epigenetics. Importantly, by studying these phenomena in larval fishes, physiologists can not only contribute to fish biology but, through the service of fish larvae as a highly effective model, learn more about these phenomena in all vertebrates, including humans.

Embryonic and larval physiology: determining the contributions of allometry

Allometry refers to the disproportionate relationship between change in an animal’s characteristics and change in its body size. Allometry permeates almost every aspect of the biology of animals, including that of larval fishes. The so-called “mouse to elephant curve” is a well-known colloquial expression of allometry, in which almost all aspects of a mouse’s physiology, metabolism and morphology change substantially on a per gram basis when scaled up to the body mass of an elephant. Of course, there are similarly large body-mass ranges in fishes, with the 8 mm Paedocypris, the smallest known vertebrate, being at one end of the body size spectrum and the whale shark Rhiniodon (18,000 mm) occupying the opposite end.

Most data on which allometric theory has been based have been derived from interspecific studies of adults. Intraspecific allometry, in which morphological and physiological variables are compared within the framework of an individual’s development, is less well understood and unfortunately is often dependent on dogmatic approaches imported from interspecific studies (Burggren, 2005). The extent to which allometry dictates physiological rates in developing animals is still an area of some contention. Certainly, mass-specific metabolic rate decreases with increasing body mass in a wide range of juvenile fishes (e.g. Rombough, 1988; Barrionuevo and Burggren, 1999; Pelster, 2008), but allometric

![Graphs](image-url)
equations cannot adequately predict the complex adjustments in metabolic rate or other physiological functions of embryonic and early larval fishes. A 20-fold increase in oxygen consumption between fertilization and hatching is not uncommon among fishes (Pelster, 2008), and mass-specific oxygen consumption as well as heart rate in the embryos/larvae of a wide variety of vertebrate (including fishes) either shows no change or even increases sharply early in development, even as body mass steadily increases—a direction of change contrary to that predicted by allometry (see Rombough 1988; Burggren and Warburton, 1994; Rombough and Moroz, 1997; Barrionuevo and Burggren, 1999; Bagatto 2005; Burggren and Bagatto, 2008; Pelster 2008). As an example of complex physiological pattern changes, consider physiological rate changes in the embryonic and early larval blue gourami (Trichogaster trichopterus) shown in Figure 4. Heart rate and oxygen consumption increase with development, even as wet body mass (yolk included) increases in this pre-feeding stage. While the results from the gourami reflect qualitatively those for zebrafish, for example (e.g. Barrionuevo and Burggren, 1999), Pelster (2008) appropriately cautions that the relationship between physiological rates and body mass in early development may be highly species-specific, ranging from conventional scaling relationships in developing cod (Finn et al., 2002) to independence from body mass in juvenile walleye (Rombough and Moroz, 1997) and a number of other fish species (see Giguere et al., 1988; Post and Lee, 1996).

The underlying mechanisms for these complex patterns of physiological rate change in larval vertebrates that sometimes reflect, and sometimes flout, allometric predictions are unclear, but there are several possibilities. For example, they may result from the developmental transition from hyperplastic growth (increasing organ or tissue size is a result of cell proliferation) to hypertrophic growth (organ or tissue growth is due to an increase in cell size) at about the time that physiological rates peak and then begin to decrease. Other possibilities include changes in the ontogenetic reorganization of tissues (e.g. Finn et al., 2002; Pelster, 2008), resulting in changes in red-to-white-muscle ratios or the creation (or depletion) of large non-metabolic compartments such as oil droplets. The onset of feeding in early larvae could also result in a post-prandial boost to metabolic rate, as could the onset of swimming behaviour in formerly more sessile younger forms. Even the determination of what to include in the calculation of “body mass” is problematic in embryonic and early larval fishes and could lead to artefacts of calculation. Whatever the reason for these complex patterns of change in physiological rates in early development in lower vertebrates, larval fishes are ideal animals in which to further investigate these interesting and enigmatic phenomena.

Developmental plasticity and heterokairy

Developmental plasticity, in which the normal developmental trajectory of an animal can be modified by changes in the internal or external environment, is another area in which investigations of embryonic and larval fishes has made and will continue to make contributions to understanding this phenomenon in vertebrates generally. As an example, cardio-respiratory development of the zebrafish larva is influenced by water currents and environmental oxygen levels, resulting in numerous physiological adaptations leading to improved swimming efficiency and hypoxia tolerance (Pelster, 2002). Beyond quantitative modification of normal development lies more fundamental changes, such as the movement of developmental physiological landmarks (e.g. the onset of heart beat or the development of respiratory regulation) forward or backward in development of an individual. The term heterokairy has been used to describe such changes in the timing of the onset of developmental events at the level of the individual during its development (Fig. 5) (Spicer and Burggren, 2003; Spicer and Rundle, 2007). This phenomenon has been observed in various animal systems, including larval fishes. For example, larval anadromous salmonids treated with cortisol, growth hormone and insulin-like growth factor show accelerated onset of tolerance to seawater (McCormick et al., 1991; McCormick, 1994). Larval zebrafish reared in hypoxia show a reduced overall rate of development as measured by body morpholgy, but adrenergic responses and vasoconstriction are shifted to appear earlier in the developmental program (Bagatto, 2005). Overall, larval fishes show considerable promise for further investigations of heterokairy and other aspects of developmental plasticity.

Epigenetics

A final example of how embryonic and larval fishes can be used to answer general questions regarding physiological development involves the burgeoning
area of epigenetics—the study of heritable traits independent of alterations of the DNA sequence. Because gene expression ultimately determines phenotype (including physiological phenotype), regulation of this process can influence heritable transcription and can thus result in epigenetic physiological effects (e.g. Ho and Burggren, 2009). Two examples of this regulation include DNA methylation and histone modification. Another epigenetic mechanism involves direct transfer of maternal substances into the oocyte. Maternally produced mRNAs, transcription factors, hormones and immune factors can be deposited into the egg during oogenesis (Mousseau and Fox, 1998; Kudo, 2000; Ho, 2008), and can fundamentally influence embryonic and larval development. Even the amount of yolk itself comprises a form of epigenetic effect. In larval fish, for example, the amount of egg yolk present at fertilization influences adult phenotype by altering overall growth and metabolism (Heming and Buddington, 1988).

Embryonic and larval fishes are well-suited to the study of epigenetic effects, particularly as they affect physiological processes. Larval fishes have already been used to investigate epigenetic influences in vertebrates in the development of axial musculature (Kronnié, 2000), cardiovascular performance (Schwerte et al., 2005), feeding morphology and behaviour (Adams et al., 2003), the physiology and biochemistry of carbohydrate digestion (Geurden et al., 2007) and hypoxic tolerance (Ho, 2008). In the zebrafish Dana rerio, for example, adult fish chronically exposed to 2-4 weeks of moderate hypoxia and then returned to normoxia will subsequently produce offspring that after a week of development exhibit enhanced hypoxic resistance, as measured by increased time to loss of equilibrium in extreme hypoxia (Fig. 6). This particular epigenetic effect in zebrafish larvae suggests much additional study, such as the determination of whether the non-genomic generational transfer of hypoxia resistance results from enhanced blood oxygen binding, increased cardiac output, production of metabolic isozymes, etc.

Combining their transparency, relatively rapid growth and development, and relative ease of study, along with technical advances in physiological measurements, embryonic and larval fishes are likely to contribute substantially to the growing literature on the epigenetics of physiological phenotype.

CONCLUSIONS

Larval stages have long been recognized as an area of great importance to the overall understanding of the biology of fishes, but studies have tended
to focus more on their morphology and behaviour, in which the testing of hypotheses is viewed as more tractable for such small organisms. To counter the perception that detailed physiological investigation remains elusive, we have discussed numerous techniques for examining cardiovascular, respiratory, metabolic, hemostatic, muscular and neural physiology. We have also indicated that opportunities exist for investigation in a number of additional areas of physiology, including cell signalling, acid-base regulation, nutrition and energetics, immunology, endocrinology and renal physiology.

These physiological techniques open up a myriad of possible ways in which studies of larval fish can be modified and expanded. For example, in an environmental challenge protocol that considers whether a larva lives or dies, we can move to a higher level of sophistication by asking “How did the animal die?” “What can be done to prevent mortality?” or even “What physiological signals can we measure to indicate stress without having to wait for larval death?”

We believe that the integration of physiological observations into future studies of fish embryos and larvae focusing on marine and freshwater aquaculture, fisheries science and environmental impact assessment will be extraordinarily powerful.

ACKNOWLEDGEMENTS

This study was supported by NSF Operating Grant 0614815 to WB, and by Grants-in-Aid of Research from Sigma Xi and SICB to TB. We are grateful for the suggestions for improvement of this manuscript made by anonymous reviewers.

REFERENCES

Blank, T. 2009. Cardio-respiratory ontogeny and the transition to bimodal respiration in an air-breathing fish, the blue gourami (Trichogaster chryspurus): morphological and physiological development in normoxia and hypoxia. Ph.D. Dissertation, University of North Texas, Denton, Texas, U.S.A.

Ho, D. 2008. Morphological and physiological developmental consequences of epigenetic processes in the chicken embryo (Gallus gallus domesticus) and the zebrafish larva (Danio rerio). Ph.D.

van Raamsdonk, W., W. Mos, G. Tekronnie, C.W. Pool and P. Mi-