Scientia Marina, Vol 80, No 2 (2016)

Efficiency of artificial collectors for quantitative assessment of sea urchin settlement rates

Marc Balsalobre, Owen S. Wangensteen, Creu Palacín, Sabrina Clemente, José Carlos Hernández

DOI: http://dx.doi.org/10.3989/scimar.04252.13A

Abstract


We tested the suitability of three different kinds of artificial collectors designed for quantitative assessment of echinoid settlement rates: (1) nylon nets containing plastic biofilter balls, (2) vertical scrub brushes with vegetal bristles and (3) horizontal triangular mats of coconut fibre. We measured the collecting efficiency by counting the number of post-larvae of two sea urchin species (Paracentrotus lividus and Arbacia lixula) gathered by each collector and deployed in two geographic areas: Tenerife (Canary Islands, eastern Atlantic) and Tossa de Mar (Costa Brava, northwestern Mediterranean). The plastic biofilter ball collector proved to be the most efficient design, collecting more settlers of both sea urchin species under all assayed conditions and showing a higher reproducibility than the other two designs. We therefore suggest using plastic biofilter balls in future studies aimed at quantifying echinoid settlement rates.

Keywords


settlement; artificial collectors; sea urchins; post-larvae; Mediterranean; Canary Islands

Full Text:


HTML PDF XML

References


Anderson M.J. 2004. PERMANOVA 2-factor: a FORTRAN computer program for permutational multivariate analysis of variance using permutation tests. Department of Statistics, Univ. Auckland, Auckland.

Anderson M.J. 2005. Permutational multivariate analysis of variance. Department of Statistics, Univ. Auckland, Auckland.

Bak R.P.M. 1985. Recruitment patterns and mass mortalities in the sea urchin Diadema antillarum. Proc. 5th Int. Coral Reef Congress. 5: 267-272.

Balch T., Scheibling R.E. 2000. Temporal and spatial variability in settlement and recruitment of echinoderms in kelp beds and barrens in Nova Scotia. Mar. Ecol. Prog. Ser. 205: 139-154. http://dx.doi.org/10.3354/meps205139

Balch T., Scheibling R.E. 2001. Larval supply, settlement and recruitment in echinoderms. Echinoderm Studies 6: 1-83.

Balch T., Scheibling R.E., Harris L.G., et al. 1998. Variation in settlement of Strongylocentrotus droebachiensis in the northwest Atlantic: effects of spatial scale and sampling method. In: Mooi M., Telford M. (eds), Echinoderms. San Francisco. AA Balkema, Rotterdam, pp. 555-560.

Bonaviri C., Fernández T.V., Fanelli G., et al. 2011. Leading role of the sea urchin Arbacia lixula in maintaining the barren state in southwestern Mediterranean. Mar. Biol. 158(11): 2505-2513. http://dx.doi.org/10.1007/s00227-011-1751-2

Bonaviri C., Gianguzza P., Pipitone C., et al. 2012. Micropredation on sea urchins as a potential stabilizing process for rocky reefs. J. Sea Res. 73: 18-23. http://dx.doi.org/10.1016/j.seares.2012.06.003

Bulleri F., Benedetti-Cecchi L., Cinelli F. 1999. Grazing by the sea urchins Arbacia lixula L. and Paracentrotus lividus Lam. in the Northwest Mediterranean. J. Exp. Mar. Biol. Ecol. 241: 81-95. http://dx.doi.org/10.1016/S0022-0981(99)00073-8

Byrne M. 1990. Annual reproductive cycles of the commercial sea urchin Paracentrotus lividus from an exposed intertidal and a sheltered subtidal habitat on the west coast of Ireland. Mar. Biol. 104: 275-289. http://dx.doi.org/10.1007/BF01313269

Cameron R.A., Schroeter S.C. 1980. Sea urchin recruitment: effect of substrate selection on juvenile distribution. Mar. Ecol. Prog. Ser. 2: 243-247. http://dx.doi.org/10.3354/meps002243

Clarke K.R., Gorley R.N. 2006. PRIMER v6: User manual/tutorial. PRIMER-E Ltd., Plymouth.

Clemente S., Hernández J.C., Brito A. 2009. Evidence of the top– down role of predators in structuring sublittoral rocky-reef communities in a Marine Protected Area and nearby areas of the Canary Islands. ICES J. Mar. Sci. 66: 64-71. http://dx.doi.org/10.1093/icesjms/fsn176

Clemente S., Hernández J.C., Montaño-Moctezuma G., et al. 2013. Predators of juvenile sea urchins and the effect of habitat refuges. Mar. Biol. 160: 579-590. http://dx.doi.org/10.1007/s00227-012-2114-3

Ebert T.A., Schroeter S.C., Dixon J.D., et al. 1994. Settlement patterns of red and purple sea urchins (Strongylocentrotus franciscanus and S. purpuratus) in California, USA. Mar. Ecol. Prog. Ser. 111: 41-52. http://dx.doi.org/10.3354/meps111041

Fenaux L. 1968. Maturation des gonades et cycle saisonnier des larves chez A. lixula, P. lividus et P. microtuberculatus (echinides) à Villefranche-Sur-Mer. Vie Milieu 19: 1-52.

García-Sanz S., Tuya F., Navarro P.G., et al. 2012. Post larval, short-term, colonization patterns: the effect of substratum complexity across subtidal, adjacent, habitats. Est. Coast. Shelf. Sci. 112: 183-191. http://dx.doi.org/10.1016/j.ecss.2012.07.014

García-Sanz S., Navarro P.G., Tuya F. 2014. Contrasting recruitment seasonality of sea urchin species in Gran Canaria, Canary Islands (eastern Atlantic). Medit. Mar. Sci. 15: 475-481. http://dx.doi.org/10.12681/mms.547

Girard D., Hernández J.C., Toledo K., et al. 2006. Aproximación a la biología reproductiva del equinoideo Paracentrotus lividus (Lamarck, 1816) en el litoral de Tenerife. Proceedings of the XIV SIEBM.

Guidetti P., Dul?i? J. 2007. Relationships among predatory fish, sea urchins and barrens in Mediterranean rocky reefs across a latitudinal gradient. Mar. Environ. Res. 63(2): 168-184. http://dx.doi.org/10.1016/j.marenvres.2006.08.002 PMid:17034843

Guidetti P., Fraschetti S., Terlizzi A., et al. 2003. Distribution patterns of sea urchins and barrens in shallow Mediterranean rocky reefs impacted by the illegal fishery of the rock-boring mollusc Lithophaga lithophaga. Mar. Biol. 143: 1135-1142. http://dx.doi.org/10.1007/s00227-003-1163-z

Harrold C., Pearse J.S. 1987. The ecological role of echinoderms in kelp forests. Echinoderm Studies 2: 137-233.

Harrold C., Lisin S., Light K.H., et al. 1991. Isolating settlement from recruitment of sea urchins. J. Exp. Mar. Biol. Ecol. 147: 81-94. http://dx.doi.org/10.1016/0022-0981(91)90038-X

Herbst D.B., Silldorff E.L. 2006. Comparison of the performance of different bioassessment methods: similar evaluations of biotic integrity from separate programs and procedures. J. N. Am. Benthol. Soc., 25(2): 513-530. http://dx.doi.org/10.1899/0887-3593(2006)25[513:COTPOD]2.0.CO;2

Hereu B., Zabala M., Linares C., et al. 2004. Temporal and spatial variability in settlement of the sea urchin Paracentrotus lividus in the NW Mediterranean. Mar. Biol. 144: 1011-1018. http://dx.doi.org/10.1007/s00227-003-1266-6

Hereu B., Linares C., Sala E., et al. 2012. Multiple processes regulate long-term population dynamics of sea urchins on Mediterranean rocky reefs. PloS ONE 7: e36901. http://dx.doi.org/10.1371/journal.pone.0036901 PMid:22606306 PMCid:PMC3350477

Hernández J.C., Toledo K., Girard D., et al. 2005. Descripción de la post-larva y primeras fases juveniles de tres equinoideos presentes en las islas Canarias: Diadema antillarum (Philippi, 1845), Paracentrotus lividus (Lamarck, 1816) y Arbaciella elegans (Mortensen, 1910). Vieraea 33: 385-397.

Hernández J.C., Brito A., Cubero E., et al. 2006. Temporal patterns of larval settlement of Diadema antillarum (Echinodermata: Echinoidea) in the Canary Islands using an experimental larval collector. Bull. Mar. Sci. 78: 271-279.

Hernández J.C., Clemente S., Sangil C., et al. 2008. The key role of the sea urchin Diadema aff. antillarum in controlling macroalgae assemblages throughout the Canary Islands (eastern subtropical Atlantic): an spatio-temporal approach. Mar. Env. Res. 66: 259-270. http://dx.doi.org/10.1016/j.marenvres.2008.03.002 PMid:18479745

Hernández J.C., Clemente S., Girard D., et al. 2010. Effect of temperature on settlement and postsettlement survival in a barrens-forming sea urchin. Mar. Ecol. Prog. Ser. 413: 69-80. http://dx.doi.org/10.3354/meps08684

Hernández J.C., Clemente S., Tuya F., et al. 2013. Echinoderms of the Canary Islands, Spain. In: Alvarado J.J., Solis-Marin F.A., Echinoderm Research and Diversity in Latin America. Springer, Berlin-Heidelberg, pp. 471-510. http://dx.doi.org/10.1007/978-3-642-20051-9_15

Horwitz W. 1982. Evaluation of analytical methods used for regulation of foods and drugs. Anal. Chem. 54(1), 67A-76A. http://dx.doi.org/10.1021/ac00238a765

Hunte W., Younglao D. 1988. Recruitment and population recovery of Diadema antillarum (Echinodermata; Echinoidea) in Barbados. Mar. Ecol. Prog. Ser. 45: 109-119. http://dx.doi.org/10.3354/meps045109

Irusta J.M.G., Jordana J.C.C., Ansorena F.J. 2008. El erizo de mar común (Paracentrotus lividus) en Cantabria: Estudio para una explotación sostenible. Locustella: Anuario de la Naturaleza de Cantabria 5: 58-67.

Jennings L.B., Hunt H.L. 2010. Settlement, recruitment and potential predators and competitors of juvenile echinoderms in the rocky subtidal zone. Mar. Biol. 157(2): 307-316. http://dx.doi.org/10.1007/s00227-009-1318-7

Keesing J.K., Cartwright C.M., Hall K.C. 1993. Measuring settlement intensity of echinoderms on coral reefs. Mar. Biol. 117: 399-407.

Kempf M. 1962. Recherches d'écologie comparée sur Paracentrotus lividus (Lmk.) et Arbacia lixula (L.). Rec Trav St Mar Endoume 25: 47-115.

Lamare M.D., Barker M.F. 2001. Settlement and recruitment of the New Zealand sea urchin Evechinus chloroticus. Mar. Ecol. Prog. Ser. 218: 153-166. http://dx.doi.org/10.3354/meps218153

Lambert D.M., Harris L.G. 2000. Larval settlement of the green sea urchin Strongylocentrotus droebachiensis in the southern Gulf of Maine. Invertebr. Biol. 119: 403-409. http://dx.doi.org/10.1111/j.1744-7410.2000.tb00110.x

Lawrence J.M. 1975. On the relationships between marine plants and sea urchins. Oceanogr. Mar. Biol. Annu. Rev. 13: 213-286.

Loosanoff V.L. 1964. Variations in time and intensity of setting of the starfish, Asterias forbesi, in Long Island Sound during a twenty-five-year period. Biol. Bull. 126: 423-439. http://dx.doi.org/10.2307/1539311

López S., Turon X., Montero E., et al. 1998. Larval abundance, recruitment and early mortality in Paracentrotus lividus (Echinoidea). Interannual variability and plankton-benthos coupling. Mar. Ecol. Prog. Ser. 72: 239-251. http://dx.doi.org/10.3354/meps172239

Lozano J., Galera J., López S., et al. 1995. Biological cycles and recruitment of Paracentrotus lividus (Echinodermata: Echinoidea) in two contrasting habitats. Mar. Ecol. Prog. Ser. 122: 179-191. http://dx.doi.org/10.3354/meps122179

Micheli F., Benedetti-Cecchi L., Gambaccini S., et al. 2005. Cascading human impacts, marine protected areas, and the structure of Mediterranean reef assemblages. Ecol. Monogr. 75(1): 81-102. http://dx.doi.org/10.1890/03-4058

Miller B.A., Emlet R.B. 1997. Influence of nearshore hydrodynamics on larval abundance and settlement of sea urchins Strongylocentrotus franciscanus and S. purpuratus in the Oregon upwelling zone. Oceanogr. Lit. Rev. 44: 980-981. http://dx.doi.org/10.3354/meps148083

Ólafsson E.B., Peterson C.H., Ambrose W.G.Jr. 1994. Does recruitment limitation structure populations and communities of macro-invertebrates in marine soft sediments: the relative significance of pre-and post-settlement processes. Oceanogr. Mar. Biol. Annu. Rev. 32: 65-109.

Palacín C., Giribet G., Carner S., et al. 1998. Low densities of sea urchins influence the structure of algal assemblages in the western Mediterranean. J. Sea Res. 39: 281-290. http://dx.doi.org/10.1016/S1385-1101(97)00061-0

Pawlik J.R. 1992. Chemical ecology of the settlement of benthic marine invertebrates. Oceanogr. Mar. Biol. Annu. Rev. 30: 273-335.

Pinnegar J.K., Polunin N.V.C. 1999. Differential fractionation of ?13 C and ?15 N among fish tissues: implications for the study of trophic interactions. Funct. Ecol. 13(2): 225-231. http://dx.doi.org/10.1046/j.1365-2435.1999.00301.x

Privitera D., Chiantore M., Mangialajo L., et al. 2008. Inter-and intra-specific competition between Paracentrotus lividus and Arbacia lixula in resource-limited barren areas. J. Sea Res. 60: 184-192. http://dx.doi.org/10.1016/j.seares.2008.07.001

Privitera D., Noli M., Falugi C., et al. 2011. Benthic assemblages and temperature effects on Paracentrotus lividus and Arbacia lixula larvae and settlement. J. Exp. Mar. Biol. Ecol. 407: 6-11. http://dx.doi.org/10.1016/j.jembe.2011.06.030

Régis M.B. 1978. Croissance de deux échinoïdes du golfe de Marseille (Paracentrotus lividus (Lmk) et Arbacia lixula L.). Aspects écologiques de la microstructure du squelette et de l'évolution des indices physiologiques. Ph.D. thesis. Univ. Aix- Marseille III., 221 pp.

Rowley R.J. 1989. Settlement and recruitment of sea urchins (Strongylocentrotus spp.) in a sea-urchin barren ground and a kelp bed: are populations regulated by settlement or post-settlement processes? Mar. Biol. 100: 485-494. http://dx.doi.org/10.1007/BF00394825

Sala E., Zabala M. 1996. Fish predation and the structure of the sea urchin Paracentrotus lividus populations in the NW Mediterranean. Mar. Ecol. Prog. Ser. 140: 71-81. http://dx.doi.org/10.3354/meps140071

Sala E., Ribes M., Hereu B., et al. 1998. Temporal variability in abundance of the sea urchins Paracentrotus lividus and Arbacia lixula in the northwestern Mediterranean: comparison between a marine reserve and an unprotected area. Mar. Ecol. Prog. Ser. 168: 135-145. http://dx.doi.org/10.3354/meps168135

Sánchez-Espa-a A.I., Martínez-Pita I., García F.J. 2004. Gonadal growth and reproduction in the commercial sea urchin Paracentrotus lividus (Lamarck, 1816) (Echinodermata: Echinoidea) from southern Spain. Hydrobiologia 519: 61-72. http://dx.doi.org/10.1023/B:HYDR.0000026485.40173.02

Sangil C., Sansón M., Clemente S., et al. 2014. Contrasting the species abundance, species density and diversity of seaweed assemblages in alternative states: Urchin density as a driver of biotic homogenization. J. Sea Res. 85: 92–103. http://dx.doi.org/10.1016/j.seares.2013.10.009

Tegner M.J. 1989. The feasibility of enhancing red sea urchin, Strongylocentrotus franciscanus, stocks in California: an analysis of the options. Mar. Fish. Rev. 51: 1-22.

Tomas F., Romero J., Turon X. 2004. Settlement and recruitment of the sea urchin Paracentrotus lividus in two contrasting habitats in the Mediterranean. Mar. Ecol. Prog. Ser. 282: 173-184. http://dx.doi.org/10.3354/meps282173

Tuya F., Cisneros-Aguirre J., Ortega-Borges L., et al. 2007. Bathymetric segregation of sea urchins on reefs of the Canarian Archipelago: role of flow-induced forces. Estuar. Coast. Shelf Sci. 73: 481-488. http://dx.doi.org/10.1016/j.ecss.2007.02.007

Uthicke S., Schaffelke B., Byrne M. 2009. A boom-bust phylum? Ecological and evolutionary consequences of density variations in echinoderms. Ecol. Monogr. 79: 3-24. http://dx.doi.org/10.1890/07-2136.1

Verlaque M. 1987. Relations entre Paracentrotus lividus (Lamarck) et le phytobenthos de Méditerranée occidentale. In: Boudouresque C.F. (ed.), Colloque International sur Paracentrotus lividus et les oursins comestibles. GIS Posidonie publ. Marseille, pp. 5-36.

Victor B.C. 1986. Larval settlement and juvenile mortality in a recruitment-limited coral reef fish population. Ecol. Monogr. 56: 145-160. http://dx.doi.org/10.2307/1942506

Wangensteen O.S., Turon X., García-Cisneros A., et al. 2011. A wolf in sheep's clothing: carnivory in dominant sea urchins in the Mediterranean. Mar. Ecol. Prog. Ser. 441: 117-128. http://dx.doi.org/10.3354/meps09359

Wangensteen O.S., Turon X., Pérez-Portela R., et al. 2012. Natural or naturalized? Phylogeography suggests that the abundant sea urchin Arbacia lixula is a recent colonizer of the Mediterranean. PLoS ONE, 7: e45067. http://dx.doi.org/10.1371/journal.pone.0045067 PMid:23028765 PMCid:PMC3444468

Wangensteen O.S., Dupont S., Casties I., et al. 2013a. Some like it hot: Temperature and pH modulate larval development and settlement of the sea urchin Arbacia lixula. J. Exp. Mar. Biol. Ecol. 449: 304-311. http://dx.doi.org/10.1016/j.jembe.2013.10.007

Wangensteen O.S., Turon X., Casso M., et al. 2013b. The reproductive cycle of the sea urchin Arbacia lixula in northwest Mediterranean: potential influence of temperature and photoperiod. Mar. Biol. 160: 3157-3168. http://dx.doi.org/10.1007/s00227-013-2303-8

Zar J.H. 1984. Biostatistical analysis, 2nd edn. Prentice-Hall, Englewood Cliffs. PMid:6436396




Copyright (c) 2016 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 Spain (CC-by).


Contact us scimar@icm.csic.es

Technical support soporte.tecnico.revistas@csic.es