High genetic differentiation with no evidence of hybridisation between four limpet species (Patella spp.) revealed by allozyme loci


  • Alexandra Sá-Pinto Centro de Investigação em Biodiversidade e Recursos Genéticos (CIBIO/UP)
  • Paulo Alexandrino Centro de Investigação em Biodiversidade e Recursos Genéticos (CIBIO/UP)
  • Madalena Branco Centro de Investigação em Biodiversidade e Recursos Genéticos (CIBIO/UP)




Patellidae, Patella spp., electroforesis en gel de almidón, aloenzimas, hibridación, polimorfismo genético


The occurrence of hybridisation between limpet species of the genus Patella has always been a contentious issue. Although a previous allozyme study reported high differentiation and no hybridisation between Patella vulgata Linnaeus, 1758, Patella depressa Pennant, 1777 and Patella ulyssiponensis Gmelin, 1791 along English shores, the recent finding of an mtDNA haplotype of P. depressa in a P. vulgata individual raised new doubts on this issue. To further study the possibility of hybridisation between limpet species and their level of genetic differentiation, ten allozyme loci were screened using starch gel electrophoresis for P. ulyssiponensis, P. depressa, P. vulgata and Patella rustica Linnaeus, 1758, from the Atlantic coast of the Iberian Peninsula. Our results show high differentiation between species, which could be clearly separated into different clusters with a Bayesian clustering algorithm. No significant signs of hybridisation were detected between any of the four species. Thus, the hypothesis of hybridisation between P. vulgata and P. depressa across their sympatric distribution is not supported. Two sympatric clusters were recovered within P. vulgata that could be related to Hardy-Weinberg disequilibrium found in locus MPI. Finally, due to the high level of intraspecific variability, the studied loci are interesting tools for the analysis of population structure and stock identification.


Download data is not yet available.


Amorim, A. and G. Siebert. – 1982. Glutamate pyruvate transaminase, esterase D, glyoxalase I, and phosphoglucomutase 1 polymorphisms in Porto district (Portugal). Hum. Hered., 32: 298.

Belkhirt K. – 1996. GENETIX, logiciel sous WindowsTM pour la génétique des populations. Laboratoire Génome et Populations, CNRS UPR 9060, Université de Montpellier II, Montpellier (France).

Branch, G. – 1981. The Biology of Limpets: Physical factors, energy flow and ecological interactions. Oceanogr. Mar. Biol. Annu. Rev., 19: 235-280

Branco, M., J. Machado and N. Ferrand. – 1999. Extensive genetic polymorphism of peptidases A, B, C, and D, in wild rabbit (Oryctolagus cuniculus) populations from the Iberian Peninsula. Biochem. Genet., 37: 237. doi:10.1023/A:1018794823869 PMid:10624514

Borge, T., K. Lindroos, P. Nádvorník, A.-C Syvänen and G.-P. Saetre. – 2005. Amount of introgression in flycatcher hybrid zones reflects regional differences in pre- and post-zygotic barriers to gene exchange. J. Evol. Biol., 18: 1416-1424

Christiaens, J. – 1973. Révision du genre Patella (Mollusca, Gastropoda). Bull. Mus. Natl. Hist. Nat., 3, 182: 1305-1392.

Corander J, P. Waldmann and M. Sillanpää. – 2003. Bayesian analysis of genetic differentiation between populations. Genetics, 163: 367-374.

Corander, J. and P. Marttinen. – 2006. Bayesian identification of admixture events using multilocus molecular markers. Mol. Ecol., 15: 2833-2843.

Corte-Real, H., S. Hawkins and J. Thorpe. – 1992. Genetic confirmation that intertidal and subtidal morphs of Patella ulyssiponensis aspera Röding (Mollusca: Gastropoda: Patellidae) are conspecific. Arquipélago. Ciências da Natureza, 10: 55-66

Corte-Real, H., S. Hawkins and J. Thorpe. – 1996a. Population differentiation and taxonomic status of the exploited limpet Patella candei in the Macaronesian islands (Azores, Madeira, Canaries). Mar. Biol., 125: 141-152 doi:10.1007/BF00350768

Corte-Real, H., S. Hawkins and J. Thorpe. – 1996b. An interpretation of the taxonomic relationship between the limpets Patella rustica and P.piperata. J. Mar. Biol. Ass. U.K., 76: 717-732.

Estoup, A., C. Tailliez, J-M. Cornuet and M. Solignac. – 1995. Size homoplasy and mutational processes of interrupted microsatellites in two bee species, Apis mellifera and Bombus terrestris (Apidae). Mol. Biol. Evol., 12(6): 1074-1084

Felsenstein, J. – 1993. PHYLIP (Phylogeny Inference Package) Version 3.5.c. Distributed by the author. Seattle. University of Washington.

Ferrand, N. and A. Amorim. – 1990. Genetic polymorphism of ?- aminolaevulinic acid dehydratase (E.C., ALAD) in the domestic rabbit. Anim. Genet., 21: 217.

Fischer-Piette, E. and J. Gaillard. – 1959. Les Patelles au long des cotes Atlantiques Ibériques et nord Marocaines. Journal de Conchyliologie, 99: 135-200.

Fretter, V. and A. Graham. – 1976. The Prosobranch Molluscs of Britain and Denmark. J. Molluscan Stud. (Suppl. 1): 1-37

Gaffney, P. – 1980. On the number of Patella species in South- West England. J. Mar. Biol. Ass. U. K., 60: 565-574.

Guerra, M. and M. Gaudencio. – 1986. Aspects of the ecology of Patella spp. on the Portuguese coast. Hydrobiologia, 142: 57-69. doi:10.1007/BF00026747

Harris, H. and D. Hopkinson. – 1976. Handbook of Enzyme Electrophoresis in Human Genetics. North Holland, Amsterdam.

Hurst, C. and D. Skibinski. – 1995. Comparison of allozyme and mitochondrial DNA spatial differentiation in the limpet Patella vulgata. Mar. Biol., 122: 257-263

Koufopanou, V., D. Reid, S. Ridgway and R. Thomas. – 1999. A molecular phylogeny of the Patellid limpets (Gastropoda: Patellidae) and its implications for the origins of their antitropical distribution. Mol. Phylogenet. Evol., 11: 138-156 doi:10.1006/mpev.1998.0557 PMid:10082617

Lavie, B., R. Noy and E. Nevo. – 1987. Genetic variability in the marine gastropods Patella coerulea and Patella ulyssiponensis: patterns and problems. Mar. Biol., 96: 367-370. doi:10.1007/BF00412519

Lima, F.P., N. Queiroz, P.A. Ribeiro, S.J. Hawkins and A.M. Santos. – 2006. Recent changes in the distribution of a marine gastropod, Patella rustica Linnaeus, 1758, and their relationship to unusual climatic events. J. Biogeogr., 33: 812-822. doi:10.1111/j.1365-2699.2006.01457.x

Mauro, A., N. Parrinello and M. Arculeo. – 2001. Artificial environmental conditions can affect allozyme genetic structure of the marine Gastropod Patella caerulea. J. Shellfish Res., 20(3): 1059-1063.

Mauro, A., M. Arculeo and N. Parrinello. – 2003. Morphological and molecular tools in identifying the Mediterranean limpets Patella caerulea, Patella aspera and Patella rustica. J. Exp. Mar. Biol. Ecol., 295: 131-143 doi:10.1016/S0022-0981(03)00291-0

Nei, M. – 1972. Genetic distance between populations. Am. Nat., 106: 238-292. doi:10.1086/282771

Petit, R.J., A. El-Mousadik and O. Pons. – 1998. Identifying populations for conservation on the basis of genetic markers. Conserv. Biol., 12: 844-855. doi:10.1046/j.1523-1739.1998.96489.x

Ramshaw, J., J. Coyne and R. Lewontin. – 1979. The sensitivity of gel electrophoresis as a detector of genetic variation. Genetics, 93: 1019-1037.

Raymond, M. and F. Rousset. – 1995a. An exact test for population differentiation. Evolution, 49: 1280-1283. doi:10.2307/2410454

Raymond, M. and F. Rousset. – 1995b. GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J. Hered., 86: 248-249

Ridgway, S., D. Reid, J. Taylor, G. Branch and A. Hodgson. – 1998. A cladistic phylogeny of the family Patellidae (Mollusca:Gastropoda). Philos. Trans. R. Soc. Lond., B, 353: 1645-1671. doi:10.1098/rstb.1998.0316 PMCid:1692379

Sá-Pinto, A., M. Branco, D.J. Harris and P. Alexandrino. – 2005. Phylogeny and phylogeography of the genus Patella based on mitochondrial DNA sequence data. J. Exp. Mar. Biol. Ecol., 325: 95-110. doi:10.1016/j.jembe.2005.04.025

Sella, G., C.A. Robotti and V. Biglione. – 1993. Genetic divergence among three sympatric species of Mediterranean Patella (Archaeogastropoda). Mar. Biol., 115: 401-405. doi:10.1007/BF00349838

Schmidt, P.S., and D.M. Rand. – 1999. Intertidal microhabitat and selection at MPI: interlocus contrasts in the northern acorn barnacle, Semibalanus balanoides. Evolution, 53: 135-146. doi:10.2307/2640926

Titselaar, F. – 1998. A revision of the recent European Patellidae (Mollusca: Gastropoda). Vita Marina, 45(3-4): 21-62.

Voelker, R.A., C.H. Langley, A.J.L. Brown, S. Ohnishi, B. Dickson, E. Montgomery and S.C. Smith – 1980. Enzyme null alleles in natural populations of Drosophila melanogaster: Frequencies in a North Carolina population. Proc. Natl. Acad. Sci. USA, 77 (2): 1091-1095. doi:10.1073/pnas.77.2.1091

Weber, L.I., D.R. Gray, A.N. Hodgson and S.J. Hawkins. – 1997. Genetic divergence between the South African Helcion species and North-East Atlantic H. pellucidum (Mollusca: Patellogastropoda). J. Mar. Biol. Ass. U.K., 77: 1139-1150.

Weber, L., J. Thorpe, R. Santos and S. Hawkins. – 1998. Identification of the exploited limpets Patella aspera and P. candei at Madeira archipelago by allozyme electrophoresis. J. Shellfish Res., 17: 945-953

Weber, L.I. and S.J. Hawkins. – 2002. Evolution of the limpet Patella candei d’Orbigny (Mollusca: Patellidae) in Atlantic Linn. Soc., 77: 341-353.

Weber, L.I. and S.J. Hawkins. – 2005. Patella aspera and Patella ulyssiponensis: genetic evidence of speciation in the North-east Atlantic. Mar. Biol., 147: 153-162. doi:10.1007/s00227-004-1540-2

Weber, L.I. and S.J. Hawkins. – 2006. Allozymic differentiation among geographically distant populations of Patella vulgata (Mollusca, Patellogastropoda). Hydrobiologia, 553: 267-275. doi:10.1007/s10750-005-1179-0

Wiens, J.-2000. Reconstructing phylogenies from allozyme data: comparing method performance with congruence. Biol. J. Linn. Soc., 70: 613-632.




How to Cite

Sá-Pinto A, Alexandrino P, Branco M. High genetic differentiation with no evidence of hybridisation between four limpet species (Patella spp.) revealed by allozyme loci. scimar [Internet]. 2007Dec.31 [cited 2021Jan.24];71(4):801-10. Available from: http://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/490