Differentiating morpho-functional patterns of the five most common deep-sea benthic anglerfishes (Lophiiformes) from Andaman and Nicobar Islands (eastern Indian Ocean)





fish body traits, otolith shape, ecomorphology, Lophiiformes


Anglerfishes are widely distributed from shallow to deep-water habitats occupying different ecological niches. To explain this adaptability, we performed a morpho-functional study on common benthic anglerfishes inhabiting the Indian deep-sea waters. Sensory capabilities of species were examined using the morphology and morphometry of sagitta otoliths (related to detection sound and hearing) and eye size (related to visual communication). We also performed an analysis of the degree of functional niche overlap using fish body traits to understand the coexistence of species. Otoliths showed a morphological pattern similar to that of other anglerfishes: an archaesulcoid sulcus acusticus and variability in the irregularity of the dorsal margin. This last feature affected the allometric relationships between the otolith morphometry and fish length, as well as the otolith relative sizes of each species. The findings suggested that bigger otoliths are associated with the increase of depth distribution of species up to 1000 m, from which it decreases. Our hypothesis is that anglerfishes with irregular otolith shapes could be linked to more nocturnal feeding behaviour because they were characterized by greater eye sizes. The results also indicated interspecific significant differences in functional traits providing a low niche overlap. Therefore, our study supports the hypothesis of an environmental and ecological specialization of benthic anglerfishes.


Download data is not yet available.


Afonso-Dias I.M.D.S.B.R.P. 1997. Aspects of the biology and ecology of anglerfish (Lophius piscatorius) off the west coast of Scotland (ICES sub area via). Ph.D. thesis, Univ. Aberdeen, 192 pp.

Aguilar-Medrano R., Frederich B., Barber P.H. 2016. Modular diversification of the locomotor system in damselfishes (Pomacentridae). J. Morphol. 277: 603-614.

Alcock A.W. 1891. Natural history notes from H.M. Indian Marine Survey Steamer “Investigator” Ser. II, No. 1. On the results of deep-sea dredging during the season 1890-91. Ann. Mag. Nat. Hist. 6: 16-34.

Alcock A.W. 1894. Natural history notes from H.M. Indian Marine Survey Steamer Investigator’- No. 11. An account of a recent collection of bathybial fishes from the Bay of Bengal and from the Laccadive Sea. J. Asiat. Soc. Bengal 58: 115-140.

Arellano R.V., Hamerlynck O., Vincx M., et al. 1995. Changes in the ratio of the sulcus acusticus area to the sagitta area of Pomatoschistus minutus and P. lozanoi (Pisces, Gobidae). Mar. Biol. 122: 355-360.

Armstrong M.P., Musick J.A., Colvocoresses J.A. 1996. Food and ontogenetic shifts in feeding of the goosefish, Lophius americanus. J. Northwest Atl. Fish. Sci. 18: 99-103.

Arnold R.J. 2015. Evolutionary Relationships of the Enigmatic Anglerfishes (Teleostei: Lophiiformes): Can Nuclear DNA Provide Resolution for Conflicting Morphological and Mitochondrial Phylogenies? Ph.D. thesis, Univ. Wash. U.S.A., 83 pp.

Arnold R.J., Pietsch T.W. 2012. Evolutionary history of frogfishes (Teleostei: Lophiiformes: Antennariidae): A molecular approach. Mol. Phylogenetics Evol. 62: 117-129.

Balakrishnan M., Srivastava R.C., Pokhriyal M. 2008. Biodiversity of Andaman and Nicobar Islands. Biobytes 3: 9-12.

Bellwood D.R., Klanten S., Cowman P.F., et al. 2010. Evolutionary history of the butterflyfishes (f: Chaetodontidae) and the rise of coral feeding fishes. J. Evol. Biol. 23: 335-349.

Bellwood D.R., Goatley C.H.R., Brandl S.J., et al. 2014. Fifty million years of herbivory on coral reefs: fossils, fish and functional innovations. Proc. R. Soc. B 281: 20133046.

Bohórquez-Herrera J., Cruz-Escalona V.H., Adams D.C., et al. 2015. Feeding ecomorphology of seven demersal marine fish species in the Mexican Pacific Ocean. Environ. Biol. Fish. 98: 1459-1473.

Boyle K.S., Horn M.H. 2006. Comparison of feeding guild structure and ecomorphology of intertidal fish assemblages from central California and central Chile. Mar. Ecol. Prog. Ser. 319: 65-84.

Bridge T.C. Luiz O.J., Coleman R.R., et al. 2016. Ecological and morphological traits predict depth-generalist fishes on coral reefs. Proc. R. Soc. B 283: 20152332.

Cañás L., Stransky C., Schlickeisen J., et al. 2012. Use of the otolith shape analysis in stock identification of anglerfish (Lophius piscatorius) in the Northeast Atlantic. ICES J. Mar. Sci. 69: 250-256.

Carothers J.H., Jaksić, F.M. 1984. Time as a niche difference: the role of interference competition. Oikos 42: 403-406.

Carlucci R., Capezzuto F., Maiorano P., et al. 2009. Distribution, population structure and dynamics of the black anglerfish (Lophius budegassa) (Spinola, 1987) in the Eastern Mediterranean Sea. Fish. Res. 95: 76-87.

Caruso J.H. 1983. The systematics and distribution of the lophiid anglerfishes: II. Revisions of the genera Lophiomus and Lophius. Copeia 1: 11-30.

Caruso J.H., 1985. The systematics and distribution of the lophiid anglerfishes: III. Intergeneric relationships. Copeia 4: 870-875.

Casatti L., Castro R. 2006. Testing the ecomorphological hypothesis in a headwater riffles fish assemblage of the rio São Francisco, southeastern Brazil. Neotropical ichthyol. 4: 203-214.

Colborne S.F., Peres-Neto P.R., Longstaffe F.J., et al. 2013. Effects of foraging and sexual selection on ecomorphology of a fish with alternative reproductive tactics. Behav. Ecol. 24: 1339-1347.

Collar D.C., Wainwright P.C. 2006. Discordance between morphological and mechanical diversity in the feeding mechanism of centrarchid fishes. Evolution 60: 2575-2584.

Colmenero A.I., Aguzzi J., Lombarte A., et al. 2010. Sensory constraints in temporal segregation in two species of anglerfish, Lophius budegassa and L. piscatorius. Mar. Ecol. Prog. Ser. 416: 255-265.

de Busserolles F., Fitzpatrick J.L., Paxton J.R., et al. 2013. Eye-size variability in deep-sea lanternfishes (Myctophidae): an ecological and phylogenetic study. PLoS ONE 8: e58519.

Foster K., Bower L., Piller K. 2015. Getting in shape: habitat-based morphological divergence for two sympatric species. Biol. J. Linn. Soc. 114: 152-162.

Frederich B., Olivier D., et al. 2016. Trophic ecology of damselfishes. In: Frederich B., Parmentier E (eds), Biology of Damselfishes, CRC Press, pp. 153-167.

Froese R. 2006. Cube law, condition factor and weight-length relationships: history, meta-analysis and recommendations. J. Appl. Ichthyol. 22: 241-253.

Froese R., Tsikliras A.C., Stergiou K.I. 2011. Editorial note on weight-length relations of fishes. Acta Ichthyol. et Piscatoria 41: 261-263.

Gatz A.J. 1979. Community organization in fishes as indicated by morphological features. Ecology 60: 711-718. t

Geange S.W., Pledger S., Burns K.C., et al. 2011. A unified analysis of niche overlap incorporating data of different types. Methods Ecol. Evol. 2: 175-184.

Gibran F.Z., Castro R.M.C. 1999. Activity, feeding behaviour and diet of Ogcocephalus vespertilio in southern west Atlantic. J. Fish Biol. 55: 588-595.

Hammer O., Harper D.A.T., Ryan P.D. 2001. PAST: Paleontological Statistic software package for education and data analysis. Paleontol. Electron. 4: 4. https://palaeo-electronica.org/2001_1/past/past.pdf

Hashim M. 2012. Distribution, diversity and biology of deep-sea fishes in the Indian EEZ. Ph.D. thesis, Cochin Univ. Sci. Technol. India, 131 pp.

Hislop J.R.G., Holst J.C., Skagen D. 2000. Near-surface captures of post-juvenile anglerfish in the North-east Atlantic-an unsolved mystery. J. Fish Biol. 57: 1083-1087.

Ho H.C., Ma W.C. 2016. Revision of southern African species of the anglerfish genus Chaunax (Lophiiformes: Chaunacidae), with descriptions of three new species. Zootaxa 4144: 175-194.

Ho H.C., Shao K.T. 2008. The batfishes (Lophiiformes Ogcocephalidae) of Taiwan, with descriptions of eight new records. J. Fish Soc. Taiwan 35: 289-313.

Ho H.C., Meleppura R.K., Bineesh K.K. 2016a. Chaunax multilepis sp. nov., a new species of Chaunax (Lophiiformes: Chaunaci dae) from the northern Indian Ocean. Zootaxa 4103: 130-136.

Ho H.C., Kawai T., Satria F. 2016b. New records of the anglerfish family Lophiidae (Order Lophiiformes) from Indonesia. Acta Ichthyol. et Piscatoria 46: 77-85.

Huxley J.S. 1924. Constant differential growth-ratios and their significance. Nature 114: 895-896.

Ingram T. 2011. Speciation along a depth gradient in a marine adaptive radiation. Proc. R. Soc. B 278: 613-618.

Jayaprakash A.A., Kurup B.M., Sreedhar U., et al. 2006. Distribution, diversity, length-weight relationship and recruitment pattern of deep-sea finfishes and shell fishes in the shelf-break area off southwest Indian EEZ. J. Mar. Biol. Assoc. India 48: 56-67.

Karpouzi V.S., Stergiou K.I. 2003. The relationships between mouth size and shape and body length for 18 species of marine fishes and their trophic implications. J. Fish Biol. 62: 1353-1365.

Karuppasamy P.K., Balachandran K., George S., et al. 2008. Food of some deep sea fishes collected from the eastern Arabian Sea. J. Mar. Biol. Assoc. India 50: 134-138.

Kéver L., Colleye O., Herrel A., et al. 2014. Hearing capacities and otolith size in two ophidiiform species (Ophidion rochei and Carapus acus). J. Exp. Biol. 217: 2517-2525.

Kumar K.V.A., Thomy R., Deepa K.P., et al. 2016. Length-weight relationship of six deep-sea fish species from the shelf regions of western Bay of Bengal and Andaman waters. J. Appl. Ichthyol. 32: 1334-1336.

Kumar K.V.A., Tuset V.M., Manjebrayakath H., et al. 2017a. Functional approach reveals low niche overlap among common deep-sea fishes from the south-eastern Arabian Sea. Deep Sea Res. I 119: 16-23.

Kumar K.V.A., Nikki R., Oxona K., et al. 2017b. Relationships between fish and otolith size of nine deep-sea fishes from the Andaman and Nicobar waters. North Indian Ocean. J. Appl. Ichthyol. 33: 1187-1195.

Kumar K.V.A., Deepa K.P., Hashim M., et al. 2017c. Relationships between fish size and otolith size of four bathydemersal fish species from the south eastern Arabian Sea, India. J. Appl. Ichthyol. 33: 102-107.

Kumar K.V.A., Thomy R., Hashim M., et al. 2018. Length-weight relationships of 11 deep-sea fishes from the western Bay of Bengal and Andaman waters, India. J. Appl. Ichthyol. 34: 1048-1051.

Layman C.A., Langerhans R.B., Winemiller K.O. 2005. Body size, not other morphological traits, characterizes cascading effects in fish assemblage composition following commercial netting. Can. J. Fish. Aquat. Sci. 62: 2802-2810.

Lleonart J., Salat J., Torres G.J. 2000. Removing allometric effects of body size in morphological analysis. J. Theor. Biol. 205: 85-93.

Lloyd R.E. 1909. A description of the deep-sea fish caught by the RIMS ship” Investigator” since the year 1900, with supposed evidence of mutation in Malthopsis. Mem. Indian Mus. 2: 139-180.

Lombarte A. 1992. Changes in otolith area: sensory area ratio with body size and depth. Environ. Biol. Fish. 33: 405-410.

Lombarte A., Cruz A. 2007. Otolith size trends in marine fish communities from different depth strata. J. Fish Biol. 71: 53-76.

Lombarte A., Chic Ò., Parisi-Baradad V., et al. 2006. A web-based environment for shape analysis of fish otoliths. The AFORO database. Sci. Mar. 70: 147-152.

Lombarte A., Palmer M., Matallanas J., et al. 2010. Ecomorphological trends and phylogenetic inertia of otolith sagittae in Nototheniidae. Environ. Biol. Fish. 89: 607-618.

Lychakov D.V., Rebane Y.T. 2000. Otolith regularities. Hear. Res. 143: 83-102.

MacArthur R., Levins R. 1967. The limiting similarity, convergence, and divergence of coexisting species. Am. Nat. 101: 377-385.

Marrama G., Kriwet J. 2017. Principal component and discriminant analyses as powerful tools to support taxonomic identification and their use for functional and phylogenetic signal detection of isolated fossil shark teeth. Plos ONE 12: e0188806.

Marcus L.F. 1993. Some aspects of multivariate statistics for morphometrics. In: Marcus L.F., Bello E., et al. (eds), Contributions to morphometrics. Monog. Mus. Nac. Cienc. Nat. 8: 95-130.

Mason N.W., Lanoiselée C., Mouillot D., et al. 2008. Does niche overlap control relative abundance in French lacustrine fish communities? A new method incorporating functional traits. J. Anim. Ecol. 77: 661-669.

Mille T., Mahe K., Cachera M., et al. 2016. Diet is correlated with otolith shape in marine fish. Mar. Ecol. Prog. Ser. 555: 167-184.

Miya M., Pietsch T.W., Orr J.W., et al. 2010. Evolutionary history of anglerfishes (Teleostei: Lophiiformes): a mitogenomic perspective. BMC Evol. Biol. 10: 58.

Mouillot D., Mason W.N., Dumay O., et al. 2005. Functional regularity: a neglected aspect of functional diversity. Oecologia 142: 353-359.

Mouillot D., Graham N.A., Villéger S., et al. 2013. A functional approach reveals community responses to disturbances. Trends Ecol. Evol. 28: 167-177.

Nagareda B.H., Shenker J.M. 2008. Dietary analysis of batfishes (Lophiiformes: Ogcocephalidae) in the Gulf of Mexico. Gulf Mexico Sci. 26: 28-35.

Narayani S., Venu S., Kumar M.A. et al. 2015. Ecomorphology of the feeding characteristics in selected reef fishes from south Andaman Islands: a preliminary study. J. Mar. Biol. Oceanogr. 4: 1-7.

Nazir A., Khan M.A. 2019. Spatial and temporal variation in otolith chemistry and its relationship with water chemistry: Stock discrimination of Sperata aor. Ecol. Freshwater Fish 28: 499-511.

Nelson J.S., Grande T.C., Wilson M.V.H. 2006. Fishes of the world. John Wiley and Sons, New Jersey, 707 pp.

Papiol V., Cartes J.E., Fanelli E., et al. 2013. Food web structure and seasonality of slope megafauna in the NW Mediterranean elucidated by stable isotopes: relationship with available food sources. J. Sea Res. 77: 53-69.

Paxton J.R. 2000. Fish otoliths: do sizes correlate with taxonomic group, habitat and/or luminescence? Philos. Trans. R. Soc. Lond. B. 355: 1299-1303.

Pietsch T.W. 1981. The osteology and relationships of the anglerfish genus Tetrabrachium with comments on lophiiform classification. Fish. Bull. 79: 387-419.

Pietsch T.W., Grobecker D.B. 1987. Frogfishes of the world: systematics, zoogeography, and behavioral ecology. Stanford University Press, 420 pp.

Pietsch T.W., Orr J.W. 2007. Phylogenetic relationships of deep-sea anglerfishes of the suborder Ceratioidei (Teleostei: Lophiiformes) based on morphology. Copeia 2007: 1-34.

Pohlert T. 2014. The pairwise multiple comparison of mean ranks package (PMCMR). R package, 27 pp. https://cran.r-project.org/web/packages/PMCMR/vignettes/ PMCMR.pdf

Preciado I., Velasco F., Olaso I., et al. 2006. Feeding ecology of black anglerfish Lophius budegassa: seasonal, bathymetric and ontogenetic shifts. J. Mar. Biol. Assoc. U.K. 86: 877-884.

Quinn G.P., Keough M.J. 2002. Experimental Design and Data Analysis for Biologists, Cambridge University Press, Cambridge, 558 pp.

R Development Core Team. 2017. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.

Rajan P.T., Sreeraj C.R. 2013. Fish fauna of Andaman and Nicobar Islands: a review. In: Venkataraman K., Sivaperuman C., et al. (eds), Ecology and Conservation of Tropical Marine Faunal Communities. Springer, Berlin, Heidelberg, pp. 231-243.

Rajeeshkumar M.P. 2018. Deep-sea anglerfishes (Pisces-Lophiiformes) of the Indian EEZ: Systematics, distribution and Biology. Ph.D. thesis, Cochin Univ. Sci. Technol. India, 307 pp.

Rajeeshkumar M.P., Jacob V., Sumod K.S., et al. 2016. Three new records of rare deep-sea Anglerfishes (Lophiiformes: Ceratioidei) from the Northern Indian Ocean. Mar. Biodivers. 46: 923-928.

Rajeeshkumar M.P., Meera K.M., Hashim M. 2017. A New Species of the Deep-Sea Ceratioid Anglerfish Genus Oneirodes (Lophiiformes: Oneirodidae) from the Western Indian Ocean. Copeia 105: 82-84.

Ribeiro M.D., Teresa F.B., Casatti L. 2016. Use of functional traits to assess changes in stream fish assemblages across a habitat gradient. Neotropical Ichthyol. 14: e140185.

Sadighzadeh Z., Otero-Ferrer J.L., Lombarte A., et al. 2014. An approach to unraveling the coexistence of snappers (Lutjanidae) using otolith morphology. Sci. Mar. 78: 353-362.

Schmitz L., Wainwright P.C. 2011. Nocturnality constrains morphological and functional diversity in the eyes of reef fishes. BMC Evol. Biol. 11: 338.

Schwarzhans W. 2014. Head and otolith morphology of the genera Hymenocephalus, Hymenogadus and Spicomacrurus (Macrouridae), with the description of three new species. Zootaxa 3888: 73 pp.

Seehausen O., Terai Y., Magalhaes I.S., et al. 2008. Speciation through sensory drive in cichlid fish. Nature 455: 620-626.

Sibbing F.A., Nagelkerke L.A.J. 2001. Resource partitioning by lake Tana barbs predicted from fish morphometrics and prey characteristics. Rev. Fish. Biol. Fish. 10: 393-437.

Sreedhar U., Sudhakar G.V.S., Meenakumari B. 2013. Length-weight relationship of deepsea demersal fishes from the Indian EEZ. Ind. J. Fish. 60: 123-125.

Sumod K.S. 2018. Deep-sea eels (Teleostei: Anguilliformes) of Indian EEZ: Systematics, distribution and Biology. Ph.D. thesis, Cochin Univ. Sci. Technol. India, 474 pp.

Tuset V.M., Lombarte A., Assis C.A. 2008. Otolith atlas for the western Mediterranean, north and central eastern Atlantic. Sci. Mar. 72S1: 7-198.

Tuset V.M., Piretti S., Lombarte A., et al. 2010. Using sagittal otoliths and eye diameter for ecological characterization of deep-sea fish: Aphanopus carbo and A. intermedius from NE Atlantic waters. Sci. Mar. 74: 807-814.

Tuset V.M., Otero-Ferrer J.L., Gómez-Zurita J., et al. 2016. Otolith shape lends support to the sensory drive hypothesis in rockfishes. J. Evol. Biol. 29: 2083-2097.

Tuset V.M., Olivar M.P., Otero-Ferrer J.L., et al. 2018. Morpho-functional diversity in Diaphus spp. (Pisces: Myctophidae) from the central Atlantic Ocean: Ecological and evolutionary implications. Deep Sea Res. I 138: 46-59.

Venu S., Kurup B.M. 2002. Distribution and abundance of deep-sea fishes along the west coast of India. Fish Technol. 39: 20-26.

Villéger S., Novack-Gottshall P.M., Mouillot D. 2011. The multidimensionality of the niche reveals functional diversity changes in benthic marine biotas across geological time. Ecol. Lett. 14: 561-568.

Villéger S., Brosse S., Mouchet M., et al. 2017. Functional ecology of fish: current approaches and future challenges. Aquat. Sci. 79: 783-801.

Volpedo A.V., Tombari A.D., Echeverría D.D. 2008. Ecomorphological patterns of the sagitta of Antarctic fish. Polar Biol. 31: 635-640.

Wainwright P.C., Bellwood D.R., Westneat M.W. 2002. Ecomorphology of locomotion in labrid fishes. Environ. Biol. Fish. 65: 47-62.

Wainwright P., Carroll A.M., Collar D.C., et al. 2007. Suction feeding mechanics, performance, and diversity in fishes. Integr. Comp. Biol. 47: 96-106.

Warrant E. 2004. Vision in the dimmest habitats on earth. J. Comp. Physiol. A 190: 765-789.

Watson D.J., Balon E.K. 1984. Ecomorphological analysis of fish taxocenes in rainforest streams of northern Borneo. J. Fish Biol. 25: 371-384.

Webb P.W. 1984. Body form, locomotion and foraging in aquatic vertebrates. Am. Zool. 24: 107-120.

Wilson Jr. R.R. 1985. Depth-related changes in sagitta morphology in six macrourid fishes of the Pacific and Atlantic Oceans. Copeia 4: 1011-1017.

Winemiller K.O., Kelso-Winemiller L.C., Brenkert A.L. 1995. Ecomorphological diversification and convergence in fluvial cichlid fishes. In: Luczkovich J.J., Motta P.J., et al. (eds), Ecomorphology of fishes. Springer, Dordrecht, pp. 235-261.

Zhao T., Villéger S., Lek S., et al. 2014. High intraspecific variability in the functional niche of a predator is associated with ontogenetic shift and individual specialization. Ecol. Evol. 4: 4649-4657.



How to Cite

Rajeeshkumar M, Vijayan Aneesh Kumar K, Otero-Ferrer JL, Lombarte A, Hashim M, Saravanane N, Narayanan Sanjeevan V, Venkata Ramana Murthy M, Manuel Tuset V. Differentiating morpho-functional patterns of the five most common deep-sea benthic anglerfishes (Lophiiformes) from Andaman and Nicobar Islands (eastern Indian Ocean). scimar [Internet]. 2020Dec.11 [cited 2021Jan.22];84(4):369-84. Available from: http://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1872




Most read articles by the same author(s)

1 2 > >>