Scientia Marina, Forthcoming Articles

Presettlement schooling behaviour of a rocky fish in a shallow area. Is it related to local environmental conditions?

Pamela Palacios-Fuentes
Programa de Doctorado en Ciencias Biológicas mención Ecología, Pontificia Universidad Católica de Chile, Chile

Macarena Díaz-Astudillo
Programa de Doctorado en Oceanografía, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Chile

María Antonia Reculé
Laboratorio de Ictioplancton (LABITI), Facultad de Ciencias del Mar y de Recursos Naturales, Universidad de Valparaíso,, Chile

F. Patricio Ojeda
Departamento de Ecología, Pontificia Universidad Católica de Chile, Chile

Mauricio F. Landaeta
Centro de Observación Marino para Estudios de Riesgos del Ambiente Costero (COSTA-R), Universidad de Valparaíso, Spain


This study evaluates the swimming behaviour of pre-settled fish larvae of the triplefin Helcogrammoides chil­ensis (Tripterygiidae) in relation to local environmental conditions. Larval aggregations were recorded on rocky reefs off central Chile during the austral summer of 2014 and 2016 to describe their swimming behaviour (i.e. solitary, shoaling, schooling) and relate it to in situ water temperature, wind stress, wind speed and turbulence. Shoaling and solitary behaviour were influenced only by wind-induced turbulence in 2014 and by seawater temperature and wind stress in 2016. Schooling behaviour was not influenced by any of the environmental variables. In situ swimming behaviour of fish larvae has been little investigated, and this work proposes a non-invasive in situ methodology for studying fish larval behaviour.


shoaling; reef fish; settlement; seawater temperature; local winds; turbulence

Full Text:



Aiken C.M., Navarrete S.A., Castillo M.I., et al. 2007. Along-shore larval dispersal kernels in a numerical ocean model of the cen­tral Chilean coast. Mar. Ecol. Prog. Ser. 339: 13-24.

Aiken C.M., Castillo M.I., Navarrete S.A. 2008. A simulation of the Chilean coastal current and associated topographic upwelling near Valparaíso, Chile. Cont. Shelf Res. 28: 2371-2381.

Aravena G., Broitman B., Stenseth N.C. 2014. Twelve years of change in coastal upwelling along the central-northern coast of Chile: spatially heterogeneous responses to climatic variability. PLoS ONE 9: e90276.

Brandl S.J., Tornabene L., Goatley C.H.R., et al. 2019. Demograph­ic dynamics of the smallest marine vertebrates fuel coral-reef ecosystem functioning. Science 364: 1189-1192.

Cancino C., Farías K., Lampas S., et al. 2010. Descripción de los complejos estructurales óseos en Helcogrammoides chilensis (Blennioidei: Tripterygiidae) de la zona central de Chile. Rev. Biol. Mar. Oceanogr. 45: 671-682.

Caie P., Shima J.S. 2019. Patterns of selective predation change with ontogeny but not density in a marine fish. Oecologia 189: 123-132.

Díaz-Astudillo M., Castillo M.I., Cáceres M.A., et al. 2017. Oceanographic and lunar forcing affects nearshore larval fish assemblages from temperate rocky reefs. Mar. Biol. Res. 13: 1015-1026.

Díaz-Astudillo M., Landaeta M.F., Bernal-Durán V., et al. 2019. The influence of regional and local oceanography in early stages of marine fishes from temperate rocky reefs. Mar. Biol. 166: 42.

Hammer Ø., Harper D.A.T., Ryan P.D. 2001. PAST: Paleontologi­cal Statistics software package for education and data analysis. Palaeontologia Electronica 4: 4.

Hasler C.T., Suski C.D., Hanson K.C., et al. 2009. Effects of water temperature on laboratory swimming performance and natu­ral activity levels of adult largemouth bass. Can. J. Zool. 87: 589-596.

Hernández-Miranda E., Palma A.T., Ojeda F.P. 2003. Larval fish assemblages in nearshore coastal waters off central Chile: Temporal and spatial patterns. Estuar. Coast. Shelf. Sci. 56: 1075-1092.

Hindell J.S., Jenkins G.P., Moran S.M., et al. 2003. Swimming abil­ity and behaviour of post-larvae of a temperate marine fish re-entrained in the pelagic environment. Oecologia 135: 158-166.

Hoare D.J., Krause J., Peuhkuri N., et al. 2000. Body size and shoal­ing in fish. J. Fish Biol. 57: 1351-1366.

Hoare D.J., Couzin I.D., Godin J.G.J., et al. 2004. Context-depend­ent group size choice in fish. Anim. Behav. 67: 155-164.

Landaeta M.F., Schrebler K., Bustos C.A., et al. 2009. Temporal fluctuations of nearshore icthyoplankton off Valparaíso, cen­tral Chile, during the ENSO cycle 1997-2000. Rev. Biol. Mar. Oceanogr. 44: 571-582.

Landaeta M.F., Zavala-Muñoz F., Palacios-Fuentes P., et al. 2015. Spatial and temporal variations of coastal fish larvae, ectopara­sites and oceanographic conditions off central Chile. Rev. Biol. Mar. Oceanogr. 50: 563-574.

Leis J.M. 2006. Are Larvae of Demersal Fishes Plankton or Nek­ton? Adv. Mar. Biol. 51: 57-141.

Leis J.M. 2010. Ontogeny of behaviour in larvae of marine demersal fishes. Ichthyol. Res. 57: 325-342.

Leis J.M., Paris C.B., Irisson J-O., et al. 2014. Orientation of fish larva in situ is consistent among locations, years and methods, but varies with time of day. Mar. Ecol. Prog. Ser. 505: 193-208.

López U., Gautrais J., Couzin I.D., et al. 2012. From behavioural analyses to models of collective motion in fish schools. Inter­face Focus 2: 693-707.

MacKenzie B.R., Leggett W.C. 1993. Wind-based models for es­timating the dissipation rates of turbulent energy in aquatics environments: empirical comparisons. Mar. Ecol. Progr. Ser. 94: 207-216.

Magurran A.E. 1990. The adaptive significance of schooling as an anti-predator defence in fish. Ann. Zool. Fenn. 27: 51-66.

Mansur L., Plaza G., Landaeta M.F., et al. 2014. Planktonic dura­tion in fourteen species of intertidal rocky fishes from the south-eastern Pacific Ocean. Mar. Freshw. Res. 65: 901-909.

Martínez C., Contreras-López M., Winckler P., et al. 2018. Coastal erosion in central Chile: A new hazard? Ocean Coast. Man. 156: 141-155.

Maury O. 2017. Can schooling regulate marine populations and ecosystems? Prog. Oceanogr. 156: 91-103.

McDermontt C.J., Shima J.S. 2006. Ontogenetic shift in microhabi­tat preference of a temperate reef fish Forsterygion lapillum: implications for population limitation. Mar. Ecol. Prog. Ser. 320: 259-266.

Miller N., Gerlai R. 2012. From Schooling to Shoaling: Patterns of collective motion in zebrafish (Danio rerio). PLoS ONE 7: e48865.

Muñoz A.A., Ojeda F.P. 1998. Guild structure of carnivorous in­tertidal fishes of the Chilean coast: implications of ontogenetic dietary shifts. Oecologia 114: 563-573.

Narváez D.A., Poulin E., Leiva G., et al. 2004. Seasonal and spatial variation of nearshore hydrographic conditions in central Chile. Cont. Shelf Res. 24: 279-292.

Palacios-Fuentes P., Landaeta M.F., Jahnsen-Guzmán N., et al. 2014. Hatching patterns and larval growth of a triplefin from central Chile inferred by otolith microstructure analysis. Aquat. Ecol. 48: 259-266.

Parrish J.K., Edelstein-Keshet L. 1999. Complexity, pattern, and evolutionary trade-offs in animal aggregation. Science 284: 99-101.

Parrish J.K., Hamner W.M., Prewitt C.T. 1997. Introduction-from individuals to aggregations: unifying properties, global frame­work, and the holy grails of congregation. In: Parrish J.K., Hamner W.M. (eds), Animal groups in three dimensions. Cam­bridge Univ. Press, Cambridge, pp. 1-14.

Pechenik J.A. 2006. Larval experience and latent effects - metamor­phosis is not a new beginning. Integr. Comp. Biol. 46: 323-333.

Pérez R. 1979. Postembryonic development of Tripterygion chil­ensis Cancino, 1955, in Valparaíso bay (Tripterygiidae: Perci­formes). Rev. Biol. Mar. 16: 19-329.

Pérez-Matus A., Sánchez F., González-But J.C., et al. 2016. Un­derstory algae associations and predation risk influence broad-scale kelp habitat use in a temperate reef fish. Mar. Ecol. Prog. Ser. 559: 147-158.

Ruck J.G. 1973. Development of Tripterygion capito and F. robus­tum (Pisces: Tripterygiidae). Zool. Publ. Vic. Univ. Wellingt. 63: 1-10

Ruck J.G. 1980. Early development of Forsterygion varium, Gillo­blennius decemdigitatus, and G. tripennis (Pisces: Tripterygii­dae). N. Z. J. Mar. Freshw. Res. 14: 313-326.

Sadoul B., Mengues P.E., Friggens N.C., et al. 2014. A new method for measuring group behaviours of fish shoals from recorded videos taken in near aquaculture conditions. Aquaculture 430: 179-187.

Santana-Garcon J., Leis J.M., Newman S.J., et al. 2014. Presettle­ment schooling behaviour of a priacanthid, the Purplespotted Bigeye Priacanthus tayenus (Priacanthidae: Teleostei). Environ. Biol. Fish. 97: 277-283.

Shaffer G., Pizarro O., Djurfeldt L., et al. 1997. Circulation and low-frequency variability near the Chilean coast: remotely forced fluctuations during the 1991-92 El Niño. J. Phys. Oceanogr. 27: 217-235.

Shaffer G., Hormazabal S., Pizarro O., et al. 1999. Seasonal and interannual variability of currents and temperature off central Chile. J. Geophys. Res. 104: 29951-29961.

Shima J.S., Findlay A.M. 2002. Pelagic larval growth rate impacts benthic settlement and survival of a temperate reef fish. Mar. Ecol. Prog. Ser. 235: 303-309.

Shima J.S, Swearer S.E. 2009. Larval quality is shaped by matrix ef­fects: Implications for connectivity in a marine metapopulation. Ecology 90: 1255-1267.

Stepien C.A. 1990. Population structure, diets and biogeographic relationships of a rocky intertidal fish assemblage in central Chile: high levels of herbivory in a temperate system. Bull. Mar. Sci. 47: 598-612.

Wellenreuther M., Clements K.D. 2008. Determinants of habitat association in a sympatric clade of marine fishes. Mar. Biol. 154: 393-402.

Williams J.T., Springer V.G. 2001. Review of the South American Antartic triplefin fish genus Helcogrammoides (Perciformes: Tripterygiidae). Rev. Biol. Trop. 49: 117-123.

Copyright (c) 2011 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Contact us

Technical support