Scientia Marina, Vol 83, No 2 (2019)

Size fractionation, chemotaxonomic groups and bio-optical properties of phytoplankton along a transect from the Mediterranean Sea to the SW Atlantic Ocean


https://doi.org/10.3989/scimar.04866.10A

Sdena Nunes
Biologia Marina i Oceanografia, Institut de Ciencies del Mar, Consejo Superior de Investigaciones Científicas, Spain
orcid http://orcid.org/0000-0002-8272-4883

Gonzalo Luís Perez
INIBIOMA, CONICET-UNComahue, Argentina
orcid http://orcid.org/0000-0001-8325-7677

Mikel Latasa
Instituto Español de Oceanografía (IEO), Spain
orcid http://orcid.org/0000-0002-8202-0923

Marina Zamanillo
Biologia Marina i Oceanografia, Institut de Ciencies del Mar, Consejo Superior de Investigaciones Científicas, Spain
orcid http://orcid.org/0000-0002-0753-4748

Maximino Delgado
Biologia Marina i Oceanografia, Institut de Ciencies del Mar, Consejo Superior de Investigaciones Científicas, Spain
orcid http://orcid.org/0000-0001-8389-0472

Eva Ortega-Retuerta
Biologia Marina i Oceanografia, Institut de Ciencies del Mar, Consejo Superior de Investigaciones Científicas - CNRS, Sorbonne Université, UMR 7621, Laboratoire d’Océanographie Microbienne, Spain
orcid http://orcid.org/0000-0003-0780-8347

Celia Marrasé
Biologia Marina i Oceanografia, Institut de Ciencies del Mar, Consejo Superior de Investigaciones Científicas, Spain
orcid http://orcid.org/0000-0002-5097-4829

Rafel Simó
Biologia Marina i Oceanografia, Institut de Ciencies del Mar, Consejo Superior de Investigaciones Científicas, Spain
orcid http://orcid.org/0000-0003-3276-7663

Marta Estrada
Biologia Marina i Oceanografia, Institut de Ciencies del Mar, Consejo Superior de Investigaciones Científicas, Spain
orcid http://orcid.org/0000-0001-5769-9498

Abstract


The relationships between the structure of the phytoplankton community and the bio-optical properties of surface waters were studied during the TransPEGASO cruise along a transect across the Atlantic Ocean that covered seven biogeographical provinces, from the Alborán Sea (SW Mediterranean) to the Patagonian Shelf. We characterized the composition of the phytoplankton community by means of high-performance liquid chromatography and CHEMTAX pigment analyses applied to whole water and two filtration size classes (< 3 and ≥ 3 μm), flow cytometric determinations and microscopic observations. Additionally, the study was complemented by measurements of the absorption of particulate matter and coloured dissolved organic matter (CDOM). The size class distribution of the chlorophyll a (Chl a) obtained from the size-fractionated filtration (SFF) was compared with that resulting from the diagnostic pigment algorithms (VU) developed by Vidussi et al. (2001) and Uitz et al. (2006), and the total Chl a–based expressions (HI) of Hirata et al. (2011). The seven provinces crossed by the transect could be divided into an oligotrophic group with Chl a < 0.25 mg m-3 comprising the tropical and subtropical Atlantic (including the Canary Current Coastal Province), and a eutrophic group (Chl a > 0.5 mg m-3) with a single Mediterranean (MEDI) sample and those from the southwestern Atlantic Shelf (SWAS). According to CHEMTAX, the most important taxa in the tropical and subtropical Atlantic were Prochlorococcus, haptophytes and Synechoccoccus, while the MEDI and SWAS were dominated by diatoms and haptophytes. Both the VU and HI algorithms, which are based on pigment composition or Chl a concentration, predicted for SWAS a high proportion of nano- and microphytoplankton, while the SFF indicated dominance of the < 3 μm size class. In addition, the CHEMTAX results indicated a high average diatom contribution in this province. However, at several SWAS stations with relatively high values of diatom Chl a estimated by CHEMTAX, the microscopic observations found only small concentrations of nano- or microplankton-sized cells. This discrepancy appeared to be due to the presence, confirmed by scanning electron microscopy, of picoplankton-sized cells of the diatom Minidiscus sp. and of Parmales (a group sharing the pigment composition with the diatoms). These findings caution against a routine assignment of diatom pigments to the microplankton size class. The total non-water absorption in the water column was dominated by CDOM. The average contribution of phytoplankton absorption for the different provinces ranged from 19.3% in the MEDI to 45.7% in the SWAS and 47% in the western tropical Atlantic (WTRA). The Chl a–specific phytoplankton absorption [aph*(443), m2 mg-1] was lower in the MEDI and SWAS than in the oligotrophic provinces. aph*(443) was negatively correlated with the first principal component derived from a principal component analysis based on the concentration of the main pigments and was not correlated with indicators of phytoplankton community size structure such as the proportion of Chl a in the < 3 μm class or a size index derived from the VU size class distribution. These findings indicate that the variability observed in aph*(443) was mainly related to differences in pigment composition and possibly to photoacclimation processes, and that any package effects due to cell size were probably masked by other factors, an outcome that may be related to the relatively small influence of size within the narrow range of Chl a concentrations (all ≤ 2.4 mg m-3) considered in our study.

Keywords


chemotaxonomy; CHEMTAX; size fractionation; bio-optics; Atlantic Ocean; CDOM

Full Text:


HTML PDF XML

References


Acevedo-Trejos E., Marañón E., Merico A. 2018. Phytoplankton size diversity and ecosystem function relationships across oceanic regions. Proc. R. Soc. B 285: 20180621. https://doi.org/10.1098/rspb.2018.0621 PMid:29794050 PMCid:PMC5998115

Aiken J., Pradhan Y., Barlow R., et al. 2009. Phytoplankton pigments and functional types in the Atlantic Ocean: A decadal assessment, 1995-2005. Deep-Sea Res. II 56: 899-917. https://doi.org/10.1016/j.dsr2.2008.09.017

Baker A., Spencer R.G.M. 2004. Characterization of dissolved organic matter from source to sea using fluorescence and absorbance spectroscopy. Sci. Total Environ. 333: 217-232. https://doi.org/10.1016/j.scitotenv.2004.04.013 PMid:15364531

Barlow R.G., Aiken J., Holligan P.M., et al. 2002. Phytoplankton pigment and absorption characteristics along meridional transects in the Atlantic Ocean. Deep-Sea Res. I 49: 637-660. https://doi.org/10.1016/S0967-0637(01)00081-4

Bidigare R., Ondrusek M., Morrow J.H., et al. 1990. In-vivo absorption properties of algal pigments. Proc. SPIE 1302, Ocean Optics X. https://doi.org/10.1117/12.21451

Bidigare R.R., Buttler F.R., Christensen S.J., et al. 2014. Evaluation of the utility of xanthophyll cycle pigment dynamics for assessing upper ocean mixing processes at Station ALOHA. J. Plankton Res. 36: 1423-1433. https://doi.org/10.1093/plankt/fbu069

Bouman H.A., Platt T., Kraay G.W., et al. 2000. Bio-optical properties of the subtropical North Atlantic. I. Vertical variability. Mar. Ecol. Prog. Ser. 200: 3-18. https://doi.org/10.3354/meps200003

Brewin R.J.W., Sathyendranath S., Lange P.K., et al. 2014. Comparison of two methods to derive the size-structure of natural populations of phytoplankton. Deep-Sea Res. I 85: 72-79. https://doi.org/10.1016/j.dsr.2013.11.007

Bricaud A., Stramski D. 1990. Spectral absorption coefficients of living phytoplankton and nonalgal biogenous matter: A comparison between the Peru upwelling area and the Sargasso Sea. Limnol. Oceanogr. 35: 562-582. https://doi.org/10.4319/lo.1990.35.3.0562

Bricaud A., Babin M., Morel A., et al. 1995. Variability in the chlorophyll-specific absorption coefficients of natural phytoplankton: Analysis and parameterization. J. Geophys. Res. Oceans 100: 13321-13332. https://doi.org/10.1029/95JC00463

Bricaud A., Claustre H., Ras J., et al. 2004. Natural variability of phytoplankton absorption in oceanic waters: influence of the size structure of algal populations. J. Geophys. Res. Oceans 109: C11010. https://doi.org/10.1029/2004JC002419

Bricaud A., Babin M., Claustre H., et al. 2010. Light absorption properties and absorption budget of Southeast Pacific waters. J. Geophys. Res. Oceans 115: C08009. https://doi.org/10.1029/2009JC005517

Brunelle C.B., Larouche P., Gosselin M. 2012. Variability of phytoplankton light absorption in Canadian Arctic seas. J. Geophys. Res. Oceans 117: C00G17. https://doi.org/10.1029/2011JC007345

Cabello A.M., Latasa M., Forn I., et al. 2016. Vertical distribution of major photosynthetic picoeukaryotic groups in stratified marine waters. Environ. Microbiol. 18: 1578-1590. https://doi.org/10.1111/1462-2920.13285 PMid:26971724

Ciotti A., Lewis M.R., Cullen J.J. 2002. Assessment of the relationships between dominant cell size in natural phytoplankton communities and the spectral shape of the absorption coefficient. Limnol. Oceanogr. 47: 404-417. https://doi.org/10.4319/lo.2002.47.2.0404

Cleveland J.S., Weidemann A.D. 1993. Quantifying absorption by aquatic particles: A multiple scattering correction for glass-fiber filters. Limnol. Oceanogr. 38: 1321-1327. https://doi.org/10.4319/lo.1993.38.6.1321

de Vargas C., Audic S., Henry N., et al. 2015. Eukaryotic plankton diversity in the sunlit ocean. Science 348. 1261605. https://doi.org/10.1126/science.1261605 PMid:25999516

Dunlap W.P., Dietz J., Cortina J.M. 1997. The Spurious Correlation of Ratios That Have Common Variables: A Monte Carlo Examination of Pearson's Formula. J. Gen. Psychol. 124: 182-193. https://doi.org/10.1080/00221309709595516

Eisner L.B, Twardowski M.S., Cowles T.J., et al. 2003. Resolving phytoplankton photoprotective: photosynthetic carotenoid ratios on fine scales using in situ spectral absorption measurements. Limnol. Oceanogr. 48: 632-646. https://doi.org/10.4319/lo.2003.48.2.0632

Falkowski P.G., Laws E.A., Barber R.T., et al. 2003. Phytoplankton and their role in primary, new and export production. In: Fasham M.J.R. (ed.) Ocean Biogeochemistry, Global Change. Global Change-The IGBP Series, Springer, Berlin, Heidelberg, pp. 99-119. https://doi.org/10.1007/978-3-642-55844-3_5 PMid:12746516 PMCid:PMC166956

Falster D.S., Warton D.I., Wright I.J. 2006. User's guide to SMATR: Standardised major axis tests and routines, ver 2.0. http://bio.mq.edu.au/research/groups/comparative/SMATR/ SMATR_users_guide.pdf

Farrant G.K., Doré H., Cornejo-Castillo F.M, et al. 2016. Delineating ecologically significant taxonomic units from global patterns of marine picocyanobacteria. P. Natl. Acad. Sci. USA 113: E3365-E3374. https://doi.org/10.1073/pnas.1524865113 PMid:27302952 PMCid:PMC4914166

Ferreira A., Stramski D., Garcia C.A.E., et al. 2013. Variability in light absorption and scattering of phytoplankton in Patagonian waters: Role of community size structure and pigment composition. J. Geophys. Res. Oceans 118: 1-17. https://doi.org/10.1002/jgrc.20082

Ferreira A., Ciotti A.M., Mendes C.R.B., et al. 2017. Phytoplankton light absorption and the package effect in relation to photosynthetic and photoprotective pigments in the northern tip of Antarctic Peninsula. J. Geophys. Res. Oceans 122: 7344-7363. https://doi.org/10.1002/2017JC012964

Ferris J.M., Christian R. 1991. Aquatic primary production in relation to microalgal responses to changing light: a review. Aquat. Sci. 53: 187-217. https://doi.org/10.1007/BF00877059

Fortier L., Le Fèvre J., Legendre L. 1994. Export of biogenic carbon to fish and to the deep ocean: the role of large planktonic microphages. J. Plankton Res. 16: 809-839. https://doi.org/10.1093/plankt/16.7.809

García V.M.T., García C.A.E., Mata M.M., et al. 2008. Environmental factors controlling the phytoplankton blooms at the Patagonia shelf-break in spring. Deep-Sea Res. I 55: 1150-1166. https://doi.org/10.1016/j.dsr.2008.04.011

Gasol J.M., Giorgio P.A. 2000. Using flow cytometry for counting natural planktonic bacteria and understanding the structure of planktonic bacterial communities. Sci. Mar. 64: 197-224. https://doi.org/10.3989/scimar.2000.64n2197

Gibb S.W., Barlow R.G., Cummings D.G., et al. 2000. Surface phytoplankton pigment distributions in the Atlantic Ocean: an assessment of basin scale variability between 50°N and 50°S. Prog. Oceanogr. 45: 339-368. https://doi.org/10.1016/S0079-6611(00)00007-0

Goodwin L.D., Leech N.L. 2006. Understanding Correlation: Factors That Affect the Size of r. J. Exp. Educ. 74: 249-266. https://doi.org/10.3200/JEXE.74.3.249-266

Goericke R.E., Repeta D.J. 1993. Chlorophylls a and b and divinyl chlorophylls a and b in the open subtropical North Atlantic Ocean. Mar. Ecol. Prog. Ser. 101: 307-313. https://doi.org/10.3354/meps101307

Gonçalves-Araujo R., Rabe B., Peeken I., et al. 2018. High colored dissolved organic matter (CDOM) absorption in surface waters of the central-eastern Arctic Ocean: Implications for biogeochemistry and ocean color algorithm. PLoS ONE 13: 0190838. https://doi.org/10.1371/journal.pone.0190838 PMid:29304182 PMCid:PMC5755909

Hansen H.P., Koroleff F. 1999. Determination of nutrients. In: Grasshoff K., Kremling K., Ehrhardt M. (eds), Methods of seawater analysis. Whiley-VCH, Weinheim, pp. 159-228. https://doi.org/10.1002/9783527613984.ch10

Herbland A., Le Bouteiller A., Raimbault P. 1985. Size structure of phytoplankton biomass in the equatorial Atlantic Ocean. Deep- Sea Res. 32: 819-836. https://doi.org/10.1016/0198-0149(85)90118-9

Hirata T., Aiken J., Hardman-Mountford N., et al. 2008. An absorption model to determine phytoplankton size classes from satellite ocean colour. Remote Sens. Environ. 112: 3153-3159. https://doi.org/10.1016/j.rse.2008.03.011

Hirata T., Hardman-Mountford N.J., Brewin R.J.W., et al. 2011. Synoptic relationships between surface chlorophyll a and diagnostic pigments specific to phytoplankton functional types. Biogeosciences 8: 311-327. https://doi.org/10.5194/bg-8-311-2011

Ichinomiya M, Kuwata A. 2015. Seasonal variation in abundance and species composition of the Parmales community in the Oyashio region, western North Pacific. Aquat. Microb. Ecol. 75: 207-223. https://doi.org/10.3354/ame01756

Ichinomiya M., Yoshikawa S., Kamiya M., et al. 2010. Isolation and characterization of Parmales Heterokonta/Heterokontophyta/ Stramenopiles) from the Oyashio region, western north Pacific. J. Phycol. 47: 144-151. https://doi.org/10.1111/j.1529-8817.2010.00926.x PMid:27021720

Ichinomiya M., Santo A.L., Gourvil P., et al. 2016. Diversity and oceanic distribution of the Parmales (Bolidophyceae), a picoplanktonic group closely related to diatoms. ISME J. 10: 2419-2434. https://doi.org/10.1038/ismej.2016.38 PMid:27003244 PMCid:PMC5030691

Jewson D., Kuwata A., Cros L., et al. 2016. Morphological adaptations to small size in the marine diatom Minidiscus comicus. Sci. Mar. 80S1: 89-96. https://doi.org/10.3989/scimar.04331.06C

Johnson Z.I., Zinser E.R., Coe A., et al. 2006. Niche partitioning among Prochlorococcus ecotypes along ocean-scale environmental gradients. Science 311: 1737-1740. https://doi.org/10.1126/science.1118052 PMid:16556835

Kaczmarska I, Lovejoy C., Potvin M., et al. 2009. Morphological and molecular characteristics of selected species of Minidiscus (Bacillariophyta, Thalassiosiraceae), Eur. J. Phycol. 44: 461-475. https://doi.org/10.1080/09670260902855873

Kheireddine M., Ouhssain M., Organelli E., et al. 2018. Light absorption by suspended particles in the Red Sea: Effect of phytoplankton community size structure and pigment composition. J. Geophys. Res. Oceans 123: 902-921. https://doi.org/10.1002/2017JC013279

Kiørboe T. 1993. Turbulence, phytoplankton cell size, and the structure of pelagic food webs. Adv. Mar. Biol. 29: 1-72. https://doi.org/10.1016/S0065-2881(08)60129-7

Kishino M., Takahashi M., Okami N., et al. 1985. Estimation of the spectral absorption coefficients of phytoplankton in the sea. Bull. Mar. Sci. 37: 634-642.

Kitidis V., Stubbins A., Günther U., et al. 2006. Variability of chromophoric organic matter in surface waters of the Atlantic Ocean. Deep-Sea Res. II 53. 1666-1684.. https://doi.org/10.1016/j.dsr2.2006.05.009

Klaas C., Archer D.E. 2002. Association of sinking organic matter with various types of mineral ballast in the deep sea: Implications for the rain ratio. Global Biogeochem. Cycles 16: 1116. https://doi.org/10.1029/2001GB001765

Latasa M. 2007 Improving estimations of phytoplankton class abundances using CHEMTAX. Mar. Ecol. Prog. Ser. 329: 13-21. https://doi.org/10.3354/meps329013

Latasa M. 2014. A simple method to increase sensitivity for RP-HPLC phytoplankton pigment analysis. Limnol. Oceanogr. Methods 12: 45-63. https://doi.org/10.4319/lom.2014.12.46

Latasa M., Scharek R., Vidal M., et al. 2010. Preferences of phytoplankton groups for waters of different trophic status in the northwestern Mediterranean Sea. Mar. Ecol. Prog. Ser. 407: 27-42. https://doi.org/10.3354/meps08559

Le Queré C., Harrison S.P., Prentice I.C., et al. 2005. Ecosystem dynamics based on plankton functional types for global ocean biogeochemistry models. Glob. Change Biol. 11: 2016-2040.

Leblanc K., Quéguiner B., Diaz F., et al. 2018. Nanoplanktonic diatoms are globally overlooked but play a role in spring blooms and carbon export. Nat. Commun. 9: 953. https://doi.org/10.1038/s41467-018-03376-9 PMid:29507291 PMCid:PMC5838239

Légendre P., Légendre L. 1998. Numerical ecology. Elsevier Science BV. Amsterdam, 853 pp.

Litchman E., Klausmeier C.A. 2008. Trait-Based Community Ecology of phytoplankton. Annu. Rev. Ecol. Evol. Syst. 39: 615-639. https://doi.org/10.1146/annurev.ecolsys.39.110707.173549

Longhurst A.R. 2007. Ecological geography of the sea. Academic Press, Burlington, MA. 542 pp. https://doi.org/10.1016/B978-012455521-1/50002-4

Macías D., Martin A.P., García Lafuente J., et al. 2007. Mixing and biogeochemical effects induced by tides at on the Atlantic- Mediterranean flow in the Strait of Gibraltar. Prog. Oceanogr. 74: 252-272. https://doi.org/10.1016/j.pocean.2007.04.006

Mackey M.D., Higgins H.W., Wright S.W. 1996. CHEMTAX - a program for estimating class abundances from chemical markers: application to HPLC measurements of phytoplankton. Mar. Ecol. Prog. Ser. 144: 265-283. https://doi.org/10.3354/meps144265

Marañón E, Holligan P, Barciela R, et al. 2001. Patterns of phytoplankton size structure and productivity in contrasting open-ocean environments. Mar. Ecol. Prog. Ser. 216: 43-56. https://doi.org/10.3354/meps216043

Margalef R. 1978. Life-forms of phytoplankton as survival alternatives in an unstable environment. Oceanol. Acta 1: 493-509.

Massana R. 2011. Eukaryotic picoplankton in surface oceans. Annu. Rev. Microbiol. 65: 91-110. https://doi.org/10.1146/annurev-micro-090110-102903 PMid:21639789

Menna M., Faye S., Poulain P-M., et al. 2016. Upwelling features off the coast of north-western Africa in 2009-2013. Bol. Geofis. Teor. Appl. 57: 71-86.

Mitchell G., Kiefer D.A. 1988. Chlorophyll a specific absorption and fluorescence excitation spectra for light- limited phytoplankton. Deep-Sea Res. 35: 639-663. https://doi.org/10.1016/0198-0149(88)90024-6

Mitchell G., Carder K., Cleveland J., et al. 2000. Determination of spectral absorption coefficients of particles, dissolved material and phytoplankton for discrete water samples. In: Fargion G.S., Mueller J.L. (eds), Ocean Optics Protocols for Satellite Ocean Colour Sensor Validation, Revision 2. NASA Tech. Memo. 209966, NASA Goddard Space Flight Center. Greenbelt. Maryland. pp. 125-153.

Morel A., Gentili B., Claustre H., et al. 2007. Optical properties of the "clearest" natural waters. Limnol. Oceanogr. 52: 217-229. https://doi.org/10.4319/lo.2007.52.1.0217

Mousseau L., Klein B., Legendre L., et al. 2001. Assessing the trophic pathways that dominate planktonic food webs: an approach based on simple ecological ratios. J. Plankton Res. 23: 765-777. https://doi.org/10.1093/plankt/23.8.765

Murphy L.S., Haugen E.M. 1985. The distribution and abundance of phototrophic ultraplankton in the North Atlantic. Limnol. Oceanogr. 30: 47-58. https://doi.org/10.4319/lo.1985.30.1.0047

Nair A., Sathyendranath S., Platt T., et al. 2008. Remote sensing of phytoplankton functional types. Remote Sens. Environ. 112: 3366-3375. https://doi.org/10.1016/j.rse.2008.01.021

Nelson N.B., Siegel D.A., Michaels A.F. 1998. Seasonal dynamics of colored dissolved material in the Sargasso Sea. Deep-Sea Res. I 45: 931-957. https://doi.org/10.1016/S0967-0637(97)00106-4

Partensky F, Hess W.R., Vaulot D. 1999. Prochlorococcus, a marine photosynthetic prokaryote of global significance. Microbiol. Mol. Biol. Rev. 63: 106-127.

Pérez G.L., Galí M., Royer S-J., et al. 2016. Bio-optical characterization of offshore NW Mediterranean waters: CDOM contribution to the absorption budget and diffuse attenuation of downwelling irradiance. Deep-Sea Res. I 114: 111-127. https://doi.org/10.1016/j.dsr.2016.05.011

Pope R.M., Fry E.S. 1997. Absorption spectrum (380-700 nm) of pure water. II. Integrating cavity measurements. Appl. Opt. 36: 8710-8723. https://doi.org/10.1364/AO.36.008710 PMid:18264420

Romera-Castillo C., Alvarez-Salgado X.A., Galí M., et al. 2013. Combined effect of light exposure and microbial activity on distinct dissolved organic matter pools. A seasonal field study in an oligotrophic coastal system (Blanes Bay, NW Mediterranean). Mar. Chem. 148: 44-51. https://doi.org/10.1016/j.marchem.2012.10.004

Roy S., Llewellyn C.A., Egeland E.S., et al. 2011. Phytoplankton pigments: characterization, chemotaxonomy, and applications in oceanography. Cambridge University, Cambridge, UK. 845 pp. https://doi.org/10.1017/CBO9780511732263

Simó R. 2001. Production of atmospheric sulfur by oceanic plankton: Biogeochemical, ecological and evolutionary links. Trends Ecol. Evol. 16: 287-294. https://doi.org/10.1016/S0169-5347(01)02152-8

Sournia A., Chrétiennot-Dinet M.J., Ricard M. 1991. Marine phytoplankton: how many species in the world ocean? J. Plankton Res. 13: 1093-1099. https://doi.org/10.1093/plankt/13.5.1093

Souza M.S., Mendes C.R.B, García V.M.T., et al. 2012. Phytoplankton community during a coccolithophorid bloom in the Patagonian Shelf: microscopic and high-performance liquid chromatography pigment analyses. J. Mar. Biol. Ass. UK 92: 13-27. https://doi.org/10.1017/S0025315411000439

Taylor B.B., Torrecila E., Bernhardt A., et al. 2011. Bio-optical provinces in the eastern Atlantic Ocean and their biogeographical relevance. Biogeosciences 8: 3609-3629. https://doi.org/10.5194/bg-8-3609-2011

Thingstad T.F., Hagström A., Rassoulzadegan F. 1997. Accumulation of degradable DOC in surface waters: Is it caused by a malfunctioning microbial loop? Limnol. Oceanogr. 42: 398-404. https://doi.org/10.4319/lo.1997.42.2.0398

Tintoré J., Gomis D., Alonso S., et al. 1991. Mesoscale dynamics and vertical motion in the Alboran Sea. J. Phys. Oceanogr. 21: 811-823. https://doi.org/10.1175/1520-0485(1991)021<0811:MDAVMI>2.0.CO;2

Uitz J., Claustre H., Morel A., et al. 2006. Vertical distribution of phytoplankton communities in Open Ocean: An assessment based on surface chlorophyll. J. Geophys. Res. Oceans 111: 1-23. https://doi.org/10.1029/2005JC003207

Utermöhl H. 1958. Zur Vervollkommung der quantitativen Phytoplankton-Methodik. Mitt. Internat. Verein. Theor. Angew. Limnol. 9: 1-38. https://doi.org/10.1080/05384680.1958.11904091

Vaulot D., Eikrem W., Viprey M., et al. 2008. The diversity of small eukaryotic phytoplankton (≤3 ?m) in marine ecosystems. FEMS Microbiol. Rev. 32: 795-820. https://doi.org/10.1111/j.1574-6976.2008.00121.x PMid:18564290

Vega-Moreno D., Marrero J.P, Morales J., et al. 2012. Phytoplankton functional community structure in Argentinian continental shelf determined by HPLC pigment signatures. Estuar. Coast. Shelf Sci. 100: 72-81. https://doi.org/10.1016/j.ecss.2012.01.007

Vidussi F., Claustre H., Manca B.B., et al. 2001. Phytoplankton pigment distribution in relation to upper thermocline circulation in the eastern Mediterranean Sea during winter. J. Geophys. Res. Oceans 106: 19939-19956. https://doi.org/10.1029/1999JC000308

Wang S.Q., Ishizaka J., Yamaguchi H., et al. 2014. Influence of the Changjiang River on the light absorption properties of phytoplankton from the East China Sea. Biogeosciences 11: 1759-1773. https://doi.org/10.5194/bg-11-1759-2014

Warton D.I., Wright I.J., Falster D.S., et al. 2006. Bivariate line-fitting methods for allometry. Biol. Rev. 81: 259-291. https://doi.org/10.1017/S1464793106007007 PMid:16573844

Weishaar J.L., Aiken G.R., Bergamaschi B.A., et al. 2003. Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon. Environ. Sci. Technol. 37: 4702-4708. https://doi.org/10.1021/es030360x

Xing X., Claustre H., Wang H., et al. 2014. Seasonal dynamics in colored dissolved organic matter in the Mediterranean Sea: patterns and drivers. Deep-Sea Res. I 83:93-101. https://doi.org/10.1016/j.dsr.2013.09.008

Yentsch C., Menzel D.W. 1963. A method for the determination of phytoplankton chlorophyll and phaeophytin by fluorescence. Deep-Sea Res. 10: 221-231. https://doi.org/10.1016/0011-7471(63)90358-9

Zamanillo M., Ortega-Retuerta E., Nunes S., et al. 2019. Main drivers of transparent exopolymer particle distribution across the surface Atlantic Ocean. Biogeosciences 16: 733-749. https://doi.org/10.5194/bg-16-733-2019

Zeng C., Rosengarda S.Z., Burta W., et al. 2018. Optically-derived estimates of phytoplankton size class and taxonomic group biomass in the Eastern Subarctic Pacific Ocean. Deep-Sea Res. I 136: 107-118. https://doi.org/10.1016/j.dsr.2018.04.001




Copyright (c) 2011 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Contact us scimar@icm.csic.es

Technical support soporte.tecnico.revistas@csic.es