Scientia Marina, Vol 83, No 2 (2019)

Long-term regional trend and variability of mean sea level during the satellite altimetry era


https://doi.org/10.3989/scimar.04691.05A

Quang-Hung Luu
Faculty of Science, Engineering and Technology, Swinburne University of Technology - School of Interdisciplinary Studies, Vietnam National University, Australia
orcid http://orcid.org/0000-0002-7771-9836

Qing Wu
Tropical Marine Science Institute, National University of Singapore, Singapore
orcid http://orcid.org/0000-0001-7430-7169

Pavel Tkalich
College of Information Science and Engineering, Ocean University of China, China
orcid http://orcid.org/0000-0001-7527-0740

Ge Chen
Tropical Marine Science Institute, National University of Singapore - Laboratory for Regional Oceanography and Numerical Modeling, Qingdao National Laboratory for Marine Science and Technology, Singapore
orcid http://orcid.org/0000-0003-4868-5179

Abstract


The rise and fall of mean sea level are non-uniform around the global oceans. Their long-term regional trend and variability are intimately linked to the fluctuations and changes in the climate system. In this study, geographical patterns of sea level change derived from altimetric data over the period 1993-2015 were partitioned into large-scale oscillations allied with prevailing climatic factors after an empirical orthogonal function analysis. Taking into account the El Niño–Southern Oscillation (ENSO) and the Pacific Decadal Oscillations (PDO), the sea level change deduced from the multiple regression showed a better estimate than the simple linear regression thanks to significantly larger coefficients of determination and narrower confidence intervals. Regional patterns associated with climatic factors varied greatly in different basins, notably in the eastern and western regions of the Pacific Ocean. The PDO exhibited a stronger impact on long-term spatial change in mean sea level than the ENSO in various parts of the Indian and Pacific Oceans, as well as of the subtropics and along the equator. Further improvements in the signal decomposition technique and physical understanding of the climate system are needed to better attain the signature of climatic factors on regional mean sea level.

Keywords


regional sea level trend; sea level rise; climate variability; El Niño-Southern Oscillation; Pacific Decadal Oscillations

Full Text:


HTML PDF XML

References


Ablain M., Cazenave A., Larnicol G., et al. 2015. Improved sea level record over the satellite altimetry era (1993-2010) from the Climate Change Initiative project. Ocean Sci. 11: 67-82. https://doi.org/10.5194/os-11-67-2015

Ablain M., Legeais J.F., Prandi P., et al. 2017. Satellite altimetry-based sea level at global and regional scales. Surv. Geophys. 38: 7-31. https://doi.org/10.1007/s10712-016-9389-8

Becker M., Meyssignac B., Letetrel C., et al. 2012. Sea level variations at tropical Pacific islands since 1950. Glob. Planet. Change 80: 85-98. https://doi.org/10.1016/j.gloplacha.2011.09.004

Bjornsson H., Venegas S.A. 1997. A manual for EOF and SVD analyses of climatic data, McGill University, 53 pp.

Boening C., Willis J.K. Landerer F.W. et al. 2012. The 2011 La Niña: So strong, the oceans fell. Geophys. Res. Lett. 39: L19602. https://doi.org/10.1029/2012GL053055

Bos M.S., Williams S.D.P., Araujo I.B., et al. 2014. The effect of temporal correlated noise on the sea level rate and acceleration uncertainty. Geophys. J. Int. 196: 1423-1430. https://doi.org/10.1093/gji/ggt481

Cazenave A., Dieng H.B., Meyssignac B., et al. 2014. The rate of sea-level rise. Nat. Clim. Change 4: 358-361. https://doi.org/10.1038/nclimate2159

Chen G., Wang Z., Qian C., et al. 2010. Seasonal-to-decadal modes of global sea level variability derived from merged altimeter data. Remote Sens. Env. 114: 2524-2535. https://doi.org/10.1016/j.rse.2010.05.028

Chen G., Peng L., Ma C. 2018. Climatology and seasonality of upper ocean salinity: a three-dimensional view from argo floats, Clim. Dyn. 50: 2169-2182. https://doi.org/10.1007/s00382-017-3742-6

Chen X., Zhang X., Church J.A., et al. 2017. The increasing rate of global mean sea-level rise during 1993-2014. Nat. Clim. Change 7: 492-495. https://doi.org/10.1038/nclimate3325

Church J.A., White N.J. 2011. Sea-level rise from the late 19th to the early 21st century. Surv. Geophys. 32: 585-602. https://doi.org/10.1007/978-94-007-2063-3_17

Dieng H.B., Cazenave A., Meyssignac B., et al. 2017. New estimate of the current rate of sea level rise from a sea level budget approach. Geophys. Res. Lett. 44: 3744-3751. https://doi.org/10.1002/2017GL073308

Dangendorf S., Marcos M., Muller M., et al. 2015. Detecting anthropogenic footprints in sea level rise. Nat. Comm. 6: 7849. https://doi.org/10.1038/ncomms8849 PMid:26220773 PMCid:PMC4532851

Dangendorf S, Marcos M., Wöppelmann G., et al. 2017. Reassessment of 20th century global mean sea level rise. Proc. Nat. Acad. Sci. 114: 5946-5951. https://doi.org/10.1073/pnas.1616007114 PMid:28533403 PMCid:PMC5468634

Fasullo J.T. Nerem R.S. 2018. Altimeter-era emergence of the patterns of forced sea-level rise in climate models and implications for the future. Proc. Nat. Acad. Sci. 115: 12944-12949. https://doi.org/10.1073/pnas.1813233115 PMid:30509991 PMCid:PMC6304977

Foster G., Brown P.T. 2015. Time and tide: analysis of sea level time series. Clim. Dyn. 45: 291-308. https://doi.org/10.1007/s00382-014-2224-3

Frankcombe L.M., McGregor S., England M.H. 2015. Robustness of the modes of Indo-Pacific sea level variability. Clim. Dyn. 45: 1281-1298. https://doi.org/10.1007/s00382-014-2377-0

Hamlington B.D., Leben R.R., Nerem R.S., et al. 2011. Reconstructing sea level using cyclostationary empirical orthogonal functions. J. Geophys. Res. Oceans 116: C12015. https://doi.org/10.1029/2011JC007529

Hamlington B.D., Leben R.R., Strassburg M.W., et al. 2013. Contribution of the Pacific Decadal Oscillation to global mean sea level trends. Geophys. Res. Lett. 40: 5171-5175. https://doi.org/10.1002/grl.50950

Han W., Meehl G.A., Rajagopalan B., et al. 2010. Patterns of Indian Ocean sea-level change in a warming climate. Nat. Geos. 3: 546-550. https://doi.org/10.1038/ngeo901

Hay C.C., Morrow E., Kopp R.E., et al. 2015. Probabilistic reanalysis of twentieth-century sea-level rise. Nature 517: 481-484. https://doi.org/10.1038/nature14093 PMid:25629092

Huang J., Zhang X, Zhang Q., et al. 2018. Recently amplified arctic warming has contributed to a continual global warming trend. Nat. Clim. Change 7: 875-879. https://doi.org/10.1038/s41558-017-0009-5

Hughes C.W., Williams S.D.P. 2010. The color of sea level: Importance of spatial variations in spectral shape for assessing the significance of trends. J. Geophys. Res. 115: C10048. https://doi.org/10.1029/2010JC006102

Intergovernmental Panel on Climate Change (IPCC). 2013. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Stocker T.F., Qin D., et al. (eds), Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. 1585 pp. https://www.ipcc.ch/report/ar5/wg1/

Jevrejeva S., Grinsted A., Moore J.C. 2009. Anthropogenic forcing dominates sea level rise since 1850. Geophys. Res. Lett. 36: L20706. https://doi.org/10.1029/2009GL040216

Kao H.Y., Yu J.Y. 2009. Contrasting eastern-Pacific and central- Pacific types of ENSO. J. Clim. 22: 615-632. https://doi.org/10.1175/2008JCLI2309.1

Kug J.S., Jin F.F., An S.I. 2009. Two types of El Niño events: cold tongue El Niño and warm pool El Niño. J. Clim. 22: 1499-1515. https://doi.org/10.1175/2008JCLI2624.1

Landerer F.W., Jungclaus J.H., Marotzke J. 2008. El Niño-Southern Oscillation signals in sea level, surface mass redistribution, and degree-two geoid coefficients. J. Geophys. Res. Oceans 113: C08014. https://doi.org/10.1029/2008JC004767

Luu Q.H., Tkalich P. 2014. Reconstruction of gappy mean sea level data. Ind. J. Geo-Mar. Sci. 43: 1316-1321.

Luu Q.H., Tkalich P., Tay T.W. 2015. Sea level trend and variability around Peninsular Malaysia. Ocean. Sci. 11: 617-628. https://doi.org/10.5194/os-11-617-2015

Luu Q.H., Wu Q., Tkalich P. et al. 2018. Global mean sea level rise during the recent warming hiatus from satellite-based data. Remote Sens. Lett. 9: 497-506. https://doi.org/10.1080/2150704X.2018.1437291

Lyons Y., Luu Q.H. Tkalich P. 2018. Determining high-tide features (or islands) in the South China Sea under Article 121(1): a legal and oceanography perspective. In: Jayakumar S., Koh T. et al. (eds), The South China Sea Arbitration: The Legal Dimension, Edward Elgar Publ., pp. 128-153. https://doi.org/10.4337/9781788116275.00015 PMid:28849325

Marcos M., Amores A. 2014. Quantifying anthropogenic and natural contributions to thermosteric sea level rise. Geophys. Res. Lett. 41: 2502-2507. https://doi.org/10.1002/2014GL059766

Marcos M., Marzeion B., Dangendorf S., et al. 2017. Internal variability versus anthropogenic forcing on sea level and its components. Surv. Geophys. 38: 329-348. https://doi.org/10.1007/s10712-016-9373-3

McGregor S., Gupta A.S., England M.H. 2012. Constraining wind stress products with sea surface height observations and implications for Pacific Ocean sea level trend attribution. J. Clim. 25: 8164-8176. https://doi.org/10.1175/JCLI-D-12-00105.1

Nerem R.S., Beckley B.D., Fasullo J.T., et al. 2018. Climate-change-driven accelerated sea-level rise detected in the altimeter era. Proc. Nat. Acad. Sci. 115: 2022-2025. https://doi.org/10.1073/pnas.1717312115 PMid:29440401 PMCid:PMC5834701

Palanisamy H., Cazenave A., Delcroix T., et al. 2015. Spatial trend patterns in the Pacific Ocean sea level during the altimetry era: the contribution of thermocline depth change and internal climate variability. Ocean Dyn. 65: 341-356. https://doi.org/10.1007/s10236-014-0805-7

Royston S., Watson C.S., Legresy B., et al. 2018. Sea-level trend uncertainty with Pacific climatic variability and temporally-correlated noise. J. Geophys. Res. Oceans 123: 1978-1993. https://doi.org/10.1002/2017JC013655

Slangen A.B.A., Church J.A., Agosta C., et al. 2016. Anthropogenic forcing dominates global mean sea-level rise since 1970. Nat. Clim. Change 6: 701-705. https://doi.org/10.1038/nclimate2991

Stammer D., Cazenave A., Ponte R.M., et al. 2013. Causes for contemporary regional sea level changes. Annu. Rev. Mar. Sci. 5: 21-46. https://doi.org/10.1146/annurev-marine-121211-172406 PMid:22809188

Tkalich P., Vethamony P., Luu Q.H., et al. 2013. Sea level trend and variability in the Singapore Strait. Ocean Sci. 9: 293-300. https://doi.org/10.5194/os-9-293-2013

Vimont D.J. 2005. The contribution of the interannual ENSO cycle to the spatial pattern of decadal ENSO-like variability. J. Clim. 18: 2080-2092. https://doi.org/10.1175/JCLI3365.1

Visser H., Dangendorf S., Petersen A.C. 2015. A review of trend models applied to sea level data with reference to the "acceleration-deceleration debate". J. Geophys. Res. Oceans 120: 3873-3895. https://doi.org/10.1002/2015JC010716

Widlansky M.J., Timmermann A., McGregor S., et al. 2014. An interhemispheric tropical sea level seesaw due to El Niño Taimasa. J. Clim. 27: 1070-1081. https://doi.org/10.1175/JCLI-D-13-00276.1

Wolter K., Timlin M.S. 1998. Measuring the strength of ENSO events: how does 1997/98 rank? Weather 53: 315-324. https://doi.org/10.1002/j.1477-8696.1998.tb06408.x

Wu Q., Luu Q.H., Tkalich P. et al. 2017. An improved empirical dynamic control system model of global mean sea level rise and surface temperature change. Theo. Appl. Clim. 132: 375-385. https://doi.org/10.1007/s00704-017-2039-3

Zhang X., Church J.A. 2012. Sea level trends, interannual and decadal variability in the Pacific Ocean. Geophys. Res. Lett. 39: L21701 . https://doi.org/10.1029/2012GL053240




Copyright (c) 2011 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Contact us scimar@icm.csic.es

Technical support soporte.tecnico.revistas@csic.es