Scientia Marina, Vol 83, No 2 (2019)

Interaction of sinking behaviour of Saharan dust and lithogenic and biogenic fluxes in the Canary Basin


https://doi.org/10.3989/scimar.04877.19A

Maite Báez-Hernández
Instituto Oceanografía y Cambio Global, IOCAG, Universidad de Las Palmas de Gran Canaria, Spain
orcid http://orcid.org/0000-0003-2108-5739

Noemí García
Instituto Oceanografía y Cambio Global, IOCAG, Universidad de Las Palmas de Gran Canaria, Spain
orcid http://orcid.org/0000-0002-1731-3885

Inmaculada Menéndez
Instituto Oceanografía y Cambio Global, IOCAG, Universidad de Las Palmas de Gran Canaria - Instituto Oceanografía y Cambio Global, IOCAG, Universidad de Las Palmas de Gran Canaria, ULPGC, Spain
orcid http://orcid.org/0000-0002-1801-5177

Alfredo Jaramillo
Grupo de Estudios Oceánicos “Luis Fernando Vásquez-Bedoya” (GEOc), Escuela Ambiental, Facultad de Ingeniería, Universidad de Antioquía UdeA - Instituto Oceanografía y Cambio Global, IOCAG, Universidad de Las Palmas de Gran Canaria, Colombia
orcid http://orcid.org/0000-0002-4901-0416

Isora Sánchez-Pérez
Instituto Oceanografía y Cambio Global, IOCAG, Universidad de Las Palmas de Gran Canaria, Spain
orcid http://orcid.org/0000-0001-9559-8786

Ángelo Santana
Departamento de Matemáticas, Universidad de Las Palmas de Gran Canaria, Spain
orcid http://orcid.org/0000-0002-6513-4814

Ignacio Alonso
Instituto Oceanografía y Cambio Global, IOCAG, Universidad de Las Palmas de Gran Canaria, Spain
orcid http://orcid.org/0000-0002-9663-0773

José Mangas
Instituto Oceanografía y Cambio Global, IOCAG, Universidad de Las Palmas de Gran Canaria - Instituto Oceanografía y Cambio Global, IOCAG, Universidad de Las Palmas de Gran Canaria, Spain
orcid http://orcid.org/0000-0002-3286-743X

Santiago Hernández-León
Instituto Oceanografía y Cambio Global, IOCAG, Universidad de Las Palmas de Gran Canaria - Instituto Oceanografía y Cambio Global, IOCAG, Universidad de Las Palmas de Gran Canaria, Spain
orcid http://orcid.org/0000-0002-6513-4814

Abstract


Saharan dust events are currently the predominant source of lithogenic particles in the Canary Basin. In order to quantify this input and its relationship with the biogenic fluxes, a sediment trap was deployed in a free-drifting system at 150 m depth, 50 km off the north coast of Gran Canaria (Canary Islands). The mineralogy of the lithogenic particles included illite, calcite, hematite quartz, barite and kaolinite. The biogenic matter was composed of chitin, transparent exopolymer particles, and carbonates from foraminifera and gastropod shells. The average Saharan dust flux over the ocean surface was approximately 5±4 mg m–2 day-1. The lithogenic, carbonate and chitin fluxes were 0.8±0.6, 6.0±7.4 and 154±386 mg m–2 day-1, respectively. A fairly strong Saharan dust event during sampling was observed in the trap, with a delay of three days in the peaks of lithogenic and biogenic fluxes. The theoretical settling velocity of the lithogenic particles associated with Saharan dust events at 150 m depth was vStokes=275 m day-1, and the experimental settling was about 50 m day-1. The associated sinking behaviour of particulate organic carbon and biogenic and lithogenic fluxes observed in this study may contribute to a more realistic prediction of these fluxes in carbon biological pump models.

Keywords


lithogenic flux; biogenic flux; POC flux; TEP; image analysis; Saharan dust; Canary Basin

Full Text:


HTML PDF XML

References


Abrantes F., Meggers H., Nave S., et al. 2002. Fluxes of micro-organisms along a productivity gradient in the Canary Islands region (29°N): implications for paleoreconstructions. Deep-Sea Res. II 49: 3599-3629. https://doi.org/10.1016/S0967-0645(02)00100-5

Alldredge A.L., Silver M.W. 1988. Characteristics, dynamics and significance of marine snow. Prog. Oceanogr. 20: 41-82. https://doi.org/10.1016/0079-6611(88)90053-5

Alldredge A.L., Passow U., Logan B.E. 1993. The abundance and significance of large, transparent organic particles in the ocean. Deep-Sea Res. I 40: 1131-1140. https://doi.org/10.1016/0967-0637(93)90129-Q

Allen J.R.L. 1992. Principles of physical sedimentology. The Blackburn Press; Chapman & Hall, New Jersey, 272 pp.

Alonso-González I.J., Arístegui J., Lee C., et al. 2010a. Regional and temporal variability of sinking organic matter in the subtropical northeast Atlantic Ocean: a biomarker diagnosis. Biogeosciences 7: 2101-2115. https://doi.org/10.5194/bg-7-2101-2010

Alonso-González I.J., Arístegui J., Lee C, et al. 2010b. Role of slowly settling particles in the ocean carbon cycle. Geophys. Res. Lett. 37. https://doi.org/10.1029/2010GL043827

Álvarez-Salgado X.A., Arístegui J. 2015. Organic matter dynamics in the Canary Current. In: Valdés L., Déniz-González I. (eds), Oceanographic and biological features in the Canary Current Large Marine Ecosystem. IOC Tech. Ser. 115: 151-159. IOC-UNESCO, Paris. http://hdl.handle.net/1834/9185.

Anabalón V., Arístegui J., Morales C.E., et al. 2014. The structure of planktonic communities under variable coastal upwelling conditions off Cape Ghir (31°N) in the Canary Current System (NW Africa). Prog. Oceanogr. 120: 320-339. https://doi.org/10.1016/j.pocean.2013.10.015

Anderson R.F., Cheng H., Edwards R.L., et al. 2016. How well do we quantify dust deposition to the ocean? Philos. Trans. R. Soc. A. 374: 20150285. https://doi.org/10.1098/rsta.2015.0285 PMid:29035251 PMCid:PMC5069522

Ansmann A., Tesche M., Althausen D., et al. 2008. Influence of Saharan dust on cloud glaciation in southern Morocco during SAMUM. J. Geophys. Res. 113: D04210. https://doi.org/10.1029/2007JD008785

Armstrong R.A., Lee C., Hedges J.I., et al. 2002. A new, mechanistic model for organic carbon fluxes in the ocean: based on the quantitative association of POC with ballast minerals. Deep-Sea Res. II 49: 219-236. https://doi.org/10.1016/S0967-0645(01)00101-1

Ariza A.V., Garijo J.C., Landeira J.M., et al. 2015. Migrant biomass and respiratory carbon flux by zooplankton and micronekton in the north east Atlantic Ocean (Canary Islands). Prog. Oceanogr. 134: 330-342. https://doi.org/10.1016/j.pocean.2015.03.003

Astitha M., Kallos G., Spyrou C., et al. 2010. Modelling the chemically aged and mixed aerosols over the eastern central Atlantic Ocean potential impacts. Atmos. Chem. Phys. 10: 5797-5822. https://doi.org/10.5194/acp-10-5797-2010

Barton E.D., Arístegui J., Tett P., et al. 1998. The transition zone of the Canary Current upwelling region. Prog. Oceanogr. 41: 455-504. https://doi.org/10.1016/S0079-6611(98)00023-8

Basart S., Pérez C., Nickovic S., et al. 2012. Development and evaluation of the BSC-DREAM8b dust regional model over Northern Africa, the Mediterranean and the Middle East. Tellus B 64: 1-23. https://doi.org/10.3402/tellusb.v64i0.18539

Bauerfeind E., von Bodungen B. 2006. Underestimation of biogenic silicon flux due to dissolution in sediment trap samples. Mar. Geol. 226: 297-306. https://doi.org/10.1016/j.margeo.2005.11.001

Berelson W.M. 2002. Particle settling rates increase with depth in the ocean. Deep-Sea Res. II 49: 237-251. https://doi.org/10.1016/S0967-0645(01)00102-3

Blott S.J., Pye K. 2008. Particle shape: a review and new methods of characterization and classification. Sedimentology 55: 31-63.

Bory A.J.-M., Newton P.P. 2000. Transport of airborne lithogenic material down through the water column in two contrasting regions of the eastern subtropical North Atlantic Ocean. Global Biogeochem. Cycles 14: 297-315. https://doi.org/10.1029/1999GB900098

Bressac M., Guieu C., Doxaran D., et al. 2012. A mesocosm experiment coupled with optical measurements to assess the fate and sinking of atmospheric particles in clear oligotrophic waters, Geo-Mar. Lett. 32: 153-164. https://doi.org/10.1007/s00367-011-0269-4

Bressac M., Guieu C., Doxaran D., et al. 2014. Quantification of the lithogenic carbon pump following a simulated dust-deposition event in large mesocosms, Biogeosciences 11: 1007-1020. https://doi.org/10.5194/bg-11-1007-2014

Brust J., Waniek J.J. 2010. Atmospheric dust contribution to deep-sea particle fluxes in the subtropical Northeast Atlantic. Deep- Sea Res. I 57: 988-998. https://doi.org/10.1016/j.dsr.2010.04.011

Buesseler K.O., Antia A.N., Chen M., et al. 2007. An assessment of the use of sediment traps for estimating upper ocean particle fluxes. J. Mar. Res. 65: 345-416. https://doi.org/10.1357/002224007781567621

De Leeuw G., Guieu C., Arneth A., et al. 2014. Ocean-Atmosphere Interactions of Particles. In: Liss P.S., Johnson M.T. (eds), Ocean-Atmosphere Interactions of Gases and Particles, Springer, pp. 171-246. https://doi.org/10.1007/978-3-642-25643-1_4

Dong H.-P., Wang D.-Z., Dai M., et al. 2010. Characterization of particulate organic matter in the water column of the South China Sea using a shotgun proteomic approach. Limnol. Oceanogr. 55: 1565-1578. https://doi.org/10.4319/lo.2010.55.4.1565

Engelbrecht J.P., Menendez I., Derbyshire E. 2014. Sources of PM2.5 impacting on Gran Canaria, Spain. Catena 117: 119-132. https://doi.org/10.1016/j.catena.2013.06.017

Elder L.E., Hsiang A.Y., Nelson K., et al. 2018. Data Descriptor: Sixty-one thousand recent planktonic foraminifera from the Atlantic Ocean. Sci. Data 5: 180109. https://doi.org/10.1038/sdata.2018.109 PMid:30152812 PMCid:PMC6111889

Fischer G., Karakas G. 2009. Sinking rates and ballast composition of particles in the Atlantic Ocean: Implications for the organic carbon fluxes to the deep ocean. Biogeosciences 6: 85-102. https://doi.org/10.5194/bg-6-85-2009

Fischer G., Neuer S., Wefe G., et al. 1996. Short-term sedimentation pulses recorded with a fluorescence sensor and sediment traps at 900 m depth in the Canary basin, Limnol. Oceanogr. 41: 1354-1359. https://doi.org/10.4319/lo.1996.41.6.1354

Freudenthal T., Neuer S., Meggers H., et al. 2001. Influence of lateral particle advection and organic matter degradation on sediment accumulation and stable nitrogen isotope ratios along a productivity gradient in the Canary Islands region. Mar. Geol. 177: 93-109. https://doi.org/10.1016/S0025-3227(01)00126-8

Haustein K., Pérez C., Baldasano J.M., et al. 2012. Atmospheric dust modelling from meso to global scales with the online NMMB/BSC-Dust model-Part 2: Experimental campaigns in Northern Africa. Atmos. Chem. Phys. 12: 2933-2958. https://doi.org/10.5194/acp-12-2933-2012

Helmke P., Neuer S., Lomas M.W., et al. 2010. Cross-basin differences in particulate organic carbon export and flux attenuation in the subtropical North Atlantic gyre. Deep-Sea Res. I 57: 213-227. https://doi.org/10.1016/j.dsr.2009.11.001

Hernández-León S., Almeida C., Bécognée P., et al. 2004. Zooplankton biomass and indices of grazing and metabolism during a late winter bloom in subtropical waters. Mar. Biol. 145: 1191-1200. https://doi.org/10.1007/s00227-004-1396-5

Hernández-León S., Gómez M., Arístegui J. 2007. Mesozooplankton in the Canary Current System: The coastal-ocean transition zone. Prog. Oceanogr. 74: 397-421. https://doi.org/10.1016/j.pocean.2007.04.010

Herrera I., López-Cancio J., Yebra L., et al. 2017. The effect of a strong warm winter on subtropical zooplankton biomass and metabolism. J. Mar. Res. 75: 557-577. https://doi.org/10.1357/002224017822109523

Honjo S., Spencer D.W., Farrington J.W. 1982. Deep Advective Transport of Lithogenic particles in Panama Basin. Science 216: 516-518. https://doi.org/10.1126/science.216.4545.516 PMid:17735741

Huskin I., Viesca L., Anadón R. 2004. Particle flux in the Subtropical Atlantic near the Azores: influence of mesozooplankton. J. Plankton Res. 26: 403-415. https://doi.org/10.1093/plankt/fbh031

Jackson G.A., Checkley D.M., Dagg M. 2015. Settling of particles in the upper 100 m of the ocean detected with autonomous profiling floats off California. Deep-Sea Res. I 99: 75-86. https://doi.org/10.1016/j.dsr.2015.02.001

Jaramillo A., Menéndez I., Alonso I., et al. 2011. Textural and mineralogical characterization of terrigenous material from atmospheric inputs in the Canary basin. Published as a master thesis, Universidad de Las Palmas de Gran Canaria, 31 pp.

Jaramillo A., Menéndez I., Alonso I., et al. 2016. Grainsize, morphometry and mineralogy of airborne input in the Canary basin: evidence of iron particle retention in the mixed layer. Sci. Mar. 80: 395-408. https://doi.org/10.3989/scimar.04344.27A

Jickells T.D., An Z.S., Andersen K.K., et al. 2005. Global iron connections between desert dust, ocean biochemistry, and climate. Science 308: 67-71. https://doi.org/10.1126/science.1105959 PMid:15802595

Journet E., Desboeufs K.V., Caquineau S., et al. 2008. Mineralogy as a critical factor of dust iron solubility. Geophys. Res. Lett. 35: L07805. https://doi.org/10.1029/2007GL031589

Korte L.F., Brummer G.-J., van der Does M., et al. 2016. Compositional changes of present-day transatlantic Saharan dust deposition, Atmos. Chem. Phys. 17: 6023-6040. https://doi.org/10.5194/acp-2016-1068

Maeda N., Noriki S., Narita H. 2007. Grainsize, La/Yb and Th/ Sc of settling particles in the Western North Pacific: Evidence for Lateral Transport of Small Asian Loess. J. Oceanogr. 63: 803-813. https://doi.org/10.1007/s10872-007-0068-8

Mari X., Passow U., Migon C., et al. 2017. Transparent exopolymer particles: Effects on carbon cycling in the ocean. Prog. Oceanogr. 151: 13-37. https://doi.org/10.1016/j.pocean.2016.11.002

Martinez-Ruiz F., Paytan A., Gonzalez-Muñoz M.T., et al. 2019. Barite formation in the ocean: Origin of amorphous and crystalline precipitates. Chem. Geol. 511: 441-451. https://doi.org/10.1016/j.chemgeo.2018.09.011

Menéndez I., Derbyshire E., Engelbrecht J., et al. 2009. Saharan dust and aerosols on the Canary Islands: past and present. In: Chang M., Liu W. (eds), Airborne Particulates, Nova Publishers Inc., New York, pp. 39-80.

Menéndez I., Derbyshire E., Carrillo T., et al. 2017. Saharan dust and the impact on adult and elderly allergic patients: the effect of threshold values in the northern sector of Gran Canaria, Spain. Int. J. Environ. Health Res. 27: 144-160. https://doi.org/10.1080/09603123.2017.1292496 PMid:28245676

Michaels A.F., Silver M.W. 1988. Primary production, sinking flux and the microbial food web. Deep-Sea Res. 35: 473-490. https://doi.org/10.1016/0198-0149(88)90126-4

Milliman J.D., Syvitsku J.P.M. 1992. Geomorphic/tectonic control of sediment discharge to the ocean: the importance of small mountainous rivers. J. Geol. 100: 525-544. https://doi.org/10.1086/629606

Montgomery M.T., Welschmeyer N.A., Kirchman D.L. 1990. A simple assay for chitin: application to sediment trap samples from the subarctic Pacific. Mar. Ecol. Prog. Ser. 64: 301-308. https://doi.org/10.3354/meps064301

Müller P., Schneider R. 1993. An automated leaching method for the determination of opal in sediments and particulate matter. Deep Sea Res. 40: 425-444. https://doi.org/10.1016/0967-0637(93)90140-X

Neuer S., Ratmeyer V., Davenport R., et al. 1997. Deep water particle flux in the Canary Island region: seasonal trends in relation to long-term satellite derived pigment data and lateral sources. Deep-Sea Res. I 44: 1451-1466. https://doi.org/10.1016/S0967-0637(97)00034-4

Neuer S., Freudenthal T., Davenport B., et al. 2002. Seasonality of surface water properties and particle flux along a productivity gradient off NW Africa. Deep-Sea Res. II 49: 3561-3576. https://doi.org/10.1016/S0967-0645(02)00098-X

Neuer S., Torres-Padrón M.E., Gelado-Caballero M.D., et al. 2004. Dust deposition pulses to the eastern subtropical North Atlantic gyre: Does ocean's biogeochemistry respond? Global Biogeochem. Cycles 18: 1451-1466. https://doi.org/10.1029/2004GB002228

Okada K., Heintzenberg J., Kai K., et al. 2001. Shape of atmospheric mineral particles collected in three Chinese arid-regions. Geophys. Res. Lett. 28: 3123-3126. https://doi.org/10.1029/2000GL012798

Otosaka S., Togawa O., Baba M., et al. 2004. Lithogenic flux in the Japan Sea measured with sediment traps. Mar. Chem. 91: 143-163. https://doi.org/10.1016/j.marchem.2004.06.006

Pakulski J.D., Benner R. 1994. Abundance and distribution of carbohydrates in the ocean. Limnol. Oceanogr. 39: 930-940. https://doi.org/10.4319/lo.1994.39.4.0930

Passow U. 2000. Formation of Transparent Exopolymer Particles, TEP, from dissolved precursor material. Mar. Ecol. Prog. Ser. 192: 1-11. https://doi.org/10.3354/meps192001

Passow U. 2002. Transparent Exopolymer Particles (TEP) in aquatic environments. Prog. Oceanogr. 55: 287-333. https://doi.org/10.1016/S0079-6611(02)00138-6

Pérez C., Haustein K., Janjic Z., et al. 2011. An online mineral dust aerosol model for meso to global scales: Model description, annual simulations and evaluation. Atmos. Chem. Phys. 11: 13001-13027. https://doi.org/10.5194/acp-11-13001-2011

Ratmeyer V., Fischer G., Wefer G. 1999. Lithogenic particle fluxes and grainsize distributions in the deep ocean off northwest Africa: Implications for seasonal changes of aeolian dust input and downward transport. Deep-Sea Res. I 46: 1289-1337. https://doi.org/10.1016/S0967-0637(99)00008-4

Reid E.A., Reid J.S., Meier M.M., et al. 2003. Characterization of African dust transported to Puerto Rico by individual particle and size segregated bulk analysis. J. Geophys. Res. 108: 8591. https://doi.org/10.1029/2002JD002935

Røstad A., Kaartvedt S. 2013. Seasonal and diel patterns in sedimentary flux of krill fecal pellets recorded by an echo sounder. Limnol. Oceanogr. 58: 1985-1997. https://doi.org/10.4319/lo.2013.58.6.1985

Sangrà P., Pascual A., Rodríguez-Santana A., et al. 2009. The Canary Eddy Corridor: a major pathway for long-lived eddies in the North Atlantic. Deep-Sea Res I 56: 2100-2114. https://doi.org/10.1016/j.dsr.2009.08.008

Sarnthein M., Thiede J., Pflaumann U., et al. 1982. Atmospheric and Oceanic Circulation Patterns off Northwest Africa During the Past 25 Million Years. In: von Rad U., Hinz K. et al. (eds), Geology of the Northwest African Continental Margin. Springer, Berlin Heidelberg, pp. 545-604. https://doi.org/10.1007/978-3-642-68409-8_24

Souza C.P., Almeida B.C., Colwell R.R., et al. 2011. The importance of chitin in the marine environment. Mar. Biotechnol. 13: 823-830. https://doi.org/10.1007/s10126-011-9388-1 PMid:21607543

Sprengel C., Baumann K.-H., Neuer S. 2000. Seasonal and interannual variation of coccolithophore fluxes and species composition in sediment traps north of Gran Canaria (29°N 15°W). Mar. Micropaleontol. 39: 157-178. https://doi.org/10.1016/S0377-8398(00)00019-0

Sprengel C., Baumann K.-H., Henderiks J., et al. 2002. Modern coccolithophore and carbonate sedimentation along a productivity gradient in the Canary Island region: seasonal export production and surface accumulation rates. Deep-Sea Res. II 49: 3577-3598. https://doi.org/10.1016/S0967-0645(02)00099-1

Turner J.T. 2015. Zooplankton fecal pellets, marine snow, phytodetritus and the ocean's biological pump. Prog. Oceanogr. 130: 205-248. https://doi.org/10.1016/j.pocean.2014.08.005

van der Jagt H., Friese C., Stuut J.-B., et al. 2018. The ballasting effect of Saharan dust deposition on aggregate dynamics and carbon export: Aggregation, settling, and scavenging potential of marine snow. Limnol. Oceanogr. 9. https://doi.org/10.1002/lno.10779

Wadell H. 1934. Some new sedimentation formulas. J. Appl. Phys. 5: 281-291. https://doi.org/10.1063/1.1745211




Copyright (c) 2011 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Contact us scimar@icm.csic.es

Technical support soporte.tecnico.revistas@csic.es