Scientia Marina, Forthcoming Articles

Size-dependent survival of European hake juveniles in the Mediterranean Sea

Manuel Hidalgo
Instituto Español de Oceanografía, Centro Oceanográfico de les Baleares - Instituto Español de Oceanografía, Centro Oceanográfico de Málaga, Spain

Alessandro Ligas
Consorzio per il Centro Interuniversitario di Biologia Marina ed Ecologia Applicata (CIBM), Italy

José María Bellido
Instituto Español de Oceanografía, Centro Oceanográfico de Murcia, Spain

Isabella Bitetto
COISPA Tecnologia & Ricerca, Italy

Pierluiggi Carbonara
COISPA Tecnologia & Ricerca, Italy

Roberto Carlucci
Department of Biology University of Bari Aldo Moro, Italy

Beatriz Guijarro
Instituto Español de Oceanografía, Centro Oceanográfico de les Baleares, Spain

Angelique Jadaud
UMR MARBEC “Marine Biodiversity, Exploitation & Conservation”, IFREMER-LHM, France

Giuseppe Lembo
COISPA Tecnologia & Ricerca, Italy

Chiara Manfredi
Laboratorio di Biologia Marina e Pesca di Fano, Bi.Ge.A. - Università di Bologna, Italy

Antonio Esteban
Instituto Español de Oceanografía, Centro Oceanográfico de Murcia, Spain

Germana Garofalo
Istituto per l’Ambiente Marino Costiero, Consiglio Nazionale delle Ricerche, Spain

Zdravko Ikica
Institute of Marine Biology, University of Montenegro, Montenegro

Cristina García
Instituto Español de Oceanografía, Centro Oceanográfico de Málaga, Spain

Luis Gil de Sola
Instituto Español de Oceanografía, Centro Oceanográfico de Málaga, Spain

Stefanos Kavadas
Institute of Marine Biological Resources and Inland Waters, Hellenic Centre for Marine Research (IMBRIW/HCMR), Greece

Irida Maina
Institute of Marine Biological Resources and Inland Waters, Hellenic Centre for Marine Research (IMBRIW/HCMR), Greece

Letizia Sion
Department of Biology University of Bari Aldo Moro, Italy

Stefania Vittori
Department of Life and Environmental Science, University of Cagliari, Italy

Nedo Vrgoc
Institute of Oceanography and Fisheries Setaliste Ivana Mestrovica, Croatia


Most studies on European hake focus on the recruitment process and nursery areas, whereas the information is comparatively limited on the ecology of the juvenile stage (ca. second year of life)—the one most exploited by the Mediterranean trawl fisheries. Using information of the MEDITS programme, we provide a spatial and temporal assessment of the influence of body size and growth on hake survival from recruits (age 0) to juveniles (age 1), along with the impact of surface temperature and chlorophyll variability. At a biogeographic scale, size-dependent survival is supported, with areas with higher mean length of recruits and juveniles yielding higher survival. A similar pattern was observed at interannual level in some western Mediterranean areas, also mediated by a density-dependent effect on growth. However, the most recurrent inter-annual pattern was a negative effect of size on survival, which could be attributed to potential ontogenetic changes in catchability and underrepresentation of intra-annual recruitment pulses that are seasonally inaccessible to the MEDITS survey. Results also evidence that survival in the Alboran and Adriatic seas is dependent on the primary production variability, and that Corsica and Sardinia could be potential feeding grounds receiving juveniles from neighbouring areas. The present study reveals the importance of size- and growth-dependent survival in the juvenile stage of European hake in the Mediterranean Sea.


juvenile survival; European hake; Mediterranean Sea; size dependence

Full Text:



Anonymous 2017. MEDITS-Handbook. Version n. 9, MEDITS Working Group, 106 pp.

Abella A. J., Caddy J. F., Serena F. 1997. Do natural mortality and availability decline with age? An alternative yield paradigm for juvenile fisheries, illustrated by the hake Merluccius merluccius fishery in the Mediterranean. Aquat. Living Res. 10: 257-269.

Abella A.J, Serena F., Ria M. 2005. Distributional response to variations in abundance over spatial and temporal scales for juveniles of European hake (Merluccius merluccius) in the Western Mediterranean Sea. Fish. Res. 71: 295-310.

Agostini V.N., Francis R.C., Hollowed A.B. et al. 2006. The relationship between Pacific hake (Merluccius productus) distribution and poleward subsurface flow in the California Current System. Can. J. Fish. Aquat. Sci. 63: 2648-2659.

Ali M., Nicieza A., Wootton R.J. 2003. Compensatory growth in fishes: a response to growth depression. Fish Fish. 4: 147-190.

Aldebert Y., Recasens L., Lleonart J. 1993. Analysis of gear interactions in a hake fishery: the case of the Gulf of Lions (NW Mediterranean). Sci. Mar. 57: 207-217.

Andersen H. Jacobsen N.S., Jansen T. et al. 2017. When in life does density dependence occur in fish populations? Fish Fish. 18: 656-667.

Arneri E., Morales-Nin B. 2000. Aspects of the early life history of European hake from the central Adriatic. J. Fish Biol. 56: 1368-1380.

Bartolino V., Colloca F., Sartor P., et al. 2008a. Modelling recruitment dynamics of hake, Merluccius merluccius, in the central Mediterranean in relation to key environmental variables. Fish. Res. 93: 277-288.

Bartolino V., Ottavi A., Colloca F. et al. 2008b. Bathymetric preferences of juvenile European hake (Merluccius merluccius). ICES J Mar. Sci. 65: 963-969.

Baudron A.R., Fernandes P.G. 2015. Adverse consequences of stock recovery: European hake, a new “choke” species under a discard ban? Fish Fish. 16: 563-575.

Belcari P., Ligas A., Viva C. 2006. Age determination and growth of juveniles of the European hake, Merluccius merluccius (L., 1758), in the northern Tyrrhenian Sea (NW Mediterranean). Fish. Res. 78: 211-217.

Bertrand J.A., Gil de Sola L., Papaconstantinou C et al. 2002. The general specifications of the MEDITS surveys. Sci. Mar. 66: 9-17.

Caddy J.F. 2015. Criteria for sustainable fisheries on juveniles illustrated for Mediterranean hake: control the juvenile harvest, and safeguard spawning refugia to rebuild population fecundity. Sci. Mar. 79(3): 287-299.

Caddy J.F., Abella A.J. 1999. Reconstructing reciprocal M vectors from length cohort analysis (LCA) of commercial size frequencies of hake, and fine mesh trawl surveys over the same grounds. Fish. Res. 41: 169-175.

Cadrin S., Secor D. 2009. Accounting for spatial population structure in stock assessment: past, present, and future. In: Beamish R., Rothschild B. (eds), The Future of Fisheries Science in North America. Springer Publishing, Dordrecht, pp. 405-426.

Cantafaro A., Ardizzone G., Enea M. et al. 2017. Assessing the importance of nursery areas of European hake (Merluccius merluccius) using a body condition index. Ecol. Indic. 81: 383-389.

Catalán I.A., Macías D., Solé J. et al. 2013. Stay off the motorway: resolving the pre-recruitment life history dynamics of the European anchovy in the SW Mediterranean through a spatially-explicit individual-based model (SEIBM). Progr. Oceanog. 111: 140-153.

Ciannelli L., Dingsør G.E., Bogstad O. et al. 2007. Spatial anatomy of species survival: effects of predation and climate-driven environmental variability. Ecology 88: 635-646.

Colloca F., Bartolino V., Lasinio G.J. et al. 2009. Identifying fish nurseries using density and persistence measures. Mar. Ecol. Progr. Ser. 381: 287-296.

Colloca F., Cardinale M., Maynou F., et al. 2013. Rebuilding Mediterranean fisheries: a new paradigm for ecological sustainability. Fish Fish. 14: 89-109.

Conover D.O. 2007. Nets versus nature. Nature 450: 179-180.

Cormon X., Loots C., Vaz S. et al. 2014. Spatial interactions between saithe (Pollachius virens) and hake (Merluccius merluccius) in the North Sea. ICES J. Mar. Sci. 71: 1342-1355.

Druon J.N., Fiorentino F., Murenu M., et al. 2015. Modelling of European hake nurseries in the Mediterranean Sea: An ecological niche approach. Progr. Oceanogr. 130: 188-204.

Fernandes P.G., Ralph G.M., Nieto A. et al. 2017. Coherent assessments of Europe’s marine fishes show regional divergence and megafauna loss. Nat. Ecol. Evol. 1: 0170.

Ferraton F., Harmelin-Vivien M., Mellon-Duval C. et al. 2007. Spatio-temporal variation in diet may affect condition and abundance of juvenile European hake in the Gulf of Lions (NW Mediterranean). Mar. Ecol. Progr. Ser. 337: 197-208.

Fiorentino F., Massutí E., Tinti S. et al. 2014. Stock units: Identification of distinct biological units (stock units) for different fish and shellfish species and among different GFCM-GSA. STOCKMED Deliverable 03: FINAL REPORT. September 2014, 310 pp.

Fraser H.M., Greenstreet S.P.R., Piet G.J. 2007. Taking account of catchability in groundfish survey trawls: implications for estimating demersal fish biomass. ICES J. Mar. Sci. 64: 1800-1819.

García-Rodriguez M., Esteban A. 2002. How fast does hake grow? A study on the Mediterranean hake (Merluccius merluccius L.) comparing whole otoliths readings and length frequency distributions data. Sci. Mar. 66: 145-156.

GFCM. 2016. Working Group on Stock Assessment of Demersal Species (WGSAD). GFCM and FAO headquarters, Rome, Italy, 7-12 November 2016. Final Report. 74 pp.

Goethel D.R., Berger A.M. 2017. Accounting for spatial complexities in the calculation of biological reference points: effects of misdiagnosing population structure for stock status indicators. Can. J. Fish. Aquat. Sci. 74: 1878-1894.

Hidalgo M., Massutí E., Moranta J. et al. 2008. Seasonal and short spatial patterns in European hake (Merluccius merluccius L.) recruitment process at the Balearic Islands (western Mediterranean): the role of environment on distribution and condition. J. Mar. Syst. 71: 367-384.

Hidalgo M., Tomas J., Moranta J. et al. 2009. Intra-annual recruitment events of a shelf species around an island system in the NW Mediterranean. Est. Coast. Shelf Sci. 83: 227-238.

Hidalgo M., Rouyer T., Molinero J. C, et al. 2011. Synergistic effects of fishing-induced demographic changes and climate variation on fish population dynamics. Mar. Ecol. Prog. Ser. 426: 1-12.

Hidalgo M., Olsen E.M., Ohlberger J. et al. 2014. Contrasting evolutionary demography induced by fishing: the role of adaptive phenotypic plasticity. Ecol. Applic. 24: 1101-1114.

Houde E.D. 1997. Patterns and consequences of selective processes in teleost early life histories. In: Chambers R.C. and Trippel E.A. (eds), Early Life History and Recruitment in Fish Populations. Chapman & Hall Fish and Fish. Series, vol 21. Springer, Dordrecht

Kavadas S., Maina I., Damalas, D. et al. 2015. Multi-Criteria Decision Analysis as a tool to extract fishing footprints: application to small scale fisheries and implications for management in the context of the Maritime Spatial Planning Directive. Medit. Mar. Sci. 16: 294-304.

Kerr L.A., Hintzen N.T., Cadrin S.X. et al. 2017. Lessons learned from practical approaches to reconcile mismatches between biological population structure and stock units of marine fish. ICES J. Mar. Sci. 74: 1708-1722.

Jørgensen C., Holt R.E. 2013. Natural mortality: Its ecology, how it shapes fish life histories, and why it may be increased by fishing. J. Sea Res. 75: 8-18.

Le Pape O., Bonhommeau S. 2015. The food limitation hypothesis for juvenile marine fish. Fish Fish. 16: 373-398.

Lembo G., Silecchia T., Carbonara P., et al. 2000. Nursery areas of Merluccius merluccius in the Italian Seas and in the East Side of the Adriatic Sea. Biol. Mar. Medit. 7: 98-116.

Levin P.S., Stunz G.W. 2005. Habitat triage for exploited fishes: Can we identify essential “Essential Fish Habitat”? Est. Coast. Shelf Sci. 64: 70-78.

Ligas A., Colloca F., Lundy M.G. et al. 2015. Modeling the growth of recruits of European hake (Merluccius merluccius) in the northwestern Mediterranean Sea with generalized additive models. Fish. Bull. 113: 69-82.

Link J. S., Browman H.I. 2017. Operationalizing and implementing ecosystem-based management. ICES J. Mar. Sci. 74: 379-381.

Lorenzen K., Enberg K. 2002. Density-dependent growth as a key mechanism in the regulation of fish populations: evidence from among-population comparisons. Proc. R. Soc. Lon. B Biol. Sci. 269: 49-54.

Maeda E.E., Mäntyniemi S., Despoti S. et al. 2017. A Bayesian model of fisheries discards with flexible structure and priors defined by experts. Ecol. Mod. 366: 1-14.

Mahévas S., Trenkel V.M., Doray M. 2011. Hake catchability by the French trawler fleet in the Bay of Biscay: estimating technical and biological components. ICES J. Mar. Sci. 68: 107-118.

Mellon-Duval C., De Pontual H., Métral L. et al. 2010. Growth of European hake (Merluccius merluccius) in the Gulf of Lions based on conventional tagging. ICES J. Mar. Sci. 67: 62-70.

Morales-Nin B., Moranta J. 2004. Recruitment and post-settlement growth of juvenile Merluccius merluccius on the western Mediterranean shelf. Sci. Mar. 68: 399-409.

Oguz T., Macias D., Garcia-Lafuente al. 2014. Fueling plankton production by a meandering frontal jet: a case study for the Alboran Sea (Western Mediterranean). PloS ONE 9: e111482.

Paradinas I., Martín M., Pennino M.G. et al. 2016. Identifying the best fishing-suitable areas under the new European discard ban. ICES J. Mar. Sci. 73: 2479-2487.

Pennino M.G., Vilela R., Valeiras J. et al. 2017. Discard management: A spatial multi-criteria approach. Mar. Policy 77: 144-151.

Pita A., Leal A., Santafé-Muñoz A., et al. 2016. Genetic inference of demographic connectivity in the Atlantic European hake metapopulation (Merluccius merluccius) over a spatio-temporal framework. Fish. Res. 179: 291-301.

Puerta P., Hidalgo M., González M., et al. 2014. Role of hydro-climatic and demographic processes on the spatio-temporal distribution of cephalopods in the western Mediterranean. Mar. Ecol. Prog. Ser. 514: 105-118.

Puerta P., Hunsicker M.E., Quetglas A. et al. 2015. Spatially explicit modeling reveals cephalopod distributions match contrasting trophic pathways in the western Mediterranean Sea. PloS ONE 10: e0133439.

Recasens L., Chiericoni V., Belcari P. 2008. Spawning pattern and batch fecundity of the European hake (Merluccius merluccius (Linnaeus, 1758)) in the western Mediterranean. Sci. Mar. 72: 721-732.

Rey J., Árbol J., Gil de Sola L. 2004. Seasonal recruitment of hake in the Alboran Sea (SW Mediterranean). Rapp. Comm. Int. Mer Medit. 37: 427.

Rueda L., Massutí E., Alvarez-Berastegui D. et al. 2015. Effect of intra-specific competition, surface chlorophyll and fishing on spatial variation of gadoid’s body condition. Ecosphere 6: 1-17.

Ruiz J., Macias D., Rincon M.M. et al. 2013. Atlantic inflow controls fish recruitment at the Western Mediterranean. Rapp. Comm. Int. Mer Medit. 40: 158.

Sbrana M., Belcari P., De Ranieri S. et al. 2007. Comparison of the catches of European hake (Merluccius merluccius, L. 1758) taken with experimental gillnets of different mesh sizes in the northern Tyrrhenian Sea (Western Mediterranean). Sci. Mar. 71: 47-56.

Scientific, Technical and Economic Committee for Fisheries (STECF). 2015. Mediterranean assessments part 1 (STECF-15-18). Publ. Off. Europ. Union, Luxembourg, EUR 27638 EN, JRC 98676, 410 pp.

Schultz E.T., Conover D.O. 1997. Latitudinal differences in somatic energy storage: adaptive responses to seasonality in an estuarine fish (Atherinidae: Menidia menidia). Oecologia 109: 516-529.

Sogard S.M. 1997. Size-selective mortality in the juvenile stage of teleost fishes: a review. Bull. Mar. Sci. 60: 1129-1157.

Souplet A. 1996. Calculation of abundance indices and length frequencies in the MEDITS survey. In: Bertrand J.A. et al. (eds), Campagne internationale du chalutage démersal en Méditerraneé. Campagne 1995. EU Final Report, Vol. III.

Suthers I.M. 1998. Bigger? Fatter? Or is faster growth better? Considerations on condition in larval and juvenile coral-reef fish. Austral Ecol. 23: 265-273.

Vasilakopoulos P., Maravelias C.D., Tserpes G. 2014. The alarming decline of Mediterranean fish stocks. Curr. Biol. 24: 1643-1648.

Vielmini I., Perry A.L., Cornax M.J. 2017. Untying the Mediterranean Gordian knot: a twenty first century challenge for fisheries management. Front. Mar. Sci. 4: 195.

Copyright (c) 2011 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Contact us

Technical support