Scientia Marina, Vol 83, No S1 (2019)

Size-dependent survival of European hake juveniles in the Mediterranean Sea


https://doi.org/10.3989/scimar.04857.16A

Manuel Hidalgo
Instituto Español de Oceanografía, Centro Oceanográfico de les Baleares - Instituto Español de Oceanografía, Centro Oceanográfico de Málaga, Spain
orcid http://orcid.org/0000-0002-3494-9658

Alessandro Ligas
Consorzio per il Centro Interuniversitario di Biologia Marina ed Ecologia Applicata (CIBM), Italy
orcid http://orcid.org/0000-0003-1036-3553

José María Bellido
Instituto Español de Oceanografía, Centro Oceanográfico de Murcia, Spain
orcid http://orcid.org/0000-0002-6887-4391

Isabella Bitetto
COISPA Tecnologia & Ricerca, Italy
orcid http://orcid.org/0000-0002-8497-1642

Pierluiggi Carbonara
COISPA Tecnologia & Ricerca, Italy
orcid http://orcid.org/0000-0002-2529-2535

Roberto Carlucci
Department of Biology University of Bari Aldo Moro, Italy
orcid http://orcid.org/0000-0002-9287-6936

Beatriz Guijarro
Instituto Español de Oceanografía, Centro Oceanográfico de les Baleares, Spain
orcid http://orcid.org/0000-0002-2083-4681

Angelique Jadaud
UMR MARBEC “Marine Biodiversity, Exploitation & Conservation”, IFREMER-LHM, France
orcid http://orcid.org/0000-0001-6858-3570

Giuseppe Lembo
COISPA Tecnologia & Ricerca, Italy
orcid http://orcid.org/0000-0002-9899-6189

Chiara Manfredi
Laboratorio di Biologia Marina e Pesca di Fano, Dip.to Bi.Ge.A. - Università di Bologna, Italy
orcid http://orcid.org/0000-0002-2852-4856

Antonio Esteban
Instituto Español de Oceanografía, Centro Oceanográfico de Murcia, Spain
orcid http://orcid.org/0000-0002-2896-7972

Germana Garofalo
Istituto per l’Ambiente Marino Costiero, Consiglio Nazionale delle Ricerche, Spain
orcid http://orcid.org/0000-0001-9117-6252

Zdravko Ikica
Institute of Marine Biology, University of Montenegro, Montenegro
orcid http://orcid.org/0000-0003-3157-0500

Cristina García
Instituto Español de Oceanografía, Centro Oceanográfico de Málaga, Spain
orcid http://orcid.org/0000-0003-2767-4200

Luis Gil de Sola
Instituto Español de Oceanografía, Centro Oceanográfico de Málaga, Spain
orcid http://orcid.org/0000-0003-1987-9716

Stefanos Kavadas
Institute of Marine Biological Resources and Inland Waters, Hellenic Centre for Marine Research (IMBRIW/HCMR), Greece
orcid http://orcid.org/0000-0003-3473-9084

Irida Maina
Institute of Marine Biological Resources and Inland Waters, Hellenic Centre for Marine Research (IMBRIW/HCMR), Greece
orcid http://orcid.org/0000-0001-5244-2722

Letizia Sion
Department of Biology University of Bari Aldo Moro, Italy
orcid http://orcid.org/0000-0002-0308-1841

Stefania Vittori
Department of Life and Environmental Science, University of Cagliari, Italy
orcid http://orcid.org/0000-0001-6857-0470

Nedo Vrgoc
Institute of Oceanography and Fisheries Setaliste Ivana Mestrovica, Croatia
orcid http://orcid.org/0000-0002-5208-4512

Abstract


Most studies on European hake focus on the recruitment process and nursery areas, whereas the information is comparatively limited on the ecology of the juvenile stage (ca. second year of life)—the one most exploited by the Mediterranean trawl fisheries. Using information of the MEDITS programme, we provide a spatial and temporal assessment of the influence of body size and growth on hake survival from recruits (age 0) to juveniles (age 1), along with the impact of surface temperature and chlorophyll variability. At a biogeographic scale, size-dependent survival is supported, with areas with higher mean length of recruits and juveniles yielding higher survival. A similar pattern was observed at interannual level in some western Mediterranean areas, also mediated by a density-dependent effect on growth. However, the most recurrent inter-annual pattern was a negative effect of size on survival, which could be attributed to potential ontogenetic changes in catchability and underrepresentation of intra-annual recruitment pulses that are seasonally inaccessible to the MEDITS survey. Results also evidence that survival in the Alboran and Adriatic seas is dependent on the primary production variability, and that Corsica and Sardinia could be potential feeding grounds receiving juveniles from neighbouring areas. The present study reveals the importance of size- and growth-dependent survival in the juvenile stage of European hake in the Mediterranean Sea.

Keywords


juvenile survival; European hake; Mediterranean Sea; size dependence

Full Text:


HTML PDF XML

References


Anonymous 2017. MEDITS-Handbook. Version n. 9, MEDITS Working Group, 106 pp.

Abella A. J., Caddy J. F., Serena F. 1997. Do natural mortality and availability decline with age? An alternative yield paradigm for juvenile fisheries, illustrated by the hake Merluccius merluccius fishery in the Mediterranean. Aquat. Living Res. 10: 257-269. https://doi.org/10.1051/alr:1997029

Abella A.J, Serena F., Ria M. 2005. Distributional response to variations in abundance over spatial and temporal scales for juveniles of European hake (Merluccius merluccius) in the Western Mediterranean Sea. Fish. Res. 71: 295-310. https://doi.org/10.1016/j.fishres.2004.08.036

Agostini V.N., Francis R.C., Hollowed A.B. et al. 2006. The relationship between Pacific hake (Merluccius productus) distribution and poleward subsurface flow in the California Current System. Can. J. Fish. Aquat. Sci. 63: 2648-2659. https://doi.org/10.1139/f06-139

Ali M., Nicieza A., Wootton R.J. 2003. Compensatory growth in fishes: a response to growth depression. Fish Fish. 4: 147-190. https://doi.org/10.1046/j.1467-2979.2003.00120.x

Aldebert Y., Recasens L., Lleonart J. 1993. Analysis of gear interactions in a hake fishery: the case of the Gulf of Lions (NW Mediterranean). Sci. Mar. 57: 207-217.

Andersen H. Jacobsen N.S., Jansen T. et al. 2017. When in life does density dependence occur in fish populations? Fish Fish. 18: 656-667. https://doi.org/10.1111/faf.12195

Arneri E., Morales-Nin B. 2000. Aspects of the early life history of European hake from the central Adriatic. J. Fish Biol. 56: 1368-1380. https://doi.org/10.1111/j.1095-8649.2000.tb02149.x

Bartolino V., Colloca F., Sartor P., et al. 2008a. Modelling recruitment dynamics of hake, Merluccius merluccius, in the central Mediterranean in relation to key environmental variables. Fish. Res. 93: 277-288. https://doi.org/10.1016/j.fishres.2008.01.007

Bartolino V., Ottavi A., Colloca F. et al. 2008b. Bathymetric preferences of juvenile European hake (Merluccius merluccius). ICES J Mar. Sci. 65: 963-969. https://doi.org/10.1093/icesjms/fsn079

Baudron A.R., Fernandes P.G. 2015. Adverse consequences of stock recovery: European hake, a new "choke" species under a discard ban? Fish Fish. 16: 563-575. https://doi.org/10.1111/faf.12079

Belcari P., Ligas A., Viva C. 2006. Age determination and growth of juveniles of the European hake, Merluccius merluccius (L., 1758), in the northern Tyrrhenian Sea (NW Mediterranean). Fish. Res. 78: 211-217. https://doi.org/10.1016/j.fishres.2006.01.006

Bertrand J.A., Gil de Sola L., Papaconstantinou C et al. 2002. The general specifications of the MEDITS surveys. Sci. Mar. 66: 9-17. https://doi.org/10.3989/scimar.2002.66s29

Caddy J.F. 2015. Criteria for sustainable fisheries on juveniles illustrated for Mediterranean hake: control the juvenile harvest, and safeguard spawning refugia to rebuild population fecundity. Sci. Mar. 79(3): 287-299. https://doi.org/10.3989/scimar.04230.06A

Caddy J.F., Abella A.J. 1999. Reconstructing reciprocal M vectors from length cohort analysis (LCA) of commercial size frequencies of hake, and fine mesh trawl surveys over the same grounds. Fish. Res. 41: 169-175. https://doi.org/10.1016/S0165-7836(99)00015-6

Cadrin S., Secor D. 2009. Accounting for spatial population structure in stock assessment: past, present, and future. In: Beamish R., Rothschild B. (eds), The Future of Fisheries Science in North America. Springer Publishing, Dordrecht, pp. 405-426. https://doi.org/10.1007/978-1-4020-9210-7_22

Cantafaro A., Ardizzone G., Enea M. et al. 2017. Assessing the importance of nursery areas of European hake (Merluccius merluccius) using a body condition index. Ecol. Indic. 81: 383-389. https://doi.org/10.1016/j.ecolind.2017.06.012

Catalán I.A., Macías D., Solé J. et al. 2013. Stay off the motorway: resolving the pre-recruitment life history dynamics of the European anchovy in the SW Mediterranean through a spatially-explicit individual-based model (SEIBM). Progr. Oceanog. 111: 140-153. https://doi.org/10.1016/j.pocean.2013.02.001

Ciannelli L., Dingsør G.E., Bogstad O. et al. 2007. Spatial anatomy of species survival: effects of predation and climate-driven environmental variability. Ecology 88: 635-646. https://doi.org/10.1890/05-2035 PMid:17503592

Colloca F., Bartolino V., Lasinio G.J. et al. 2009. Identifying fish nurseries using density and persistence measures. Mar. Ecol. Progr. Ser. 381: 287-296. https://doi.org/10.3354/meps07942

Colloca F., Cardinale M., Maynou F., et al. 2013. Rebuilding Mediterranean fisheries: a new paradigm for ecological sustainability. Fish Fish. 14: 89-109. https://doi.org/10.1111/j.1467-2979.2011.00453.x

Conover D.O. 2007. Nets versus nature. Nature 450: 179-180. https://doi.org/10.1038/450179a PMid:17994077

Cormon X., Loots C., Vaz S. et al. 2014. Spatial interactions between saithe (Pollachius virens) and hake (Merluccius merluccius) in the North Sea. ICES J. Mar. Sci. 71: 1342-1355. https://doi.org/10.1093/icesjms/fsu120

Druon J.N., Fiorentino F., Murenu M., et al. 2015. Modelling of European hake nurseries in the Mediterranean Sea: An ecological niche approach. Progr. Oceanogr. 130: 188-204. https://doi.org/10.1016/j.pocean.2014.11.005

Fernandes P.G., Ralph G.M., Nieto A. et al. 2017. Coherent assessments of Europe's marine fishes show regional divergence and megafauna loss. Nat. Ecol. Evol. 1: 0170. https://doi.org/10.1038/s41559-017-0200

Ferraton F., Harmelin-Vivien M., Mellon-Duval C. et al. 2007. Spatio-temporal variation in diet may affect condition and abundance of juvenile European hake in the Gulf of Lions (NW Mediterranean). Mar. Ecol. Progr. Ser. 337: 197-208. https://doi.org/10.3354/meps337197

Fiorentino F., Massutí E., Tinti S. et al. 2014. Stock units: Identification of distinct biological units (stock units) for different fish and shellfish species and among different GFCM-GSA. STOCKMED Deliverable 03: FINAL REPORT. September 2014, 310 pp.

Fraser H.M., Greenstreet S.P.R., Piet G.J. 2007. Taking account of catchability in groundfish survey trawls: implications for estimating demersal fish biomass. ICES J. Mar. Sci. 64: 1800-1819. https://doi.org/10.1093/icesjms/fsm145

García-Rodriguez M., Esteban A. 2002. How fast does hake grow? A study on the Mediterranean hake (Merluccius merluccius L.) comparing whole otoliths readings and length frequency distributions data. Sci. Mar. 66: 145-156. https://doi.org/10.3989/scimar.2002.66n2145

GFCM. 2016. Working Group on Stock Assessment of Demersal Species (WGSAD). GFCM and FAO headquarters, Rome, Italy, 7-12 November 2016. Final Report. 74 pp.

Goethel D.R., Berger A.M. 2017. Accounting for spatial complexities in the calculation of biological reference points: effects of misdiagnosing population structure for stock status indicators. Can. J. Fish. Aquat. Sci. 74: 1878-1894. https://doi.org/10.1139/cjfas-2016-0290

Hidalgo M., Massutí E., Moranta J. et al. 2008. Seasonal and short spatial patterns in European hake (Merluccius merluccius L.) recruitment process at the Balearic Islands (western Mediterranean): the role of environment on distribution and condition. J. Mar. Syst. 71: 367-384. https://doi.org/10.1016/j.jmarsys.2007.03.005

Hidalgo M., Tomas J., Moranta J. et al. 2009. Intra-annual recruitment events of a shelf species around an island system in the NW Mediterranean. Est. Coast. Shelf Sci. 83: 227-238. https://doi.org/10.1016/j.ecss.2009.03.037

Hidalgo M., Rouyer T., Molinero J. C, et al. 2011. Synergistic effects of fishing-induced demographic changes and climate variation on fish population dynamics. Mar. Ecol. Prog. Ser. 426: 1-12. https://doi.org/10.3354/meps09077

Hidalgo M., Olsen E.M., Ohlberger J. et al. 2014. Contrasting evolutionary demography induced by fishing: the role of adaptive phenotypic plasticity. Ecol. Applic. 24: 1101-1114. https://doi.org/10.1890/12-1777.1 PMid:25154099

Houde E.D. 1997. Patterns and consequences of selective processes in teleost early life histories. In: Chambers R.C. and Trippel E.A. (eds), Early Life History and Recruitment in Fish Populations. Chapman & Hall Fish and Fish. Series, vol 21. Springer, Dordrecht https://doi.org/10.1007/978-94-009-1439-1_6

Kavadas S., Maina I., Damalas, D. et al. 2015. Multi-Criteria Decision Analysis as a tool to extract fishing footprints: application to small scale fisheries and implications for management in the context of the Maritime Spatial Planning Directive. Medit. Mar. Sci. 16: 294-304. https://doi.org/10.12681/mms.1087

Kerr L.A., Hintzen N.T., Cadrin S.X. et al. 2017. Lessons learned from practical approaches to reconcile mismatches between biological population structure and stock units of marine fish. ICES J. Mar. Sci. 74: 1708-1722. https://doi.org/10.1093/icesjms/fsw188

Jørgensen C., Holt R.E. 2013. Natural mortality: Its ecology, how it shapes fish life histories, and why it may be increased by fishing. J. Sea Res. 75: 8-18. https://doi.org/10.1016/j.seares.2012.04.003

Le Pape O., Bonhommeau S. 2015. The food limitation hypothesis for juvenile marine fish. Fish Fish. 16: 373-398. https://doi.org/10.1111/faf.12063

Lembo G., Silecchia T., Carbonara P., et al. 2000. Nursery areas of Merluccius merluccius in the Italian Seas and in the East Side of the Adriatic Sea. Biol. Mar. Medit. 7: 98-116.

Levin P.S., Stunz G.W. 2005. Habitat triage for exploited fishes: Can we identify essential "Essential Fish Habitat"? Est. Coast. Shelf Sci. 64: 70-78. https://doi.org/10.1016/j.ecss.2005.02.007

Ligas A., Colloca F., Lundy M.G. et al. 2015. Modeling the growth of recruits of European hake (Merluccius merluccius) in the northwestern Mediterranean Sea with generalized additive models. Fish. Bull. 113: 69-82. https://doi.org/10.7755/FB.113.1.7

Link J. S., Browman H.I. 2017. Operationalizing and implementing ecosystem-based management. ICES J. Mar. Sci. 74: 379-381. https://doi.org/10.1093/icesjms/fsw247

Lorenzen K., Enberg K. 2002. Density-dependent growth as a key mechanism in the regulation of fish populations: evidence from among-population comparisons. Proc. R. Soc. Lon. B Biol. Sci. 269: 49-54. https://doi.org/10.1098/rspb.2001.1853 PMid:11788036 PMCid:PMC1690856

Maeda E.E., Mäntyniemi S., Despoti S. et al. 2017. A Bayesian model of fisheries discards with flexible structure and priors defined by experts. Ecol. Mod. 366: 1-14. https://doi.org/10.1016/j.ecolmodel.2017.10.007

Mahévas S., Trenkel V.M., Doray M. 2011. Hake catchability by the French trawler fleet in the Bay of Biscay: estimating technical and biological components. ICES J. Mar. Sci. 68: 107-118. https://doi.org/10.1093/icesjms/fsq140

Mellon-Duval C., De Pontual H., Métral L. et al. 2010. Growth of European hake (Merluccius merluccius) in the Gulf of Lions based on conventional tagging. ICES J. Mar. Sci. 67: 62-70. https://doi.org/10.1093/icesjms/fsp215

Morales-Nin B., Moranta J. 2004. Recruitment and post-settlement growth of juvenile Merluccius merluccius on the western Mediterranean shelf. Sci. Mar. 68: 399-409. https://doi.org/10.3989/scimar.2004.68n3399

Oguz T., Macias D., Garcia-Lafuente J.et al. 2014. Fueling plankton production by a meandering frontal jet: a case study for the Alboran Sea (Western Mediterranean). PloS ONE 9: e111482. https://doi.org/10.1371/journal.pone.0111482 PMid:25372789 PMCid:PMC4221033

Paradinas I., Martín M., Pennino M.G. et al. 2016. Identifying the best fishing-suitable areas under the new European discard ban. ICES J. Mar. Sci. 73: 2479-2487. https://doi.org/10.1093/icesjms/fsw114

Pennino M.G., Vilela R., Valeiras J. et al. 2017. Discard management: A spatial multi-criteria approach. Mar. Policy 77: 144-151. https://doi.org/10.1016/j.marpol.2016.12.022

Pita A., Leal A., Santafé-Muñoz A., et al. 2016. Genetic inference of demographic connectivity in the Atlantic European hake metapopulation (Merluccius merluccius) over a spatio-temporal framework. Fish. Res. 179: 291-301. https://doi.org/10.1016/j.fishres.2016.03.017

Puerta P., Hidalgo M., González M., et al. 2014. Role of hydro-climatic and demographic processes on the spatio-temporal distribution of cephalopods in the western Mediterranean. Mar. Ecol. Prog. Ser. 514: 105-118. https://doi.org/10.3354/meps10972

Puerta P., Hunsicker M.E., Quetglas A. et al. 2015. Spatially explicit modeling reveals cephalopod distributions match contrasting trophic pathways in the western Mediterranean Sea. PloS ONE 10: e0133439. https://doi.org/10.1371/journal.pone.0133439 PMid:26201075 PMCid:PMC4511516

Recasens L., Chiericoni V., Belcari P. 2008. Spawning pattern and batch fecundity of the European hake (Merluccius merluccius (Linnaeus, 1758)) in the western Mediterranean. Sci. Mar. 72: 721-732. https://doi.org/10.3989/scimar.2008.72n4721

Rey J., Árbol J., Gil de Sola L. 2004. Seasonal recruitment of hake in the Alboran Sea (SW Mediterranean). Rapp. Comm. Int. Mer Medit. 37: 427.

Rueda L., Massutí E., Alvarez-Berastegui D. et al. 2015. Effect of intra-specific competition, surface chlorophyll and fishing on spatial variation of gadoid's body condition. Ecosphere 6: 1-17. https://doi.org/10.1890/ES15-00087.1

Ruiz J., Macias D., Rincon M.M. et al. 2013. Atlantic inflow controls fish recruitment at the Western Mediterranean. Rapp. Comm. Int. Mer Medit. 40: 158.

Sbrana M., Belcari P., De Ranieri S. et al. 2007. Comparison of the catches of European hake (Merluccius merluccius, L. 1758) taken with experimental gillnets of different mesh sizes in the northern Tyrrhenian Sea (Western Mediterranean). Sci. Mar. 71: 47-56. https://doi.org/10.3989/scimar.2007.71n147

Scientific, Technical and Economic Committee for Fisheries (STECF). 2015. Mediterranean assessments part 1 (STECF-15-18). Publ. Off. Europ. Union, Luxembourg, EUR 27638 EN, JRC 98676, 410 pp.

Schultz E.T., Conover D.O. 1997. Latitudinal differences in somatic energy storage: adaptive responses to seasonality in an estuarine fish (Atherinidae: Menidia menidia). Oecologia 109: 516-529. https://doi.org/10.1007/s004420050112 PMid:28307335

Sogard S.M. 1997. Size-selective mortality in the juvenile stage of teleost fishes: a review. Bull. Mar. Sci. 60: 1129-1157.

Souplet A. 1996. Calculation of abundance indices and length frequencies in the MEDITS survey. In: Bertrand J.A. et al. (eds), Campagne internationale du chalutage démersal en Méditerraneé. Campagne 1995. EU Final Report, Vol. III.

Suthers I.M. 1998. Bigger? Fatter? Or is faster growth better? Considerations on condition in larval and juvenile coral-reef fish. Austral Ecol. 23: 265-273. https://doi.org/10.1111/j.1442-9993.1998.tb00730.x

Vasilakopoulos P., Maravelias C.D., Tserpes G. 2014. The alarming decline of Mediterranean fish stocks. Curr. Biol. 24: 1643-1648. https://doi.org/10.1016/j.cub.2014.05.070 PMid:25017210

Vielmini I., Perry A.L., Cornax M.J. 2017. Untying the Mediterranean Gordian knot: a twenty first century challenge for fisheries management. Front. Mar. Sci. 4: 195. https://doi.org/10.3389/fmars.2017.00195




Copyright (c) 2011 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Contact us scimar@icm.csic.es

Technical support soporte.tecnico.revistas@csic.es