Scientia Marina, Vol 83, No S1 (2019)

Long-term spatiotemporal dynamics of cephalopod assemblages in the Mediterranean Sea

Antoni Quetglas
Instituto Español de Oceanografía (IEO), Centre Oceanogràfic de Balears, Spain

Maria Valls
Instituto Español de Oceanografía (IEO), Centre Oceanogràfic de Balears, Spain

Francesca Capezzuto
Dipartimento di Biologia, Università di Bari Aldo Moro, Italy

Loredana Casciaro
COISPA-Tecnologia & Ricerca, Italy

Danila Cuccu
Dipartemento di Scienze della Vita e dell’Ambiente, Università di Cagliari, Italy

María González
IEO-Centro Oceanográfico de Málaga - Universidad de Málaga, Departamento de Biología Animal, Spain

Zdravko Ikica
Institute of Marine Biology, University of Montenegro, Montenegro

Svjetlana Krstulović Šifner
University Department of Marine Studies, University of Split (UNIST), Croatia

Valentina Lauria
Instituto per l’Ambiente Marino Costiero, IAMC-CNR, Italy

Evgenia Lefkaditou
HCMR, Hellenic Centre of Marine Research, Greece

Panagiota Peristeraki
HCMR, Hellenic Centre of Marine Research - Biology Department, University of Crete, Greece

Corrado Piccinetti
Laboratorio di Biologia Marina e Pesca, Università di Bologna, Italy

Pavlos Vidoris
Hellenic Agricultural Organization DEMETER, Fisheries Research Institute, Greece

Stefanie Keller
Instituto Español de Oceanografía (IEO), Centre Oceanogràfic de Balears, Spain


The Mediterranean Sea shows a trend of increasing temperature and decreasing productivity from the western to the eastern basin. In this work we investigate whether this trend is reflected in the cephalopod assemblages found throughout the Mediterranean. Data obtained with bottom trawl surveys carried out during the last 22 years by EU Mediterranean countries were used. In addition to analysing spatial differences in cephalopod assemblages, we also analysed putative temporal changes during the last two decades. For this purpose, the basin was spatially divided into bioregions, the trawling grounds were subdivided into depth strata, and the dataset was split into two time series of 11 years each. All analyses were done using PRIMER software. The species richness did not vary with the longitudinal gradient, though in most bioregions it showed a mild decrease with depth before plummeting in the deepest waters. Cluster analysis revealed four different bathymetric assemblages in all bioregions. Despite the contrasting conditions between basins and the claims of biodiversity loss, our study revealed that spatial and temporal differences during the last two decades were restricted to changes in the relative abundance of species from a common pool of species inhabiting the whole Mediterranean.


monitoring; bottom trawling; biodiversity; biogeography; dominant species; continental shelf; continental slope

Full Text:



Albouy C., Guilhaumon F., Leprieur F., et al. 2013. Projected climate change and the changing biogeography of coastal Mediterranean fishes. J. Biogeogr. 40: 534-547.

Anderson M.J., Gorley R.N., Clarke K.R. 2008. PERMANOVA+ for PRIMER: Guide to Software and Statistical Methods. PRIMER-E, Plymouth, 214 pp.

Bello G. 2003. The biogeography of Mediterranean cephalopods. Biogeographia 33: 209-226.

Bello G. 2008. Cephalopoda. Biol. Mar. Medit. 15: 318-322.

Bello G. 2016. Cephalopoda (update December 2016). Biol. Mar. Medit. 15: 318-322.

Bertrand J.A., de Sola L.G., Papaconstantinou C., et al. 2002. The general specifications of the MEDITS surveys. Sci. Mar. 66: 9-17.

Bianchi C. 2007. Biodiversity issues for the forthcoming tropical Mediterranean Sea. Hydrobiologia 580: 7-21.

Bianchi C.N., Morri C. 2004. Climate change and biological response in Mediterranean Sea ecosystems: a need for broad-scale and long-term research. Ocean Challenge 13: 32-36.

Borghini M., Bryden H., Schroeder K., et al. 2014. The Mediterranean is becoming saltier. Ocean Sci. 10: 693-700.

Calvo E., Simó R., Coma R., et al. 2011. Effects of climate change on Mediterranean marine ecosystems: the case of the Catalan Sea. Climate Res. 50: 1-29.

Clarke K.R., Gorley R.N. 2006. PRIMER v6: User Manual/Tutorial. PRIMER-E, Plymouth, 190 pp.

Clarke K.R., Warwick R.M. 2001. Change in marine communities: An approach to statistical analysis and interpretation. PRIMER-E: Plymouth, 176 pp.

Coll M., Piroddi C., Steenbeek J., et al. 2010. The Biodiversity of the Mediterranean Sea: Estimates, Patterns, and Threats. PloS ONE 5: e11842. PMid:20689844 PMCid:PMC2914016

Colloca F., Scarcella G., Libralato S. 2017. Recent trends and impacts of fisheries exploitation on Mediterranean stocks and ecosystems. Front. Mar. Sci. 4: 244.

D'Ortenzio F., D'Alcala M.R. 2009. On the trophic regimes of the Mediterranean Sea: a satellite analysis. Biogeosciences 6: 139-148.

Danovaro R. 2003. Pollution threats in the Mediterranean Sea: An overview. Chem. Ecol. 19: 15-32.

Danovaro R., Dinet A., Duineveld G., et al. 1999. Benthic response to particulate fluxes in different trophic environments: a comparison between the Gulf of Lions-Catalan Sea (western-Mediterranean) and the Cretan Sea (eastern-Mediterranean). Prog. Oceanogr. 44: 287-312.

Doubleday Z., Prowse T.A.A., Arkhipkin A., et al. 2016. Global proliferation of cephalopods. Curr. Biol. 26: R406-R407. PMid:27218844

Fanelli E., Cartes J.E., Papiol V. 2012. Assemblage structure and trophic ecology of deep-sea demersal cephalopods in the Balearic basin (NW Mediterranean). Mar. Freshwater. Res. 63: 264-274.

Gaertner J.C., Bertrand J.A., Relini G., et al. 2007. Spatial pattern in species richness of demersal fish assemblages on the continental shelf of the northern Mediterranean Sea: a multiscale analysis. Mar. Ecol. Progr. Ser. 341: 191-203.

Gaertner J.C., Maiorano P., Merigot B., et al. 2013. Large-scale diversity of slope fishes: pattern inconsistency between multiple diversity indices. PloS ONE 8: e66753. PMid:23843962 PMCid:PMC3700978

Giorgi F., Lionello P. 2008. Climate change projections for the Mediterranean region. Global Planet. Change 63: 90-104.

González M., Sánchez P. 2002. Cephalopod assemblages caught by trawling along the Iberian Peninsula Mediterranean coast. Sci. Mar. 66: 199-208.

Granger V., Fromentin J.M., Bez N., et al. 2015. Large-scale spatio-temporal monitoring highlights hotspots of demersal fish diversity in the Mediterranean Sea. Prog. Oceanogr. 130: 65-74.

Hastie L.C., Pierce G.J., Wang J., et al. 2009. Cephalopods in the North-Eastern Atlantic: Species, biogeography, ecology, exploitation and conservation. Oceanogr. Mar. Biol. 47: 111-190.

Keller S., Bartolino V., Hidalgo M., et al. 2016. Large-Scale Spatio- Temporal Patterns of Mediterranean Cephalopod Diversity. PloS ONE 11: e0146469. PMid:26760965 PMCid:PMC4712019

Keller S., Keller A., Puerta P., et al. 2017. Environmentally driven synchronies of Mediterranean cephalopod populations. Prog. Oceanogr. 152: 1-14.

Krstulovi? ?ifner S., Lefkaditou E., Ungro N., et al. 2005. Composition and distribution of the cephalopod fauna in the eastern Adriatic and eastern Ionian Sea. Israel J. Zool. 51: 315-330.

Krstulovi? ?ifner S., Peharda M., Vrgoc N., et al. 2011. Biodiversity and distribution of cephalopods caught by trawling along the Northern and Central Adriatic Sea. Cah. Biol. Mar. 52: 291-302.

Lasram F.B., Guilhaumon F., Albouy C., et al. 2010. The Mediterranean Sea as a 'cul-de-sac' for endemic fishes facing climate change. Global Change Biol. 16: 3233-3245.

Lauria V., Garofalo G., Gristina M., et al. 2016. Contrasting habitat selection amongst cephalopods in the Mediterranean Sea: When the environment makes the difference. Mar. Environ. Res. 119: 252-266. PMid:27371813

Lavigne H., D'Ortenzio F., D'Alcala M.R., et al. 2015. On the vertical distribution of the chlorophyll a concentration in the Mediterranean Sea: a basin-scale and seasonal approach. Biogeosciences 12: 5021-5039.

Lefkaditou E., Mytilineou Ch., Maiorano P., et al. 2003. Cephalopod species captured by deep-water exploratory trawling in the Eastern Ionian Sea. J. Northw. Atl. Fish. Sci. 31: 431-440.

Lejeusne C., Chevaldonné P., Pergent-Martini C., et al. 2010. Climate change effects on a miniature ocean: the highly diverse, highly impacted Mediterranean Sea. Trends Ecol. Evol. 25: 250-260. PMid:19959253

Lugli S., Manzi V., Roveri M., et al. 2015. The deep record of the Messinian salinity crisis: Evidence of a non-desiccated Mediterranean Sea. Palaeogeogr. Palaeoclimatol. Palaeoecol., 433: 201-218.

Mangold K., Boletzky S.v. 1988. Mediterranean cephalopod fauna. In: Clarke M.R., Trueman E.R. (eds), The Mollusca, vol.12, Paleontology and Neontology of Cephalopods. Academic Press, London, pp. 315-330.

Manzi V., Gennari R., Hilgen F., et al. 2013. Age refinement of the Messinian salinity crisis onset in the Mediterranean. Terra Nova 25: 315-322.

McClain C.R., Hardy S.M. 2010. The dynamics of biogeographic ranges in the deep sea. Proc. Biol. Sci. 277: 3533-3546. PMid:20667884 PMCid:PMC2982252

Millot C., Taupier-Letage T. 2005. Circulation in the Mediterranean Sea. In: Saliot A. (ed.), The Mediterranean Sea. The Handbook of Environmental Chemistry, Vol. 5, Part K. Springer-Verlag, Berlin Heidelberg, pp. 29-66.

Nieblas A.E., Drushka K., Reygondeau G., et al. 2014. Defining Mediterranean and Black Sea Biogeochemical Subprovinces and Synthetic Ocean Indicators Using Mesoscale Oceanographic Features. PloS ONE 9: e111251. PMid:25360783 PMCid:PMC4216069

Pastor F., Valiente J.A., Palau J.L. 2017. Sea surface temperature in the Mediterranean: trends and spatial patterns (1982-2016). Pure Appl. Geophys. 175: 4017-4029.

Peristeraki P., Tserpes G., Lampadariou N., et al. 2017. Comparing demersal megafaunal species diversity along the depth gradient within the South Aegean and Cretan Seas (Eastern Mediterranean). PloS ONE 12: e0184241. PMid:28873395 PMCid:PMC5584924

Pierce G.J., Valavanis V.D., Guerra A., et al. 2008. A review of cephalopod-environment interactions in European Seas. Hydrobiologia 612: 49-70.

Puerta P., Hidalgo M., Gonzalez M., et al. 2014. Role of hydro-climatic and demographic processes on the spatio-temporal distribution of cephalopods in the western Mediterranean. Mar. Ecol. Progr. Ser. 514: 105-118.

Quetglas A., Carbonell A., Sanchez P. 2000. Demersal continental shelf and upper slope cephalopod assemblages from the Balearic Sea (north-western Mediterranean). Biological aspects of some deep-sea species. Est. Coast. Shelf Sci. 50: 739-749.

Rex M.A., Etter R.J. 2010. Deep-sea biodiversity. Pattern and Scale. Harvard University Press, London, 356 pp.

Rodhouse P.G.K., Pierce G.J., Nichols O.C., et al. 2014. Environmental effects on cephalopod population dynamics: implications for management of fisheries. Adv. Mar. Biol. 67: 99-233. PMid:24880795

Rosa R., Dierssen H.M., Gonzalez L., et al. 2008. Large-scale diversity patterns of cephalopods in the Atlantic open ocean and deep sea. Ecology 89: 3449-3461. PMid:19137950

Silva L., Vila Y., Torres M.A., et al. 2011. Cephalopod assemblages, abundance and species distribution in the Gulf of Cadiz (SW Spain). Aquat. Living Resour. 24: 13-26.

Tanhua T., Hainbucher D., Schroeder K., et al. 2013. The Mediterranean Sea system: a review and an introduction to the special issue. Ocean Sci. 9: 789-803.

Turley C.M., Bianchi M., Christaki U., et al. 2000. Relationship between primary producers and bacteria in an oligotrophic sea - the Mediterranean and biogeochemical implications. Mar. Ecol. Progr. Ser. 193: 11-18.

Tyler P.A. 2003. The peripheral deep seas. In: Tyler P.A. (ed), Ecosystems of the deep oceans. Elsevier Science, Amsterdam, The Netherlands, pp. 261-293.

Vasilakopoulos P., Maravelias C.D., Tserpes G. 2014. The Alarming Decline of Mediterranean Fish Stocks. Curr. Biol. 24: 1643-1648. PMid:25017210

Vasiliev I., Mezger E.M., Lugli S., et al. 2017. How dry was the Mediterranean during the Messinian salinity crisis? Palaeogeogr. Palaeoclimatol. Palaeoecol. 471: 120-133.

Wiens J.J., Donoghue M.J. 2004. Historical biogeography, ecology and species richness. Trends Ecol. Evol. 19: 639-644. PMid:16701326

Zenetos A., Katsanevakis S., Poursanidis D., et al. 2011. Marine alien species in Greek Seas: Additions and amendments by 2010. Medit. Mar. Sci. 12: 95-120.

Copyright (c) 2011 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Contact us

Technical support