Long-term spatiotemporal dynamics of cephalopod assemblages in the Mediterranean Sea

Authors

DOI:

https://doi.org/10.3989/scimar.04841.20A

Keywords:

monitoring, bottom trawling, biodiversity, biogeography, dominant species, continental shelf, continental slope

Abstract


The Mediterranean Sea shows a trend of increasing temperature and decreasing productivity from the western to the eastern basin. In this work we investigate whether this trend is reflected in the cephalopod assemblages found throughout the Mediterranean. Data obtained with bottom trawl surveys carried out during the last 22 years by EU Mediterranean countries were used. In addition to analysing spatial differences in cephalopod assemblages, we also analysed putative temporal changes during the last two decades. For this purpose, the basin was spatially divided into bioregions, the trawling grounds were subdivided into depth strata, and the dataset was split into two time series of 11 years each. All analyses were done using PRIMER software. The species richness did not vary with the longitudinal gradient, though in most bioregions it showed a mild decrease with depth before plummeting in the deepest waters. Cluster analysis revealed four different bathymetric assemblages in all bioregions. Despite the contrasting conditions between basins and the claims of biodiversity loss, our study revealed that spatial and temporal differences during the last two decades were restricted to changes in the relative abundance of species from a common pool of species inhabiting the whole Mediterranean.

Downloads

Download data is not yet available.

References

Albouy C., Guilhaumon F., Leprieur F., et al. 2013. Projected climate change and the changing biogeography of coastal Mediterranean fishes. J. Biogeogr. 40: 534-547. https://doi.org/10.1111/jbi.12013

Anderson M.J., Gorley R.N., Clarke K.R. 2008. PERMANOVA+ for PRIMER: Guide to Software and Statistical Methods. PRIMER-E, Plymouth, 214 pp.

Bello G. 2003. The biogeography of Mediterranean cephalopods. Biogeographia 33: 209-226. https://doi.org/10.21426/B6110092

Bello G. 2008. Cephalopoda. Biol. Mar. Medit. 15: 318-322.

Bello G. 2016. Cephalopoda (update December 2016). Biol. Mar. Medit. 15: 318-322.

Bertrand J.A., de Sola L.G., Papaconstantinou C., et al. 2002. The general specifications of the MEDITS surveys. Sci. Mar. 66: 9-17. https://doi.org/10.3989/scimar.2002.66s29

Bianchi C. 2007. Biodiversity issues for the forthcoming tropical Mediterranean Sea. Hydrobiologia 580: 7-21. https://doi.org/10.1007/s10750-006-0469-5

Bianchi C.N., Morri C. 2004. Climate change and biological response in Mediterranean Sea ecosystems: a need for broad-scale and long-term research. Ocean Challenge 13: 32-36.

Borghini M., Bryden H., Schroeder K., et al. 2014. The Mediterranean is becoming saltier. Ocean Sci. 10: 693-700. https://doi.org/10.5194/os-10-693-2014

Calvo E., Simó R., Coma R., et al. 2011. Effects of climate change on Mediterranean marine ecosystems: the case of the Catalan Sea. Climate Res. 50: 1-29. https://doi.org/10.3354/cr01040

Clarke K.R., Gorley R.N. 2006. PRIMER v6: User Manual/Tutorial. PRIMER-E, Plymouth, 190 pp.

Clarke K.R., Warwick R.M. 2001. Change in marine communities: An approach to statistical analysis and interpretation. PRIMER-E: Plymouth, 176 pp.

Coll M., Piroddi C., Steenbeek J., et al. 2010. The Biodiversity of the Mediterranean Sea: Estimates, Patterns, and Threats. PloS ONE 5: e11842. https://doi.org/10.1371/journal.pone.0011842 PMid:20689844 PMCid:PMC2914016

Colloca F., Scarcella G., Libralato S. 2017. Recent trends and impacts of fisheries exploitation on Mediterranean stocks and ecosystems. Front. Mar. Sci. 4: 244. https://doi.org/10.3389/fmars.2017.00244

D'Ortenzio F., D'Alcala M.R. 2009. On the trophic regimes of the Mediterranean Sea: a satellite analysis. Biogeosciences 6: 139-148. https://doi.org/10.5194/bg-6-139-2009

Danovaro R. 2003. Pollution threats in the Mediterranean Sea: An overview. Chem. Ecol. 19: 15-32. https://doi.org/10.1080/0275754031000081467

Danovaro R., Dinet A., Duineveld G., et al. 1999. Benthic response to particulate fluxes in different trophic environments: a comparison between the Gulf of Lions-Catalan Sea (western-Mediterranean) and the Cretan Sea (eastern-Mediterranean). Prog. Oceanogr. 44: 287-312. https://doi.org/10.1016/S0079-6611(99)00030-0

Doubleday Z., Prowse T.A.A., Arkhipkin A., et al. 2016. Global proliferation of cephalopods. Curr. Biol. 26: R406-R407. https://doi.org/10.1016/j.cub.2016.04.002 PMid:27218844

Fanelli E., Cartes J.E., Papiol V. 2012. Assemblage structure and trophic ecology of deep-sea demersal cephalopods in the Balearic basin (NW Mediterranean). Mar. Freshwater. Res. 63: 264-274. https://doi.org/10.1071/MF11157

Gaertner J.C., Bertrand J.A., Relini G., et al. 2007. Spatial pattern in species richness of demersal fish assemblages on the continental shelf of the northern Mediterranean Sea: a multiscale analysis. Mar. Ecol. Progr. Ser. 341: 191-203. https://doi.org/10.3354/meps341191

Gaertner J.C., Maiorano P., Merigot B., et al. 2013. Large-scale diversity of slope fishes: pattern inconsistency between multiple diversity indices. PloS ONE 8: e66753. https://doi.org/10.1371/journal.pone.0066753 PMid:23843962 PMCid:PMC3700978

Giorgi F., Lionello P. 2008. Climate change projections for the Mediterranean region. Global Planet. Change 63: 90-104. https://doi.org/10.1016/j.gloplacha.2007.09.005

González M., Sánchez P. 2002. Cephalopod assemblages caught by trawling along the Iberian Peninsula Mediterranean coast. Sci. Mar. 66: 199-208. https://doi.org/10.3989/scimar.2002.66s2199

Granger V., Fromentin J.M., Bez N., et al. 2015. Large-scale spatio-temporal monitoring highlights hotspots of demersal fish diversity in the Mediterranean Sea. Prog. Oceanogr. 130: 65-74. https://doi.org/10.1016/j.pocean.2015.08.002

Hastie L.C., Pierce G.J., Wang J., et al. 2009. Cephalopods in the North-Eastern Atlantic: Species, biogeography, ecology, exploitation and conservation. Oceanogr. Mar. Biol. 47: 111-190. https://doi.org/10.1201/9781420094220.ch3

Keller S., Bartolino V., Hidalgo M., et al. 2016. Large-Scale Spatio- Temporal Patterns of Mediterranean Cephalopod Diversity. PloS ONE 11: e0146469. https://doi.org/10.1371/journal.pone.0146469 PMid:26760965 PMCid:PMC4712019

Keller S., Keller A., Puerta P., et al. 2017. Environmentally driven synchronies of Mediterranean cephalopod populations. Prog. Oceanogr. 152: 1-14. https://doi.org/10.1016/j.pocean.2016.12.010

Krstulovi? ?ifner S., Lefkaditou E., Ungro N., et al. 2005. Composition and distribution of the cephalopod fauna in the eastern Adriatic and eastern Ionian Sea. Israel J. Zool. 51: 315-330. https://doi.org/10.1560/4LT4-K01W-C9GF-7YK3

Krstulovi? ?ifner S., Peharda M., Vrgoc N., et al. 2011. Biodiversity and distribution of cephalopods caught by trawling along the Northern and Central Adriatic Sea. Cah. Biol. Mar. 52: 291-302.

Lasram F.B., Guilhaumon F., Albouy C., et al. 2010. The Mediterranean Sea as a 'cul-de-sac' for endemic fishes facing climate change. Global Change Biol. 16: 3233-3245. https://doi.org/10.1111/j.1365-2486.2010.02224.x

Lauria V., Garofalo G., Gristina M., et al. 2016. Contrasting habitat selection amongst cephalopods in the Mediterranean Sea: When the environment makes the difference. Mar. Environ. Res. 119: 252-266. https://doi.org/10.1016/j.marenvres.2016.06.011 PMid:27371813

Lavigne H., D'Ortenzio F., D'Alcala M.R., et al. 2015. On the vertical distribution of the chlorophyll a concentration in the Mediterranean Sea: a basin-scale and seasonal approach. Biogeosciences 12: 5021-5039. https://doi.org/10.5194/bg-12-5021-2015

Lefkaditou E., Mytilineou Ch., Maiorano P., et al. 2003. Cephalopod species captured by deep-water exploratory trawling in the Eastern Ionian Sea. J. Northw. Atl. Fish. Sci. 31: 431-440. https://doi.org/10.2960/J.v31.a33

Lejeusne C., Chevaldonné P., Pergent-Martini C., et al. 2010. Climate change effects on a miniature ocean: the highly diverse, highly impacted Mediterranean Sea. Trends Ecol. Evol. 25: 250-260. https://doi.org/10.1016/j.tree.2009.10.009 PMid:19959253

Lugli S., Manzi V., Roveri M., et al. 2015. The deep record of the Messinian salinity crisis: Evidence of a non-desiccated Mediterranean Sea. Palaeogeogr. Palaeoclimatol. Palaeoecol., 433: 201-218. https://doi.org/10.1016/j.palaeo.2015.05.017

Mangold K., Boletzky S.v. 1988. Mediterranean cephalopod fauna. In: Clarke M.R., Trueman E.R. (eds), The Mollusca, vol.12, Paleontology and Neontology of Cephalopods. Academic Press, London, pp. 315-330. https://doi.org/10.1016/B978-0-12-751412-3.50025-5

Manzi V., Gennari R., Hilgen F., et al. 2013. Age refinement of the Messinian salinity crisis onset in the Mediterranean. Terra Nova 25: 315-322. https://doi.org/10.1111/ter.12038

McClain C.R., Hardy S.M. 2010. The dynamics of biogeographic ranges in the deep sea. Proc. Biol. Sci. 277: 3533-3546. https://doi.org/10.1098/rspb.2010.1057 PMid:20667884 PMCid:PMC2982252

Millot C., Taupier-Letage T. 2005. Circulation in the Mediterranean Sea. In: Saliot A. (ed.), The Mediterranean Sea. The Handbook of Environmental Chemistry, Vol. 5, Part K. Springer-Verlag, Berlin Heidelberg, pp. 29-66. https://doi.org/10.1007/b107143

Nieblas A.E., Drushka K., Reygondeau G., et al. 2014. Defining Mediterranean and Black Sea Biogeochemical Subprovinces and Synthetic Ocean Indicators Using Mesoscale Oceanographic Features. PloS ONE 9: e111251. https://doi.org/10.1371/journal.pone.0111251 PMid:25360783 PMCid:PMC4216069

Pastor F., Valiente J.A., Palau J.L. 2017. Sea surface temperature in the Mediterranean: trends and spatial patterns (1982-2016). Pure Appl. Geophys. 175: 4017-4029. https://doi.org/10.1007/s00024-017-1739-z

Peristeraki P., Tserpes G., Lampadariou N., et al. 2017. Comparing demersal megafaunal species diversity along the depth gradient within the South Aegean and Cretan Seas (Eastern Mediterranean). PloS ONE 12: e0184241. https://doi.org/10.1371/journal.pone.0184241 PMid:28873395 PMCid:PMC5584924

Pierce G.J., Valavanis V.D., Guerra A., et al. 2008. A review of cephalopod-environment interactions in European Seas. Hydrobiologia 612: 49-70. https://doi.org/10.1007/s10750-008-9489-7

Puerta P., Hidalgo M., Gonzalez M., et al. 2014. Role of hydro-climatic and demographic processes on the spatio-temporal distribution of cephalopods in the western Mediterranean. Mar. Ecol. Progr. Ser. 514: 105-118. https://doi.org/10.3354/meps10972

Quetglas A., Carbonell A., Sanchez P. 2000. Demersal continental shelf and upper slope cephalopod assemblages from the Balearic Sea (north-western Mediterranean). Biological aspects of some deep-sea species. Est. Coast. Shelf Sci. 50: 739-749. https://doi.org/10.1006/ecss.1999.0603

Rex M.A., Etter R.J. 2010. Deep-sea biodiversity. Pattern and Scale. Harvard University Press, London, 356 pp.

Rodhouse P.G.K., Pierce G.J., Nichols O.C., et al. 2014. Environmental effects on cephalopod population dynamics: implications for management of fisheries. Adv. Mar. Biol. 67: 99-233. https://doi.org/10.1016/B978-0-12-800287-2.00002-0 PMid:24880795

Rosa R., Dierssen H.M., Gonzalez L., et al. 2008. Large-scale diversity patterns of cephalopods in the Atlantic open ocean and deep sea. Ecology 89: 3449-3461. https://doi.org/10.1890/08-0638.1 PMid:19137950

Silva L., Vila Y., Torres M.A., et al. 2011. Cephalopod assemblages, abundance and species distribution in the Gulf of Cadiz (SW Spain). Aquat. Living Resour. 24: 13-26. https://doi.org/10.1051/alr/2011101

Tanhua T., Hainbucher D., Schroeder K., et al. 2013. The Mediterranean Sea system: a review and an introduction to the special issue. Ocean Sci. 9: 789-803. https://doi.org/10.5194/os-9-789-2013

Turley C.M., Bianchi M., Christaki U., et al. 2000. Relationship between primary producers and bacteria in an oligotrophic sea - the Mediterranean and biogeochemical implications. Mar. Ecol. Progr. Ser. 193: 11-18. https://doi.org/10.3354/meps193011

Tyler P.A. 2003. The peripheral deep seas. In: Tyler P.A. (ed), Ecosystems of the deep oceans. Elsevier Science, Amsterdam, The Netherlands, pp. 261-293.

Vasilakopoulos P., Maravelias C.D., Tserpes G. 2014. The Alarming Decline of Mediterranean Fish Stocks. Curr. Biol. 24: 1643-1648. https://doi.org/10.1016/j.cub.2014.05.070 PMid:25017210

Vasiliev I., Mezger E.M., Lugli S., et al. 2017. How dry was the Mediterranean during the Messinian salinity crisis? Palaeogeogr. Palaeoclimatol. Palaeoecol. 471: 120-133. https://doi.org/10.1016/j.palaeo.2017.01.032

Wiens J.J., Donoghue M.J. 2004. Historical biogeography, ecology and species richness. Trends Ecol. Evol. 19: 639-644. https://doi.org/10.1016/j.tree.2004.09.011 PMid:16701326

Zenetos A., Katsanevakis S., Poursanidis D., et al. 2011. Marine alien species in Greek Seas: Additions and amendments by 2010. Medit. Mar. Sci. 12: 95-120. https://doi.org/10.12681/mms.55

Published

2019-12-30

How to Cite

1.
Quetglas A, Valls M, Capezzuto F, Casciaro L, Cuccu D, González M, Ikica Z, Krstulović Šifner S, Lauria V, Lefkaditou E, Peristeraki P, Piccinetti C, Vidoris P, Keller S. Long-term spatiotemporal dynamics of cephalopod assemblages in the Mediterranean Sea. Sci. mar. [Internet]. 2019Dec.30 [cited 2024Mar.28];83(S1):33-42. Available from: https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1800

Issue

Section

Articles

Most read articles by the same author(s)

1 2 3 4 > >>