Scientia Marina, Vol 83, No S1 (2019)

Distribution and spatio-temporal biomass trends of red mullets across the Mediterranean

George Tserpes
Hellenic Centre for Marine Research, Institute of Marine Biological Resources and Inland Waters, Greece

Enric Massutí
Instituto Español de Oceanografía, Centre Oceanogràfic de les Balears, Spain

Fabio Fiorentino
Italian National Research Council (CNR), Institute for Coastal Marine Environment (IAMC), Italy

Maria Teresa Facchini
COISPA Tecnologia & Ricerca, Italy

Claudio Viva
Centro Interuniversitario di Biologia Marina ed ecologia applicata (CIBM), Italy

Angélique Jadaud
IFREMER-UMR MARBEC, Fisheries Laboratory, France

Aleksandar Joksimovic
University of Montenegro-Institute of Marine Biology, Montenegro

Paola Pesci
Department of Life and Environmental Sciences, University of Cagliari, Italy

Corrado Piccinetti
Laboratorio di Biologia Marina e Pesca, BiGEA, Università di Bologna, Italy

Letizia Sion
Department of Biology, University of Bari Aldo Moro, Italy

Ioannis Thasitis
Department of Fisheries and Marine Research, Cyprus

Nedo Vrgoc
Institute of Oceanography and Fisheries, Croatia


The present work examines the spatio-temporal biomass trends of Mullus barbatus and Mullus surmuletus in the Mediterranean Sea through the analysis of a time series of data coming from the Mediterranean International Trawl Surveys (MEDITS), accomplished annually from 1994 to 2015. The biomass of both species showed clear declining trends below 150 to 200 m depth, which were steeper in the case of M. barbatus. Increases in temporal biomass trends were observed for M. barbatus from 2008 onward in most geographic sub-areas (GSAs), while stability was mostly observed for M. surmuletus. For both species, dynamic factor analysis revealed similarities among neighbouring GSAs and the subsequent cluster analysis identified two major GSA groups corresponding to the eastern and western basins of the Mediterranean. Overall, the results suggested that the combined effects of fishing and environmental conditions determine species abundance variations, but the relative importance of each component may vary among areas.


red mullet; striped red mullet; distribution; trends; Mediterranean

Full Text:



Aguirre H., Lombarte A. 1999. Ecomorphologic comparisons of sagittae in Mullus barbatus and M. surmuletus. J. Fish Biol. 55: 105-114.

Bertrand J.A., Gil de Sola L., Papaconstantinou C., et al. 2002. The general specifications of the MEDITS surveys. Sci. Mar. 66 (Suppl. 2): 9-17.

Carbonara P., Intini S., Modugno E., et al. 2015. Reproductive biology characteristics of red mullet (Mullus barbatus L., 1758) in Southern Adriatic Sea and management implications. Aquat. Living Resour. 28: 21-31.

Cardinale M., Scarcella G. 2017. Mediterranean Sea: A Failure of the European Fisheries Management System. Front. Mar. Sci. 4: 72.

Cope J.M., Punt A.E. 2009. Drawing the lines: resolving fishery management units with simple fisheries data. Can. J. Fish. Aquat. Sci. 66: 1256-1273.

Farrugio H., Oliver P., Biagi F. 1993. An overview of the history, knowledge, recent and future research trends in Mediterranean fisheries. Sci. Mar. 57: 105-119.

Fiorentino F., Badalamenti F., D'Anna G., et al. 2008. Changes in spawning-stock structure and recruitment pattern of red mullet, Mullus barbatus, after a trawl ban in the Gulf of Castellammare (central Mediterranean Sea). ICES J. Mar. Sci. 65: 1175-1183.

Fischer W., Bauchot M.L., Schneider M. 1987. Fiches FAO d'identification des espèces pou les besoins de la peche. (Révision 1). Mediterranée et Mer Noire. Zone de peche 37. 2. Vertébrés. Publication préparée par la FAO (Project GCP/INT/422/ EEC). Rome, FAO: 761-1530.

Foster S.D., Bravington M.V. 2013. A Poisson-Gamma model for analysis of ecological non-negative continuous data. Envir. Ecol. Stat. 20: 533-552.

Gargano F., Garofalo G., Fiorentino F. 2017. Exploring connectivity between spawning and nursery areas of Mullus barbatus (L., 1758) in the Mediterranean through a dispersal model. Fish. Oceanogr. 26: 476-497.

Grüss A., Kaplan D.M., Hart D.R. 2011. Relative impacts of adult movement, larval dispersal and harvester movement on the effectiveness of reserve networks. PLoS ONE 6: e19960. PMid:21611148 PMCid:PMC3096657

Hastie T.J, Tibshirani R.J. 1990. Generalized additive models. Chapman and Hall, London, 352 pp.

Holmes E.E., Ward E.J., Wills K. 2012. MARSS: Multivariate Autoregressive State-space Models for Analyzing Time-series Data. The R Journal 4: 11-19.

Hilborn R., Walters C.J. 1992. Quantitative fisheries stock assessment. Chapman and Hall, London, 570 pp. PMid:9908045

Hureau J.C. 1986. Mullidae. In: Whitehead P.J.P., Bauchot M.L., et al. (eds), Fishes of the North-eastern Atlantic and the Mediterranean, UNESCO, Paris. Vol. II, pp. 877-882.

Kaschner K., Kesner-Reyes K., Garilao C., et al. 2016. AquaMaps: Predicted range maps for aquatic species. World wide web electronic publication,, Version 08/2016.

Kerr L.A., Goethel D.R. 2014. Simulation modeling as a tool for synthesis of stock identification information. In: Cadrin S.X., Kerr L.A., Mariani S. (eds), Stock Identification Methods. Applications in Fishery Science, Elsevier Academic Press (2n ed.), pp. 502-533.

Lecomte J-B., Benoit H.P., Ancelet S., et al. 2013. Compound Poisson-gamma vs. delta-gamma to handle zero-inflated continuous data under a variable sampling volume. Methods Ecol. Evol. 4: 1159-1166.

Levi D., Andreoli M.G., Bonanno A., et al. 2003. Embedding sea surface temperature anomalies into the stock recruitment relationship of red mullet (Mullus barbatus L. 1758) in the Strait of Sicily. Sci. Mar. 67(Suppl. 1): 259-268.

Lombarte A. 1992. Changes in otolith area: sensory area ratio with body size and depth. Environ. Biol. Fishes 33: 405-410.

Lombarte A., Aguirre H. 1997. Quantitative differences in the chemoreceptor systems in the barbells of two species of Mullidae (Mullus surmuletus and M. barbatus) with different bottom habitats. Mar. Ecol. Prog. Ser. 150: 57-64.

Lombarte A., Recasens L., Gonzalez M., et al. 2000. Spatial segregation of two species of Mullidae (Mullus surmuletus and M. barbatus) in relation to habitat. Mar. Ecol. Prog. Ser. 206: 239-249.

Machias A., Somarakis S., Tsimenides N. 1998. Bathymetric distribution and movements of red mullet Mullus surmuletus. Mar. Ecol. Prog. Ser. 166: 247-257.

Macpherson E., Raventos N. 2006. Relationship between pelagic larval duration and geographic distribution of Mediterranean littoral fishes. Mar. Ecol. Prog. Ser. 327: 257-265.

Maggio T., Brutto S.L., Garoia F., et al. 2009. Microsatellite analysis of red mullet Mullus barbatus (Perciformes, Mullidae) reveals the isolation of the Adriatic Basin in the Mediterranean Sea. ICES J. Mar. Sci. 66: 1883-1891.

Maravelias C.D., Tsitsika V., Papaconstantinou C. 2007. Environmental influences on the spatial distribution of European hake (Merluccius merluccius) and red mullet (Mullus barbatus) in the Mediterranean. Ecol. Res. 22: 678-685.

Mati?-Skoko S., ?egvi?-Bubi? T., Mandi? I., et al. 2018. Evidence of subtle genetic structure in the sympatric species Mullus barbatus and Mullus surmuletus (Linnaeus, 1758) in the Mediterranean Sea. Sci. Rep. 8: 676. PMid:29330368 PMCid:PMC5766513

Nazari R.M., Sohrabnejad M., Ghomi M.R., et al. 2009. Correlation between egg size and dependent variables related to larval stage in Persian sturgeon Acipenser persicus. Mar. Freshw. Behav. Physiol. 42: 147-155.

Nykjaer L. 2009. Mediterranean Sea surface warming 1985-2006. Clim. Res. 39: 11-17.

Papaconstantinou C., Farrugio H. 2000. Fisheries in the Mediterranean. Medit. Mar. Sci. 1: 5-18.

Peristeraki P., Tserpes G., Lampadariou N., et al. 2017. Comparing demersal megafaunal species diversity along the depth gradient within the South Aegean and Cretan Seas (Eastern Mediterranean). PloS ONE 12: e0184241. PMid:28873395 PMCid:PMC5584924

Quetglas A., Guijarro B., Ordines F., et al. 2012. Stock boundaries for fisheries assessment and management in the Mediterranean: the Balearic Islands as a case study. Sci. Mar. 76: 17-28.

Relini G., Bertrand J., Zamboni A. 1999. Synthesis of the knowledge on bottom fishery resources in Central Mediterranean (Italy and Corsica). Biol. Mar. Medit. 6 (Suppl.1): 276-299.

Reñones O., Massutí E., Morales-Nin B. 1995. Life history of the red mullet Mullus surmuletus from the bottom-trawl fishery off the Island of Majorca (north-west Mediterranean). Mar. Biol. 123: 411-419.

Rouyer T., Fromentin J.-M., Menard F., et al. 2008. Complex interplays among population dynamics, environmental forcing, and exploitation in fisheries. PNAS 105: 5420-5425. PMid:18391220 PMCid:PMC2291108

Sala A., Lucchetti A., Perdichizzi A., et al. 2015. Is square-mesh better selective than larger mesh? A perspective onthe management for Mediterranean trawl fisheries. Fish. Res. 161: 182-190.

Shono H. 2008. Application of the Tweedie Distribution to Zero-catch Data in CPUE Analysis. Fish. Res. 93: 154-162.

Scientific, Technical and Economic Committee for Fisheries (STECF). 2016. Mediterranean assessments part 2 (STECF-16-08). Publications Office of the European Union, Luxembourg, EUR 27758 EN, JRC 101548, 483 pp.

Spedicato M.T., Massutí E., Mérigot B. et al. 2019. The MEDITS trawl survey specifications in an ecosystem approach to fishery management. Sci. Mar. 83S1.

Suau P., Vives F. 1957. Contribución al estudio del salmonete de fango (Mullus barbatus L.) del Mediterráneo occidental. Invest. Pesq. 9: 97-118.

Trippel E.A., Kjesbu O.S., Solemdal P. 1997. Effects of adult age and size structure on reproductive output in marine fishes. In: Chambers R.C., Trippel E.A. (eds), Early Life History and Recruitment in Fish populations. Chapman and Hall, New York, pp. 31-62.

Tserpes G., Peristeraki P. 2002. Trends in the abundance of demersal species in the southern Aegean Sea. Sci. Mar. 66 (Suppl. 2): 243-252.

Tserpes G., Peristeraki P., Potamias G., et al. 1999. Species distribution in the southern Aegean Sea based on bottom-trawl surveys. Aquat. Liv. Res. 12: 167-175.

Tserpes G., Fiorentino F., Levi D., et al. 2002. Distribution of Mullus barbatus and M. surmuletus (Osteichthyes: Perciformes) in the Mediterranean continental shelf: implications for management. Sci. Mar. 66(Suppl. 2): 39-54.

Tserpes G., Tzanatos E., Peristeraki P. 2011. Spatial management of the Mediterranean bottom-trawl fisheries; the case of the southern Aegean Sea. Hydrobiologia 670: 267-274.

Tserpes G., Nikolioudakis N., Maravelias C., et al. 2016. Viability and Management Targets of Mediterranean Demersal Fisheries: The Case of the Aegean Sea. Plos ONE 11: e0168694. PMid:28033348 PMCid:PMC5198971

Vallin L., Nissling A. 2000. Maternal effects on egg size and egg buoyancy of the Baltic Cod, Gadus morhua; implications for stock structure effects on recruitment. Fish. Res. 49: 21-37.

Vargas-Yáñez M., Garcia M.J., Salat, J., et al. 2008. Warming trends and decadal variability in the Western Mediterranean shelf. Glob. Plan. Change 63: 177-184.

Vasilakopoulos P., Maravelias C.D, Tserpes G. 2014. The Alarming Decline of Mediterranean Fish Stocks. Curr. Biol. 24: 1643-1648. PMid:25017210

Wood S.N. 2003. Thin plate regression splines. J. R. Stat. Soc. Ser. B (Statistical Methodology) 65: 95-114.

Wood S.N. 2006. Generalized Additive Models: An introduction with R. Chapman and Hall/CRC, Florida, 391 pp.

Zuur A.F., Fryer R.J., Jolliffe I.T., et al. 2003. Estimating common trends in multivariate time series using dynamic factor analysis. Environmetrics 14: 665-685.

Copyright (c) 2011 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Contact us

Technical support