Scientia Marina, Vol 82, No 4 (2018)

Palaeoenvironmental evolution from the early Holocene to the present of the Almenara marsh (western Mediterranean)


https://doi.org/10.3989/scimar.04853.07A

Ana M. Blázquez-Morilla
Environmental and Marine Sciences Research Institute, Catholic University of Valencia, Spain
orcid http://orcid.org/0000-0002-7174-8601

Ana Rodríguez-Pérez
Environmental and Marine Sciences Research Institute, Catholic University of Valencia, Spain
orcid http://orcid.org/0000-0002-2861-558X

Daniel Sanjuán-Lamata
Environmental and Marine Sciences Research Institute, Catholic University of Valencia, Spain
orcid http://orcid.org/0000-0002-8176-324X

Abstract


The main aim of this study is to characterize the different stages in the palaeoenvironmental evolution of the Almenara marsh, Spain, from the early Holocene to the present day. This marsh is one of the most important in Castellón province. Five cores extracted from the marsh underwent sedimentological analysis, micropalaeontological study (foraminifera, ostracods and gastropods) and 14C dating. The results show that before the maximum transgression of the Mediterranean during the Marine Isotope Stage 1 (5500 cal yr. BP dating in the Almenara marsh), the area was occupied by a brackish marsh (prior to the 8.2 ka event). During the middle Holocene, the regional sea level rise and later stability caused an oligohaline/freshwater marsh with fluctuating water levels to form. This marsh occupied the entire area of today’s Almenara marsh at least between 7570 and 2780 cal yr BP. The results may indicate a phase of greater contribution of groundwater inputs (and rainfall/riverine discharge) during the middle Holocene as a response to a climatic phase characterized by higher humidity. Today, the marsh is filled with sediments from natural and anthropic processes related to the agricultural activity carried out throughout the area (except for the central part, which has been reclaimed as wetland). The water of the present-day marsh (like that prior to 8.2 ka event) is brackish, as is indicated by the benthic foraminiferal assemblage; this contrasts with the earlier oligohaline/freshwater marsh determined in the survey cores during the middle Holocene until the time of the Iberian culture.

Keywords


marsh; fossil foraminifera; present foraminifera; sediment; Holocene; evolution

Full Text:


HTML PDF XML

References


Alday M., Cearreta A., Cachão M., et al. 2006. Micropaleontological record of Holocene estuarine and marine stages in the Corgo do Porto rivulet (Mira River, SW Portugal). Estuar. Coast. Shelf Sci. 66: 532-543. https://doi.org/10.1016/j.ecss.2005.10.010

Amorosi A., Rossi V., Vella C. 2013. Stepwise post-glacial transgression in the Rhône Delta area as revealed by high-resolution core data. Paleogeog. Paleoclimatol. Paleoecol. 374: 314-326. https://doi.org/10.1016/j.palaeo.2013.02.005

Amorosi A., Bruno L., Campo B., et al. 2017. Global sea-level control on local parasequence architecture from the Holocene record of the Po Plain, Italy. Mar. Pet. Geol. 87: 99-111. https://doi.org/10.1016/j.marpetgeo.2017.01.020

Anthony E.J., Marriner N., Morhange C. 2014. Human influence and the changing geomorphology of Mediterranean deltas and coasts over the last 6000 years: From progradation to destruction phase? Earth-Sci. Rev. 139: 336-361. https://doi.org/10.1016/j.earscirev.2014.10.003

Blázquez A.M., Usera J. 2010. Palaeoenvironments and Quaternary foraminifera in Elx coastal lagoon (Alicante, Spain). Quat. Int. 221: 68-90. https://doi.org/10.1016/j.quaint.2009.06.033

Blázquez A.M., Rodríguez-Pérez A., Torres T., et al. 2017. Evidence for Holocene sea level and climate change from Almenara marsh (Western Mediterranean). Quat. Res. 88: 206-222. https://doi.org/10.1017/qua.2017.47

Brisset E., Burjachs F., Ballesteros B., et al. 2018. Socio-ecological adaptation to Early-Holocene sea-level rise in the western Mediterranean. Glob. Planet. Change 169: 156-167. https://doi.org/10.1016/j.gloplacha.2018.07.016

Carmona P., Ruiz J.M. 2011. Historical morphogenesis of the Turia River coastal flood plain in the Mediterranean litoral of Spain. Catena 86: 139-149. https://doi.org/10.1016/j.catena.2010.12.006

Carmona P., Ruiz J.M., Blázquez A.M., et al. 2016. Environmental evolution and Middle-Late Holocene climate events in the Valencia lagoon (Mediterranean coast of Spain). Holocene 26: 1750-1765. https://doi.org/10.1177/0959683616645940

Carrión J.S., Fernández S., González-Sampériz P., et al. 2010. Expected trends and surprises in the Lateglacial and Holocene vegetation history of the Iberian Peninsula and Balearic Islands. Rev. Palaeobot. Palynology. 162: 458-475. https://doi.org/10.1016/j.revpalbo.2009.12.007

Diz P., Francés G., Costas S., et al. 2004. Distribution of benthic foraminifera in coarse sediments, ría de Vigo, NW Iberian Margin. J. Foraminifer. Res. 34: 258-275. https://doi.org/10.2113/34.4.258

Dupré M., Fumanal M.P., Sanjaume E., et al. 1988. Quaternary evolution of Pego coastal lagoon (Southern Valencia, Spain). Paleogeog. Paleoclimatol. Paleoecol. 68: 291-299. https://doi.org/10.1016/0031-0182(88)90046-6

Fisher R.A., Corbett A.S., Williams C.B. 1943. The relation between the number of species and the number of individuals in a random sample of an animal population. J. Anim. Ecol. 12: 42-58. https://doi.org/10.2307/1411

Fontboté J.M., Guimerà J., Roca E., et al. 1990. The Cenozoic geodynamic evolution of the Valencia trough (Western Mediterranean). Rev. Soc. Geol. España. 3: 249-259.

Fullana Montoro J. 2001. Plan de protección de recursos hídricos de la zona húmeda de Almenara. Ministerio de Medio Ambiente. Castellón.

Fumanal M.P., Usera J., Vi-als M.J., et al. 1993. Evolución cuaternaria de la Bahía de Xàbia (Alicante). In: Fumanal M.P., Bernabeu J. (eds), Estudios sobre Cuaternario, Universitat de València, pp. 17-26.

Guillem J. 2007. Tafonomía, taxonomía y ecología de los foraminíferos de la albufera de Torreblanca. Ph.D. thesis, Serv. Publ. Univ. València, València.

Gusi F. 1978. Ecosistemas y grupos culturales humanos en las comarcas de Castellón durante el Pleistoceno y mitad del Holoceno. Quad. Prehist. Arq. Castelló. 5: 189-206.

Hammer O., Harper D., Ryan P. 2006. Paleontological statistics, version 1.57.

Hayward B.W., Cedhagen T., Kaminski M., et al. 2017. World Foraminifera Database. Accessed on 2017-03-24 at http://www.marinespecies.org/foraminifera

Jennings A.E., Nelson A.R. 1992. Foraminiferal assemblage zone in Oregon tidal marshes-relation to marsh floral zones and sea level. J. Foramin. Res. 22: 13-30. https://doi.org/10.2113/gsjfr.22.1.13

Leorri E., Cearreta A. 2004. Holocene environmental development of the Bilbao estuary, northern Spain: sequence stratigraphy and foraminiferal interpretation. Mar. Micropaleontol. 51: 75-94. https://doi.org/10.1016/j.marmicro.2003.08.003

Loeblich A.R., Tappan H. 1987. Foraminiferal genera and their classification. Van Nostrand Reinhold Company, New York, 970 pp.

Magurran A.E. 2001. Ecological diversity and its measurement. In: Moreno C.E. (ed.), Métodos para mediar la biodiversidad, vol. 1.

Mediato J.F. 2016. Oscilaciones del nivel del mar desde el Pleistoceno superior en el sector costero Sagunto-Benicasim (Valencia-Castellón). Registro sedimentario, geoquímico e histórico. Ph.D. thesis. Universidad Complutense de Madrid, Madrid.

Murray J. 1982. Benthic foraminifera: The validity of living, dead or total assemblages for the interpretation of palaeoecology. J. Micropalaeont. 1: 137-140. https://doi.org/10.1144/jm.1.1.137

Murray J. 2006. Ecology and Applications of Benthic Foraminifera. Cambridge University Press. 426 pp. https://doi.org/10.1017/CBO9780511535529

Obiol E.M. 1994. Desecaciones, arroz y demografía en el s. XIX: El caso de "Els Estanys" de Almenara. Cuadernos de Geografía 55: 109-121.

Patterson R.T., Gehrels W.R., Belknap D.F., et al. 2004. The distribution of salt marsh foraminifera at Little Dipper Harbour New Brunswick, Canada: implications for development of widely applicable transfer functions in sea-level research. Quat. Int. 120: 185-194. https://doi.org/10.1016/j.quaint.2004.01.017

Pawlowski J., Bolivar I., Farhni J., et al. 1995. DNA analysis of Ammonia beccarii morphotypes: one or more species? Mar. Micropaleontol. 26: 171-178. https://doi.org/10.1016/0377-8398(95)00022-4

Pérez Cueva A. 1979. El cuaternario continental de la Plana de Castelló. Cuadernos de Geografía 24: 39-54.

Pirazzoli P. 2005. A review of possible eustatic, isostatic and tectonic contributions in eight late-Holocene relative sea-level histories from the Mediterranean area. Quat. Sci. Rev. 24: 1989-2001. https://doi.org/10.1016/j.quascirev.2004.06.026

Rodríguez-Pérez A., Blázquez A.M., Guillem J., et al. 2018. Maximum flood area during MIS 1 in the Almenara marshland (western Mediterranean): Benthic foraminifera and sedimentary record. Holocene. 28: 1452-1466. https://doi.org/10.1177/0959683618777069

Rodríguez-Ramírez A., Pérez-Asensio J.N, Jiménez-Moreno G., et al. 2015. Atlantic extreme wave events during the last four millennia in the Guadalquivir estuary, SW Spain. Quat. Res. 83: 24-40. https://doi.org/10.1016/j.yqres.2014.08.005

Rosselló V.M. 1993. Albuferas mediterráneas. Cuadernos de Geografía 53: 35-64.

Ruiz F., González-Regalado M.L., Pendón J.G., et al. 2005. Correlation between foraminifera and sedimentary environments in recent estuaries of Southwestern Spain: Applications to Holocene reconstructions. Quat. Int. 140-141: 21-36. https://doi.org/10.1016/j.quaint.2005.05.002

Sabatier P., Dezileau L., Colin Ch., et al. 2012. 7000 years of paleostorm activity in the NW Mediterranean Sea in response to Holocene climate events. Quat. Res. 77: 1-11. https://doi.org/10.1016/j.yqres.2011.09.002

Sanjuán D., Blázquez A.M. 2017. Foraminíferos bentónicos actuales en la marjal de Almenara (Castelló): subzonación de ambientes parálicos mediante la taxonomía y la ecología. Nereis: Rev. Iberoam. Interdiscip. Mét. Model. Simul. 9: 103-114.

Serandrei-Barbero R., Carbognin L., Taroni G., et al. 1999. Distribution of recent benthic foraminifera in the southern basin of the Venice lagoon (Italy): Statistical evaluation of taxa significance. Micropaleontology. 45: 99-111. https://doi.org/10.2307/1486205

Shannon C.E., Wiener W. 1949. The matematical theory of communication. University of Illinois Press, Urbana.

Usera J., Blázquez A.M., Guillem J., et al. 2006. Evolución holocena de la Marjal de Pe-íscola (Castellón, España) deducida del estudio de sus foraminíferos fósiles. Rev. Esp. Micropaleontol. 38: 381-393.

Walton W.R. 1952. Techniques for recognition of living foraminifera. Contrib. Cushman Found. Foramin. Res. 3: 56-60.

Wright V.P., Platt N.H. 1995. Seasonal wetlands carbonate sequences and dynamic catenas: a reappraisal of palustrine limestones. Sediment. Geol. 86: 203-210. https://doi.org/10.1016/0037-0738(95)00080-R

Zazo C., Dabrio C.J., Goy J.L., et al. 2008. The coastal archives of the last 15 ka in the Atlantic-Mediterranean Spanish linkage area: sea level and climate changes. Quat. Int. 181: 72-87. https://doi.org/10.1016/j.quaint.2007.05.021




Copyright (c) 2019 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Contact us scimar@icm.csic.es

Technical support soporte.tecnico.revistas@csic.es