Scientia Marina, Vol 82, No S1 (2018)

By-catch species susceptibilities and potential for survival in Algarve (southern Portugal) deep-water crustacean trawl fishery


https://doi.org/10.3989/scimar.04740.02A

Ana C. Adão
Centre of Marine Sciences, University of Algarve, Portugal
orcid http://orcid.org/0000-0002-7662-2143

Michael Breen
Institute of Marine Research, Norway
orcid http://orcid.org/0000-0002-1082-1043

Moritz Eichert
Centre of Marine Sciences, University of Algarve, Portugal
orcid http://orcid.org/0000-0003-3565-1762

Teresa C. Borges
Centre of Marine Sciences, University of Algarve, Portugal
orcid http://orcid.org/0000-0002-6414-0083

Abstract


Bottom trawling for crustaceans in Portuguese coastal waters is an important fishery in terms of revenue, despite its negative impacts on deep-sea ecosystems. This fishery catches large amounts of unwanted species that were discarded for various reasons before the introduction of the Landing Obligation, which banned the discarding of regulated species. However, where it can be demonstrated that a species has an acceptably high likelihood of survival, exemptions to this ban may be granted. In this study, time-to-mortality was used to estimate immediate mortality rates and identify important biological characteristics determining the susceptibility of 14 by-catch species, most with commercial interest (Conger conger, Galeus melastomus, Helicolenus dactylopterus, Lepidorhombus boscii, Lophius budegassa, Lophius piscatorius, Merluccius merluccius, Micromesistius poutassou, Mullus surmuletus, Phycis blennoides, Scyliorhinus canicula, Trigla lyra, Trachurus trachurus and Trachurus picturatus). Species with potential to survive after the discarding process were identified and a short-term survival assessment of conger eel (Conger conger) was performed. The results suggest that species with scales, gas bladder and high metabolic rates have higher post-discard mortality. Size was a critical factor determining survival in some species, with smaller individuals dying faster. The short-term survival rate of conger eel was determined to be 84% (95% CI: 75.5 to 93.3%). The methodology and results from this study can help identify species that may survive the discarding process and factors influencing their survival.

Keywords


by-catch; discards; time-to-mortality; biological traits; survival; trawling; southern Portugal

Full Text:


HTML PDF XML

References


Benoît H.P., Hurlbut T., Chassé J. 2010. Assessing the factors influencing discard mortality of demersal fishes using a semi-quantitative indicator of survival potential. Fish. Res. 106: 436-447.

Benoît H.P., Plante S., Kroiz M., et al. 2013. A comparative analysis of marine fish susceptibilities to discard mortality: effects of environmental factors, individual traits, and phylogeny. ICES J. Mar. Sci. 70: 99-113.

Borges T.C., Erzini K., Bentes L., et al. 2001. By-catch and discarding practices in five Algarve (southern Portugal) métiers. J. Appl. Ichtyol. 17: 104-114.

Breen M. 2004. Investigating the mortality of fish escaping from towed fishing gears – a critical analysis. PhD thesis, Univ. Aberdeen, 332 pp.

Breen M., Cook R. 2002. Inclusion of discard and escape mortality estimates in stock assessment models and its likely impact on fisheries management. ICES CM 2002/V: 27, 15 pp.

Breen M., Catchpole. T. (eds) In press. ICES WKMEDS Guidance on Method for Estimating Discard Survival. ICES Coop. Res. Rep.

Broadhurst M.K., Suuronen P., Hulme A. 2006. Estimating collateral mortality from towed fishing gear. Fish Fish. 7: 180-218.

Campos A., Fonseca P., Pilar-Fonseca T., et al. 2015. Survival of trawl-caught Norway lobster (Nephrops norvegicus L.) after capture and release – Potential effect of codend mesh type on survival. Fish. Res. 172: 415-422.

Carlson J.K., Goldman K.J., Lowe C.G. 2004. Metabolism, energetic demand and endothermy. In: Carrier J.C., Musick J.A., Heithaus M.R. (eds), Biology of sharks and their relatives. CRC Press, New York, pp. 203-219.

Castro M., Araújo A., Monteiro P., et al. 2003. The efficacy of releasing caught Nephrops as a management measure. Fish. Res. 65: 475-484.

Castro M., Araújo A., Monteiro P. 2005. Fate of discards from deep water crustacean trawl fishery off the south coast of Portugal. N. Z. J. Mar. Fresh. Res. 39: 437-446.

Catchpole T., Randall P., Forster R., et al. 2015. Estimating the discard survival rates of selected commercial fish species (plaice - Pleuronectes platessa) in four English fisheries (MF1234), Cefas Rep., London, 108 pp.

Clark M.R., Althaus F., Schlacher T.A., et al. 2015. The impacts of deep-sea fisheries on benthic communities: a review. ICES J. Mar. Sci. 73: 51-69.

Clarke A., Johnston N.M. 1999. Scaling of metabolic rate with body mass and temperature in teleost fish. J. Anim. Ecol. 68: 893-905.

Costa M.E., Erzini K., Borges T.C. 2008. Bycatch of crustacean and fish bottom trawl fisheries from southern Portugal (Algarve). Sci. Mar. 72: 801-814.

Cowles D.L., Childress J.J. 1995. Aerobic metabolism of the anglerfish Melanocetus johnsoni, a deep-pelagic marine sit-and-wait predator. Deep-Sea Res. 42: 1631-1638.

Davis M.W. 2002. Key principles for understanding fish bycatch discard mortality. Can. J. Fish. Aquat. Sci. 59: 1834-1843.

Davis M.W. 2005. Behaviour impairment in captured and released sablefish: ecological consequences and possible substitute measures for delayed discard mortality. J. Fish Biol. 66: 254-265.

Davis M.W. 2007. Simulated fishing experiments for predicting delayed mortality rates using reflex impairment in restrained fish. ICES J. Mar. Sci. 64: 1535-1542.

Davis M.W. 2010. Fish stress and mortality can be predicted using reflex impairment. Fish Fish. 11: 1-11.

Davis M.W., Ottmar M.L. 2006. Wounding and reflex impairment may be predictors for mortality in discarded or escaped fish. Fish. Res. 82: 1-6.

Depestele J., Desender M., Benoît H.P., et al. 2014. Short-term survival of discarded target fish and non-target invertebrate species in the “eurocutter” beam trawl fishery of the southern North Sea. Fish. Res. 154: 82-92.

Diário da República. 2000. Portaria nº 1102-E/2000 de 22 de Novembro https://www.marinha.pt/conteudos_externos/lexmar/PGPAT%20100/PGPAT%201000%20-%20 Cap%C3%ADtulos/Cap%C3%ADtulo%20B%20Pesca/ Sub-cap%C3%ADtulo%20B.3/Portaria%201102-C-2000%20 (22NOV2000).pdf

Erzini K., Costa M.E., Bentes L., et al. 2002. A comparative study of the species composition of discards from five fisheries from the Algarve (southern Portugal). Fish. Manage. Ecol. 9: 31-40.

European Union (EU). 2013. Regulation (EU) No 1380/2013 of the European Parliament and of the Council of 11 December 2013 on the Common Fisheries Policy, amending Council Regulations (EC) No 1954/2004 and (EC) No 1224/2009 and repealing Council Regulations (EC) No 2371/2002 and (EC) No 639/2004 and Council Decision 2004/585/EC. Off. J. Europ. Union L 354/22.

European Union (EU). 2015. Commission Delegated Regulation (EU) 2015/2439 of 12 October 2015 establishing a discard plan for certain demersal fisheries in south-western waters. Off. J. Europ. Union L 336/36.

Gingerich A.J., Cooke S.J., Hanson K.C., et al. 2007. Evaluation of the interactive effects of air exposure duration and water temperature on the condition and survival of angled and released fish. Fish. Res. 86: 169-178.

Helfman G.S., Collete B.B., Facey D.E., et al. 2009. The diversity of fishes – Biology, evolution and ecology. Second edition. Wiley- Blackwell, West Sussex.

Hill B.J., Wassenberg T.J. 2000. The probable fate of discards from prawn trawlers fishing near coral reefs – A study in the northern Great Barrier Reef, Australia. Fish. Res. 48: 277-286.

Huse I., Vold A. 2010. Mortality of mackerel (Scomber scombrus L.) after pursing and slipping from a purse seine. Fish. Res. 106: 54-59.

ICES. 2014. Report of the Workshop on Methods for Estimating Discard Survival (WKMEDS), 17-21 February 2014, ICES HQ, Copenhagen, Denmark. ICES CM 2014/ACOM:51, 114 pp.

Jacobsen J.A., Jákupsstovu S.H., Poulsen M., et al. 2002. Does the seasonal variation in fat content of blue whiting affect the acoustic conversion factor (TS)? ICES CM 2002/O:15, Theme session O, 8 pp.

Kelleher K. 2005. Discards in the world’s marine fisheries. An update. FAO Fish. Tech. Pap. 470, Rome, 131 pp.

Laptikhovsky V.V. 2004. Survival rates for rays discarded by the bottom trawl squid fishery off the Falkland Islands. Fish. Bull. 102: 757-759.

Leitão F., Range P., Gaspar M.B. 2014. Survival estimates of bycatch individuals discarded from bivalve dredges. Braz. J. Oceanogr. 62: 257-263.

Marçalo A., Pousão-Ferreira P., Mateus L., et al. 2008. Sardine early survival, physical condition and stress after introduction to captivity. J. Fish Biol. 72: 103-120.

Monteiro P., Araújo A., Erzini K., et al. 2001. Discards of the Algarve (southern Portugal) crustacean trawl fishery. Hydrobiologia 449: 267-277.

Nichol D.G., Chilton E.A. 2006. Recuperation and behaviour of Pacific cod after barotrauma. ICES J. Mar. Sci. 63: 83-94.

Pusceddu A., Bianchelli S., Martín J., et al. 2014. Chronic and intensive bottom trawling impairs deep-sea biodiversity and ecosystem functioning. PNAS 111: 8861-8866.

Revill A.S., Dulvy N.K., Holst R. 2005. The survival of discarded lesser-spotted dogfish (Scyliorhinus canicula) in the Western English Channel beam trawl fishery. Short communication. Fish. Res. 71: 121-124.

Rodríguez-Cabello C., Fernández A., Olaso I., et al. 2005. Survival of small-spotted catshark (Scyliorhinus canicula) discarded by trawlers in the Cantabrian Sea. J. Mar. Biol. Ass. U.K. 85: 1145-1150.

Rummer J.L., Bennet W.A. 2005. Physiological effects of swim bladder overexpansion and catastrophic decompression on red snapper. Trans. Am. Fish. Soc. 134: 1457-1470.

Therneau T. 2016. A Package for Survival Analysis in S. version 2.39-5, https://CRAN.R-project.org/package=survival.

Uhlmann S.S., Broadhurst M.K. 2015. Mitigating unaccounted fishing mortality from gillnets and traps. Fish Fish. 16: 183-229.

Yang T.–H, Lai N.C., Graham J.B., et al. 1992. Respiratory, blood and heart enzymatic adaptations of Sebastolobus alascanus (Scorpaenidae; Teleostei) to the oxygen minimum zone: a comparative study. Biol. Bull. 183: 490-499.




Copyright (c) 2011 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Contact us scimar@icm.csic.es

Technical support soporte.tecnico.revistas@csic.es