Scientia Marina, Vol 82, No 3 (2018)

Coexisting ecosystem states in a tropical coastal lagoon under progressive eutrophication in the northern Cuban keys


https://doi.org/10.3989/scimar.04682.22A

Roberto González-De Zayas
Centro de Investigaciones de Ecosistemas Costeros, Cuba
orcid http://orcid.org/0000-0001-8035-8624

Martin Merino-Ibarra
Unidad Académica de Ecología y Biodiversidad Acuática, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Mexico
orcid http://orcid.org/0000-0002-6690-3101

Patricia M. Valdespino-Castillo
Unidad Académica de Ecología y Biodiversidad Acuática, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Mexico
orcid http://orcid.org/0000-0002-2998-4627

Yunier Olivera
Centro de Investigaciones de Ecosistemas Costeros, Cuba
orcid http://orcid.org/0000-0002-2975-9470

Sergio F. Castillo-Sandoval
Unidad Académica de Ecología y Biodiversidad Acuática, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Mexico
orcid http://orcid.org/0000-0002-5934-8859

Abstract


Through a nested suite of methods here we contrast the coexistence of different ecosystem states in a tropical coastal lagoon, the Laguna Larga, with increasing eutrophication stress between 2007 and 2009. Water temperature averaged 27.4°C in the lagoon and showed a slight positive trend during the study period. Salinity averaged 35.0±6.2, exhibiting high spatial and temporal variability, and also a slight positive trend in time. In contrast, dissolved oxygen showed a substantial decreasing trend (–0.83 ml L–1 y–1; –13.3% y–1) over the period, while nutrients increased dramatically, particularly total phosphorus (2.6 µM y–1), in both cases sustaining the progression of eutrophication in the lagoon during the three years we sampled. The Karydis nutrient load-based trophic index showed that the lagoon has a spatial pattern of increasing eutrophication from the sea and the outer sector (oligotrophic-mesotrophic) to the central (mesotrophic) and the inner sector (mesotrophic-eutrophic). Two ecosystem states were found within the lagoon. In the outer oligotrophic sector, the dominant primary producers were macroalgae, seagrasses and benthic diatoms, while mollusc assemblages were highly diverse. In the inner and central sectors (where trophic status increased toward the inner lagoon) a phytoplankton-dominated ecosystem was found where mollusc assemblages are less diverse. In spite of the progression of eutrophication in the lagoon, these two different ecosystems coexisted and remained unchanged during the study period. Apparently, the effect of water residence time, which increases dramatically toward the inner lagoon, dominated over that of nutrient loadings, which is relatively more homogeneously distributed along the lagoon. Therefore, we consider that actions that reduce the water residence time are likely the most effective management options for this and other similarly choked lagoons.

Keywords


ecosystem; nutrients; dissolved oxygen; eutrophication; Laguna Larga; Cayo Coco; Cuba

Full Text:


HTML PDF XML

References


Alatorre-Mendieta M., Silva-CasarÌn R., Ruiz-Renteria F., et al. 2004. A flushing system to clean up coastal lagoons. Coast. Struct. 2003: 902-910.

Camacho-Ibar V., Carriquiry J.D., Smith S. 2003. Non-conservative P and N fluxes and Net Ecosystem Production in San QuintÌn Bay, México. Estuaries 26: 1220-1237. https://doi.org/10.1007/BF02803626

Chagas G.G., Suzuki M.S. 2005. Seasonal hydrochemical variation in a tropical coastal lagoon (Acu lagoon, Brazil). Braz. J. Biol. 65: 597-607. https://doi.org/10.1590/S1519-69842005000400006 PMid:16532183

Ciglenecki I., Janekovic I., Marguas M., et al. 2015. Impacts of extreme weather events on highly eutrophic marine ecosystem (Rogoznica Lake, Adriatic coast). Cont. Shelf Res. 108: 144-155. https://doi.org/10.1016/j.csr.2015.05.007

Cropp R., Gabric A. 2002. Ecosystem adaptation: Do ecosystems maximize resilience? Ecology 83: 2019-2026. https://doi.org/10.1890/0012-9658(2002)083[2019:EADEMR]2.0.CO;2

Dahlgren S., Kautsky L. 2004. Can different vegetative states in shallow coastal bays of the Baltic Sea be linked to internal nutrient levels and external nutrient loads? Hydrobiologia 514: 249-258. https://doi.org/10.1023/B:hydr.0000018223.26997.b0

Expósito-Díaz G., Hernández-Albernas J., Gálvez-González W. 2001. Sondeo batimétrico de Laguna Larga (Cayo Coco). Center for Environmental Studies, Santa Clara, Cuba. 11 p.

Garcia-Pintado J., Martínez-Mena M., Barberá G.G., et al. 2007. Anthropogenic nutrient sources and loads from a Mediterranean catchment into a coastal lagoon: Mar Menor, Spain. Sci. Total Environ. 373: 220-239. https://doi.org/10.1016/j.scitotenv.2006.10.046 PMid:17174380

González A., Merino M., Czitrom S. 1992. Laguna Bojórquez, Cancún: un sistema de características marinas controlado por la atmósfera. An. Inst. Cienc. del Mar y Limnol. Univ. Nal. Auton. México, 19: 59-71.

González-De Zayas R. 2012. Balance de nitrógeno y fósforo en una laguna costera tropical (Laguna Larga, Cayo Coco, Cuba). PhD dissertation, Univ. Nacional Autónoma de México, Mexico D. F., Mexico.

González-De Zayas R., Merino-Ibarra M., Soto-Jiménez M.F., et al. 2013. Biogeochemical responses to nutrient inputs in a Cuban coastal lagoon: runoff, anthropogenic, and groundwater sources. Environ. Monit. Assess. 185: 10101-10114. https://doi.org/10.1007/s10661-013-3316-y PMid:23856810

Grasshoff K., Kremling K., Ehrhardt M. 1983. Methods of Seawater Analysis. Verlag Chemie, Weinheim.

Guimarais-Bermejo M., González-De Zayas R. 2011. Productividad primaria en Laguna Larga, Cayo Coco, Cuba. Rev. Cienc. Mar. Cost. 3: 31-41.

Hernández-Romero A.H., Tovilla-Hernández C., Malo E.A., et al. 2004. Water quality and presence of pesticides in a tropical coastal wetland in southern Mexico. Mar. Poll. Bull. 48: 1130-1141. https://doi.org/10.1016/j.marpolbul.2004.01.003 PMid:15172819

Herrera-Silveira J.A. 2006. Lagunas Costeras de Yucatán (SE, México). Ecotróp. 19: 94-108.

Holling C.S. 1973. Resilience and stability of ecological systems. Ann. Rev. Ecol. Syst. 4: 1-23. https://doi.org/10.1146/annurev.es.04.110173.000245

Hrusti_ E, Bobanovi_-_oli_ S. 2017. Hypoxia in deep waters of moderately eutrophic marine lakes, Island of Mljet, eastern Adriatic Sea. Sci. Mar. 81: 431-447.

Karydis M., Ignatiades L., Moschopoulou N. 1983. An index associated with nutrient eutrophication in the marine environment. Est. Coast. Shelf Sci. 16: 339-344. https://doi.org/10.1016/0272-7714(83)90151-8

Kirkwood D. S. 1994. Sanplus segmented flow analyzer and its applications. Seawater analysis. Skalar, Amsterdam.

Kjerfve B. 1986. Comparative oceanography of coastal lagoons. In: Wolfe D. (ed.), Estuarine variability. Academic Press, Waltham, USA. pp. 63-81. https://doi.org/10.1016/B978-0-12-761890-6.50009-5

Kjerfve B. 1994. Coastal Lagoons. In: Kjerfve B. (ed.), Coastal Lagoon Processes. Elsevier. Amsterdam, Netherlands. pp. 1-8. https://doi.org/10.1016/S0422-9894(08)70006-0

Maler KG. 2000. Development, ecological resources and their management. A study of complex dynamic systems. Eur. Econ. Rev. 44: 645-665. https://doi.org/10.1016/S0014-2921(00)00043-X

Merino M., Czitrom S., Jordán E., et al. 1990. Hydrology and Rain Flushing of the Nichupté Lagoon System, Cancún, México. Est. Coast. Shelf Sci. 30: 223-237. https://doi.org/10.1016/0272-7714(90)90049-W

Merino M., González A., Reyes E., et al. 1992. Eutrophication in the lagoons of Cancún, México. Sci. Total Environ. 26: 861-870.

Morales-Ojeda S.M., Herrera-Silveira J.A., Montero J. 2010. Terrestrial and oceanic influence on spatial hydrochemistry and trophic status in subtropical marine near-shore waters. Water Res. 44: 5949-5964. https://doi.org/10.1016/j.watres.2010.07.046 PMid:20719354

Nixon S.W., Buckley B.A., Granger S.L., et al. 2001. Responses of very shallow marine ecosystems to nutrient enrichments. Hum. Ecol. Risk Assess. 7: 1457-1481. https://doi.org/10.1080/20018091095131

Olivera Y. 2014. Evaluación de la superposición de nichos en los ensambles de moluscos marinos de una laguna costera en Cayo Coco, Cuba. Master thesis. Centre for Marine Research, Havana Univ., Havana, Cuba.

Orfanidis S., Panayotidis P., Stamatis N. 2003. An insight to the ecological evaluation index (EEI). Ecolog. Indicat. 3: 27-33. https://doi.org/10.1016/S1470-160X(03)00008-6

Paerl H.W. 2006. Assessing and managing nutrient-enhanced eutrophication in estuarine and coastal waters: interactive effects of human and climatic perturbations. Ecolog. Engin. 26: 40-54.

Schramm W. 1999. Factors influencing seaweed responses to eutrophication: some results from EU-project EUMAC. J. Appl. Phycol. 11: 69-78. https://doi.org/10.1023/A:1008076026792

Schramm W., Nienhuis P. (eds). 1996. Marine benthic vegetation: Recent changes and the effects of eutrophication. Springer, Heidelberg, Germany. 470 pp. https://doi.org/10.1007/978-3-642-61398-2

Schröder A., Persson L., De Roos A.M. 2005. Direct experimental evidence for alternative stable states: a review. Oikos 110: 3-19. https://doi.org/10.1111/j.0030-1299.2005.13962.x

Souza M.F.L., Kjerfve B., Knoppers B., et al. 2003. Nutrient budgets and trophic state in a hypersaline coastal lagoon: Lagoa de Araruama, Brazil. Est. Coast. Shelf Sci. 57: 843-858. https://doi.org/10.1016/S0272-7714(02)00415-8




Copyright (c) 2018 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Contact us scimar@icm.csic.es

Technical support soporte.tecnico.revistas@csic.es