Scientia Marina, Vol 82, No S1 (2018)

Changes in catch and bycatch composition and in species diversity of a semi-floating shrimp-trap fishery in three eastern Atlantic island ecosystems with different degrees of human alteration


https://doi.org/10.3989/scimar.04782.25A

José G. Pajuelo
Applied Marine Ecology and Fisheries Division (EMAP), University Research Institute for Environmental Studies and Natural Resources (i-UNAT), Universidad de Las Palmas de Gran Canaria, Spain
orcid http://orcid.org/0000-0003-2990-6079

Raül Triay-Portella
Applied Marine Ecology and Fisheries Division (EMAP), University Research Institute for Environmental Studies and Natural Resources (i-UNAT), Universidad de Las Palmas de Gran Canaria, Spain
orcid http://orcid.org/0000-0002-7591-6254

João Delgado
Direção de Serviços de Investigação - Madeira, Portugal
orcid http://orcid.org/0000-0003-4268-7202

Ana R. Góis
Direção de Serviços de Investigação - Madeira, Portugal
orcid http://orcid.org/0000-0001-9429-1061

Sandra Correia
Instituto Nacional de Desenvolvimento das Pescas, Cape Verde
orcid http://orcid.org/0000-0001-7619-2801

Albertino Martins
Instituto Nacional de Desenvolvimento das Pescas, Cape Verde
orcid http://orcid.org/0000-0001-5979-4165

José A. González
Applied Marine Ecology and Fisheries Division (EMAP), University Research Institute for Environmental Studies and Natural Resources (i-UNAT), Universidad de Las Palmas de Gran Canaria, Spain
orcid http://orcid.org/0000-0001-8584-6731

Abstract


Composition and bycatch of semi-floating shrimp-trap fisheries (SSTF) were compared among areas with different levels of anthropogenic alteration of marine ecosystems. The three areas selected were Madeira, the Canary Islands and Cape Verde. Mean species richness and diversity of the SSTF did not show significant differences among areas. The dominant species in catches of the SSTF for all regions studied was the main target species, Plesionika edwardsii, which accounted for 96.0% of the catch in Cape Verde, 75.8% in Madeira and 59.1% in the Canary Islands. Targeted pandalid shrimps accounted for more than 96.8% of total catches for all areas combined. Numbers of non-target species caught were 18 (Madeira), 14 (Canary Islands) and 16 (Cape Verde), of which 13 (Madeira), 8 (Canary Islands) and 11 (Cape Verde) were always discarded. Bycatch accounted for 0.5% (Madeira), 0.7% (Canary Islands) and 3.1% (Cape Verde) in numbers. Shark species accounted for 0.11% of all individuals caught. A total of 5 species in Madeira, 6 in the Canary Islands and 4 in Cape Verde, accounting for 0.2% to 0.8% of total catches, were not landed due to the small size of individuals or low numbers of individuals caught (self-consumption). The present results suggest that the selectivity of traps for the main target species, P. edwardsii, in SSTF changes due to changes in species dominance, which are probably linked to the degree of human fishing exploitation of the marine ecosystems in each area.

Keywords


abundance; diversity; bycatch; semi-floating shrimp traps; Plesionika edwardsii

Full Text:


HTML PDF XML

References


Alverson D.L., Freeber M.H., Murawski S.A., et al. 1994. A global assessment of fisheries bycatch and discards. FAO Fish. Tech. Pap. 339: 1-233.

Anderson M.J., Legendre P. 1999. An empirical comparison of permutation methods for tests of partial regression coefficients in a linear model. J. Stat. Comput. Simul. 62: 271-303.

Anderson M.J., ter Braak C.J.F. 2003. Permutation tests for multifactorial analysis of variance. J. Stat. Comput. Simul. 73: 85-113.

Anderson M.J., Gorley R.N., Clarke K.R. 2008. PERMANOVA+ for PRIMER: Guide to Software and Statistical Methods. PRIMER-E, Plymouth, 214 pp.

Bellido J.M., Santos M.B., Pennino M.G., et al. 2011. Fishery discards and bycatch: solutions for an ecosystem approach to fisheries management? Hydrobiologia 670: 317-333.

Berkes F., Mahon R., McConney P., et al. 2001. Managing small-scale fisheries: alternative directions and methods. IDRC, Ottawa, 320 pp.

Biscoito M., Freitas M., Pajuelo J.G., et al. 2015. Sex-structure, depth distribution, intermoult period and reproductive pattern of the deep sea red crab Chaceon affinis (Brachyura, Geryonidae) in two populations in the north-eastern Atlantic. Deep-Sea Res. I 95: 99-114.

Cartes J.A., Serrano A., Velasco F., et al. 2007. Community structure and dynamics of deep-water decapod assemblages from Le Danois Bank (Cantabrian Sea, NE Atlantic): Influence of environmental variables and food availability. Progr. Oceanog. 75: 797-816.

Chuenpagdee R., Liguori L., Palomares M.L.D., et al. 2006. Bottom-up, global estimates of small-scale marine fisheries catches. Fisheries Centre Research Reports, University of British Columbia 14: 1-110.

Clarke K.R. 1990. Comparison of dominance curves. J. Exp. Mar. Biol. Ecol. 138: 143-157.

Clarke K.R., Gorley R.N. 2006. PRIMER v6: User Manual/Tutorial. PRIMER-E, Plymouth, 190 pp.

Clarke K.R., Warwick R.M. 1994. Change in marine communities: an approach to statistical analysis and interpretation. Natural Environmental Research Council, Plymouth Marine Laboratory, Plymouth, 144 pp.

Clarke K.R., Warwick R.M. 2001. Change in marine communities: an approach to statistical analysis and interpretation. 2nd Edition. PRIMER-E, Plymouth, 172 pp.

Clarke J., Milligan R.J., Bailey D.M., et al. 2015. A scientific basis for regulating deep-sea fishing by depth. Current Biol. 25: 2425-2429.

Clarke M.W. 2009. Sharks, skates and rays in the northeast Atlantic: population status, advice and management. J. Appl. Ichthyol. 25: 3-8.

Davies R.W.D., Cripps S.J., Nickson A., et al. 2009. Defining and estimating global marine fisheries bycatch. Mar. Policy 33: 661-672.

Dulvy N.K., Sadovy Y., Reynolds J.D. 2003. Extinction vulnerability in marine populations. Fish Fish. 4: 25-64.

Dunn D.C., Boustany A.M., Halpin P.N. 2011. Spatio-temporal management of fisheries to reduce by-catch and increase fishing selectivity. Fish Fish. 12: 110-119.

Figueiredo I., Moura T., Neves A., et al. 2008. Reproductive strategy of leafscale gulper shark Centrophorus squamosus and the Portuguese dogfish Centroscymnus coelolepis on the Portuguese continental slope. J. Fish Biol. 73: 206-225.

García-Rodríguez M., Esteban A., Pérez Gil J.L. 2000. Considerations on the biology of Plesionika edwardsii (Brandt, 1851) (Decapoda, Caridea, Pandalidae) from experimental trap catches in the Spanish western Mediterranean Sea. Sci. Mar. 64: 369-379.

González J.A. 1997. Transferencia de tecnología a la flota artesanal canaria y desarrollo de nuevas pesquerías de camarones profundos. Instituto Canario de Ciencias Marinas, Gobierno de Canarias. Telde, Las Palmas, 69 pp.

González J.A., Carrillo J., Santana J.I., et al. 1992. La pesquería de Quisquilla, Plesionika edwardsii (Brandt, 1851), con tren de nasas en el Levante español. Ensayos a pequeña escala en Canarias. Inf. Tec. Sci. Mar. 170: 1-31.

González J.A., Quiles J.A., Tuset V.M., et al. 2001. Data on the family Pandalidae around the Canary Islands, with first record of Plesionika antigai (Caridea). Hydrobiologia 449: 71-76.

González J.A., Pajuelo J.G., Triay-Portella R., et al. 2016. Latitudinal patterns in the life-history traits of three isolated Atlantic populations of the deep-water shrimp Plesionika edwardsii (Decapoda, Pandalidae). Deep-Sea Res. I 117: 28-38.

Hall M.A., Alverson D.L., Metuzals K.I. 2000. Bycatch: Problems and solutions. Mar. Poll. Bull. 41: 204-219.

Harrington J.M., Myers R.A., Rosenberg A.A. 2005. Wasted fishery resources: discarded by-catch in the USA. Fish Fish. 6: 350-361.

Jacquet J., Pauly D. 2008. Funding priorities: big barriers to small-scale fisheries. Conserv. Biol. 22: 832-835.

Kappel C.V. 2005. Losing pieces of the puzzle: threats to marine, estuarine, and diadromous species. Front. Ecol. Environ. 3: 275-282.

Kelleher K. 2005. Discards in the world’s marine fisheries: an update. FAO Fish. Tech. Pap. 470: 1-134.

Lewison R.L., Crowder L.B., Read A.J., et al. 2004. Understanding impacts of fisheries bycatch on marine megafauna. Trends Ecol. Evol. 19: 598-604.

Magurran A.E. 1988. Ecological diversity and its measurement. Princeton University Press, 179 pp.

Myers R.A., Baum J.K., Shepherd T.D., et al. 2007. Cascading effects of the loss of apex predatory sharks from a coastal ocean. Science 315: 1846-1850.

National Marine Fisheries Service (NMFS). 2016. U.S. National Bycatch Report 1st Edition Update 2. Benaka L.R., Bullock D., Davis J., et al. (eds), National Marine Fisheries Service, U.S. Department of Commerce, 90 pp.

Pajuelo J.G., Lorenzo J.M. 1995. Análisis y predicción de la pesquería demersal de las Islas Canarias mediante un modelo ARIMA. Sci. Mar. 59: 155-164.

Pajuelo J.G., González J.A., Santana J.I. 2010. Bycatch and incidental catch of the black scabbardfish (Aphanopus spp.) fishery off the Canary Islands. Fish. Res. 106: 448-453.

Pajuelo J.G., García S., Lorenzo J.M., et al. 2011. Population biology of the shark Squalus megalops harvested in the central-east Atlantic Ocean. Fish. Res. 108: 31-41.

Pajuelo J.G., Seoane J., Biscoito M., et al. 2016. Assemblages of deep-sea fishes on the middle slope off Northwest Africa (26°- 33°N, Eastern Atlantic). Deep-Sea Res. I 118: 66-83.

Pauly D. 2008. Global fisheries: a brief review. J. Biol. Res. 9: 3-9.

Pauly D., Christensen V. 1995. Primary production required to sustain global fisheries. Nature 374: 255-257.

Pauly D., Christensen V., Dalsgaard J., et al. 1998. Fishing down marine food webs. Science 279: 860-863.

Read A.J., Drinker P., Northridge S. 2006. Bycatch of marine mammals in U.S. and global fisheries. Conserv. Biol. 20: 163-169.

Sadovy Y., Craig M.T., Bertoncini A.A., et al. 2013. Fishing groupers towards extinction: a global assessment of threats and extinction risks in a billion dollar fishery. Fish Fish. 14: 119-136.

Shester G.G., Micheli F. 2011. Conservation challenges for small-scale fisheries: bycatch and habitat impacts of traps and gillnets. Biol. Conserv. 144: 1673-1681.

Spalding M.D., Fox H.E., Allen G.R., et al. 2007. Marine ecoregions of the world: A bioregionalization of coastal and shelf areas. BioScience 57: 573-583.

Stevens J., Bonfil R., Dulvy N., et al. 2000. The effects of fishing on sharks, rays and chimaeras (chondrichthyans), and the implications for marine ecosystems. ICES J. Mar. Sci. 57: 476-494.

Stobutzki I., Miller M., Brewer D. 2001. Sustainability of fishery bycatch: a process for assessing highly diverse and numerous bycatch. Environ. Conserv. 28: 167-181.

Teh L.C.L., Sumaila U.R. 2013. Contribution of marine fisheries to worldwide employment. Fish Fish. 14: 77-88.

WoRMS Editorial Board. 2018. World Register of Marine Species. Accessed through: http://www.marinespecies.org at VLIZ on 19/03/2018.

Zimmerhackel J.S., Schuhbauer A.C., Usseglio P., et al. 2015. Catch, bycatch and discards of the Galapagos Marine Reserve small-scale handline fishery. PeerJ 3: e995.




Copyright (c) 2011 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Contact us scimar@icm.csic.es

Technical support soporte.tecnico.revistas@csic.es