Characterization of a resilient seagrass meadow during a decline period

Authors

DOI:

https://doi.org/10.3989/scimar.04616.18A

Keywords:

Zostera marina, Zostera noltei, benthic fauna, Bay of Santander, plant traits variability

Abstract


Seagrasses are globally threatened ecosystems with essential ecological roles. An important limitation in seagrass conservation efforts is the poor understanding of resilient meadows. The present work studies a meadow, which maintained a large population of Zostera marina and Zostera noltei, during the decline of seagrasses in the Bay of Santander (from 1984 to 2000). The work examines resilience parameters related to the biological traits (biomass, density, length and width of the leaves) and to the associated benthic assemblages. The maturity of the meadow and the changing environmental conditions induced by the torrential regime of the Miera River, have likely improved the resistance to the periods of stress. The adaptation to these fluctuating conditions is reflected in a high seasonal and spatial variability in the biomass, density, morphological traits and benthic assemblages. These variations are related to the summer peaks in the PAR, the sea surface temperature and the freshwater influence along the discharge of the Miera River. This work provides the first seagrass data in Cantabria. The data are dated in the early 2000s and constitute a baseline study for the Bay of Biscay.

Downloads

Download data is not yet available.

References

Auby I., Labourgm P.J. 1996. Seasonal dynamics of Zostera noltii Hornem., in the Bay of Arcachon (France). J. Sea. Res. 35: 269-277. https://doi.org/10.1016/S1385-1101(96)90754-6

Baeta A., Valiela I., Rossi F., et al. 2009. Eutrophication and trophic structure in response to the presence of the eelgrass Zostera noltii. Mar. Biol. 156: 2107-2120. https://doi.org/10.1007/s00227-009-1241-y

Bergmann N., Winters G., Rauch G., et al. 2010. Population-specificity of heat stress gene induction in northern and southern eelgrass Zostera marina populations under simulated global warming. Mol. Ecol. 19: 2870-2883. https://doi.org/10.1111/j.1365-294X.2010.04731.x PMid:20609077

Calleja F., Galván C., Silió-Calzada A., et al. 2017. Long-term analysis of Zostera noltei: A retrospective approach for understanding seagrasses' dynamics. Mar. Environ. Res. 130: 3-105. https://doi.org/10.1016/j.marenvres.2017.07.017 PMid:28754519

Cardoso P.G., Raffaelli D., Pardal M.A. 2008. The impact of extreme weather events on the seagrass Zostera noltii and related Hydrobia ulvae population. Mar. Pollut. Bull. 56: 483-492. https://doi.org/10.1016/j.marpolbul.2007.11.006 PMid:18164733

Cochón G., Sánchez J.M. 2005. Variations of seagrass beds in Pontevedra (northwestern Spain): 1947-2001. Thalassas 21: 9-19.

Cunha A.H., Assis J., Serrão E. 2013. Seagrass in Portugal: A most endangered marine habitat. Aquat. Bot. 104: 193-203. https://doi.org/10.1016/j.aquabot.2011.08.007

Davis T., Harasti D., Smith S. et al. 2016. Using modelling to predict impacts of sea level rise and increased turbidity on seagrass distributions in estuarine embayments. Est. Coast. Shelf Sci. 181: 294-301. https://doi.org/10.1016/j.ecss.2016.09.005

Dolch T., Buschbaum C., Reise K. 2013. Persisting intertidal seagrass beds in the northern Wadden Sea since the 1930s. J. Sea. Res. 82: 134-141. https://doi.org/10.1016/j.seares.2012.04.007

Ehlers A., Worm B., Reusch T. B. 2008. Importance of genetic diversity in eelgrass Zostera marina for its resilience to global warming. Mar. Ecol. Prog. Ser. 355: 1-7. https://doi.org/10.3354/meps07369

Folk R.L. 1954. The distinction between grain size and mineral composition in sedimentary rock nomenclature. J. Geology 62: 344-359. https://doi.org/10.1086/626171

Folmer E., Beusekom van J., Dolch T., et al. 2016. Consensus forecasting of intertidal seagrass habitat in the Wadden Sea. J. Appl. Ecol. 53: 1800-1813. https://doi.org/10.1111/1365-2664.12681

Galván C., Juanes J.A., Puente A. 2010. Ecological classification of European transitional waters in the North-East Atlantic eco-region. Est. Coast. Shelf Sci. 87: 442-450. https://doi.org/10.1016/j.ecss.2010.01.026

Garmendia J.M., Valle M., Borja A., et al. 2017. Effect of trampling and digging from shellfishing on Zostera noltei (Zosteraceae) intertidal seagrass beds. Sci. Mar. 81: 121-128 https://doi.org/10.3989/scimar.04482.17A

Holling C.S. 1973. Resilience and stability of ecological systems. Annu. Rev. Ecol. Syst. 4: 1-23. https://doi.org/10.1146/annurev.es.04.110173.000245

Hughes B.B., Hammerstrom K.K., Grant N.E., et al. 2016. Trophic cascades on the edge: Fostering seagrass resilience via a novel pathway. Oecologia 182: 231-241. https://doi.org/10.1007/s00442-016-3652-z PMid:27167224

Kruskal J.B., Wish M. 1978. Multidimensional Scaling. Sage University Paper Series on Quantitative Applications in the Social Sciences, 11. Sage Publications, London. 93 pp.

Laugier L., Rigollet V., de Casabianca M.L. 1999. Seasonal dynamics in mixed eelgrass beds, Zostera marina L. and Zostera noltii Hornem., in a Mediterranean coastal lagoon (Thau lagoon, France). Aquat. Bot. 63: 51-69. https://doi.org/10.1016/S0304-3770(98)00105-3

Lee K.S., Park S.R., Kim Y.K. 2007. Effects of irradiance, temperature, and nutrients on growth dynamics of seagrasses: A review. J. Exp. Mar. Biol. Ecol. 350: 144-175. https://doi.org/10.1016/j.jembe.2007.06.016

Lotze H.K., Lenihan H.S., Bourque B.J., et al. 2006. Depletion, degradation, and recovery potential of estuaries and coastal seas. Science 312: 1806-1809. https://doi.org/10.1126/science.1128035 PMid:16794081

Macreadie P.I., York P.H., Sherman C.D. 2014. Resilience of Zostera muelleri seagrass to small-scale disturbances: the relative importance of asexual versus sexual recovery. Ecol. Evol. 4: 450-461. https://doi.org/10.1002/ece3.933 PMid:24634729 PMCid:PMC3936391

Martin P., Sebastien D., Gilles T., et al. 2010. Long-term evolution (1988-2008) of Zostera spp. Meadows in Arcachon Bay (Bay of Biscay). Est. Coast. Shelf Sci. 87: 357-366. https://doi.org/10.1016/j.ecss.2010.01.016

Materatski P., Vafeiadou A.M., Moens T., et al. 2016. Structural and functional composition of benthic nematode assemblages during a natural recovery process of Zostera noltii seagrass beds. Estuar. Coast. 39: 1478-1490. https://doi.org/10.1007/s12237-016-0086-0

Maxwell P.S., Pitt K.A., Burfeind D.D., et al. 2014. Phenotypic plasticity promotes persistence following severe events: physiological and morphological responses of seagrass to flooding. J. Ecol. 102: 54-64. https://doi.org/10.1111/1365-2745.12167

Olesen B., Sand-Jensen K. 1994. Demography of shallow eelgrass (Zostera marina) populations-shoot dynamics and biomass. J Ecol. 82: 379-390. https://doi.org/10.2307/2261305

Ondiviela B., Gomez A.G., Puente A., et al. 2013. A pragmatic approach to define the ecological potential of water bodies heavily modified by the presence of ports. Environ. Sci. Policy 33: 320-331. https://doi.org/10.1016/j.envsci.2013.07.001

Ondiviela B., Losada I.J., Lara J.L., et al. 2014. The role of seagrasses in coastal protection in a changing climate. Coast. Eng. 87: 158-168. https://doi.org/10.1016/j.coastaleng.2013.11.005

Ondiviela B., García-Castrillo G., Recio M., et al. 2015. Praderas de angiospermas marinas de Cantabria. In: Ruiz J.M., Guillén J.E., Ramos Segura A., et al. (eds), Atlas de las Praderas Marinas de Espa-a. . IEO/IEL/UICN, Murcia-Alicante-Málaga, pp. 566-593.

Orth R.J., Carruthers T.J.B., Dennison W.C., et al. 2006. A global crisis for seagrass ecosystems. Bioscience 56: 987-996. https://doi.org/10.1641/0006-3568(2006)56[987:AGCFSE]2.0.CO;2

Peralta G. 2000. Estudios sobre el crecimiento en Zostera noltii Hornem.: Dinámica estacional y aspectos ecofisiológicos. PhD thesis. Universidad de Cádiz, 229 pp.

Peralta G., Pérez-Lloréns J.L., Hernández I., et al. 2000. Morphological and physiological differences of two morphotypes of Zostera noltii Hornem., from the southwestern Iberian Peninsula. Helgoland. Mar. Res. 54: 80- 86. https://doi.org/10.1007/s101520050005

Rueda J.L., Salas C., Marina P. 2008. Seasonal variation in a deep subtidal Zostera marina L., bed in southern Spain (western Mediterranean Sea). Bot. Mar. 51: 92-102. https://doi.org/10.1515/BOT.2008.016

Short F.T., Polidoro B., Livingstone S.R., et al. 2011. Extinction risk assessment of the world's seagrass species. Biol. Conserv. 144: 1961-1971. https://doi.org/10.1016/j.biocon.2011.04.010

Unsworth R.K.F., Collier C.J., Waycott M., et al. 2015. A framework for the resilience of seagrass ecosystems. Mar. Pollut. Bull. 100: 34-46. https://doi.org/10.1016/j.marpolbul.2015.08.016 PMid:26342389

Virnsten R.W., Nelson W.G., Lewis F.G., et al. 1984. Latitudinal patterns in seagrass epifauna: Do patterns exist, and can they be explained? Estuaries 7: 310-330. https://doi.org/10.2307/1351616

Waycott M., Duarte C.M., Carruthers T.J.B., et al. 2009. Accelerating loss of seagrasses across globe threatens coastal ecosystems. Proc. Natl. Acad. Sci. 106: 12377-12381. https://doi.org/10.1073/pnas.0905620106 PMid:19587236 PMCid:PMC2707273

Wentworth C.K. 1922. A scale of grade and class terms for clastic sediments. J. Geol. 30: 377-392. https://doi.org/10.1086/622910

Wong M.C., Bravo M.A., Dowd M. 2013. Ecological dynamics of Zostera marina (eelgrass) in three adjacent bays in Atlantic Canada. Bot. Mar. 56: 413-424. https://doi.org/10.1515/bot-2013-0068

Yaakub S.M., McKenzie L.J., Erftemeijer P.L., et al. 2014. Courage under fire: Seagrass persistence adjacent to a highly urbanised city-state. Mar. Pollut. Bull. 83: 417-424. https://doi.org/10.1016/j.marpolbul.2014.01.012 PMid:24508045

Published

2018-03-30

How to Cite

1.
Ondiviela B, Fernández L, Puente A, García-Castrillo G, Juanes JA. Characterization of a resilient seagrass meadow during a decline period. Sci. mar. [Internet]. 2018Mar.30 [cited 2024Apr.18];82(1):67-75. Available from: https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1743

Issue

Section

Articles

Most read articles by the same author(s)