Scientia Marina, Vol 81, No 4 (2017)

Antifouling efficacy of a controlled depletion paint formulation with acetophenone


https://doi.org/10.3989/scimar.04638.13A

Sangmok Jung
Department of Life Science and Biotechnology, Soonchunhyang University, Korea, Republic of
orcid http://orcid.org/0000-0003-1703-1746

Mohandoss Sidharthan , Korea, Republic of
orcid http://orcid.org/0000-0001-6631-107X

Jihyun Lee
Korea Fisheries Resources Agency East Sea Branch, Korea, Republic of
orcid http://orcid.org/0000-0002-1359-1562

Hanjoo Lee
Department of Life Science and Biotechnology, Soonchunhyang University, Korea, Republic of
orcid http://orcid.org/0000-0002-0379-1907

Jiyoung Jeon
Department of Life Science and Biotechnology, Soonchunhyang University, Korea, Republic of
orcid http://orcid.org/0000-0002-7132-7620

Taehee Park
Department of Life Science and Biotechnology, Soonchunhyang University, Korea, Republic of
orcid http://orcid.org/0000-0002-0834-5885

Junghyun Yoon
Department of Life Science and Biotechnology, Soonchunhyang University, Korea, Republic of
orcid http://orcid.org/0000-0001-7919-5637

Jaehyuk Jeon
Natural Marine Biodiversity Institute of Korea, Korea, Republic of
orcid http://orcid.org/0000-0002-9341-6827

Hyunwoung Shin
Department of Life Science and Biotechnology, Soonchunhyang University, Korea, Republic of
orcid http://orcid.org/0000-0003-0581-3679

Abstract


Biofouling is an inevitable problem that occurs continually on marine fishing vessels and other small crafts. The nature of the antifouling (AF) coatings used to prevent biofouling on these small vessels is of great environmental concern. Therefore, the efficacy of a non-toxic AF candidate, acetophenone, was evaluated in preliminary laboratory assays using marine bacteria, diatom and Ulva spores. At a low concentration of 100 μg cm–2 of acetophenone, spore attachment of a green fouling alga was significantly reduced (p < 0.01). Similarly, 40% acetophenone coatings significantly inhibited diatom attachment. This new non-toxic AF agent was incorporated into controlled depletion paint (CDP). Fouling coverage (%), biomass, and fouling resistance (%) were estimated. On CDP coatings made with acetophenone (40%), a significant decrease in fouling biomass was estimated (p < 0.01).

Keywords


Ulva spores; antifouling; acetophenone; fouling biomass; fouling resistance; controlled depletion paint (CDP)

Full Text:


HTML PDF XML

References


Adeleye A.S., Oranu E.A., Tao M., et al. 2016. Release and detection of nanosized copper from a commercial antifouling paint. Water Res. 102: 374-382. https://doi.org/10.1016/j.watres.2016.06.056 PMid:27393962

Adkins J.D., Mera A.E., Roe-short M.A., et al. 1996. Novel non-toxic coatings designed to resist marine fouling. Prog. Org. Coat. 29: 1-5. https://doi.org/10.1016/S0300-9440(96)00646-7

Aldrich-Smith G., Jennett N., Housden J. 2005. Adhesion of thin coatings - the VAMAS (TWA 22-2) interlaboratory excercise. Surf. Coat. Tech. 197: 336-344. https://doi.org/10.1016/j.surfcoat.2004.07.113

Anderson C.D., Hunter J.E. 2000. Whither antifoulings after TBT? NAV 2000 Proc. Intl. Conf. Ship and Shipping Research, 13th Congress paper 3.7, 19-22 September 2000, Venice, Italy.

ASTM (American Society for Testing and Materials). 1988. D1210- 96, Standard test method for fineness of dispersion of pigment-vehicle systems by Hegman-type Gauge. ASTM International, West Conshohocken. www.astm.org

ASTM (American Society for Testing and Materials). 2000. D714- 87, Standard test method for evaluating degree of blistering of paints. ASTM International, West Conshohocken. www.astm.org

ASTM (American Society for Testing and Materials). 2001. D6677- 1, Standard test method for evaluating adhesion by Knife. ASTM International, West Conshohocken. www.astm.org

ASTM (American Society for Testing and Materials). 2004. D3623- 78a, Standard method for testing antifouling panels in shallow submergence. ASTM International, West Conshohocken. www. astm.org

Callow M.E. 1996. Ship-fouling: The problem and method of control. Biodeterior. Abstr. 10: 411-421.

Cassé F., Swain G.W. 2006. The development of microfouling on four commercial antifouling coatings under static and dynamic immersion. Int Biodeterior Biodegradation. 53: 179-185. https://doi.org/10.1016/j.ibiod.2006.02.008

Chambers L.D., Hellio C., Stokes K.R., et al. 2011. Investigation of Chondrus crispus as a potential source of new antifouling agents. Int Biodeterior Biodegradation. 65: 939-946. https://doi.org/10.1016/j.ibiod.2011.07.002

Champ MA. 2001. New IMO convention to control harmful antifouling systems on ships. Sea Technol. 42: 48-51.

Choi T.S., Kim J.H., Kim K.Y. 2001. Seasonal changes in the abundance of Ulva mats on a rocky intertidal zone of the southern coast of Korea. Algae 16: 337-341.

Chung TJ. 1994. Oil and fats chemistry and coatings. J. Korean Oil Chem. Soc. 11: 17-38.

Del Amo B., Giúdice C., Sindoni O. 1989. High-build soluble matrix antifouling paints based on vinyl resin. Prog. Org. Coat. 17: 287-300. https://doi.org/10.1016/0033-0655(89)80030-5

Dobretsov S., Abed R.M.M., Teplitski M. 2013. Mini-review: Inhibition of biofouling by marine microorganisms. Biofouling 29: 423-441. https://doi.org/10.1080/08927014.2013.776042 PMid:23574279

Fletcher R.L. 1989. A bioassay technique using the marine fouling green alga Enteromorpha. Int. Biodeterioration, 25: 407-422. https://doi.org/10.1016/0265-3036(89)90067-5

Guardiola F.A., Cuesta A., Meseguer J., et al. 2012. Risks of using antifouling biocides in aquaculture. Int. J. Mol. Sci. 13: 1541-1560. https://doi.org/10.3390/ijms13021541 PMid:22408407 PMCid:PMC3291976

Hall W., Bushong S., Hall L., et al. 1988. Monitoring dissolved copper concentrations in Chesapeake Bay. Environ. Monit. Assess. 11: 33-42. https://doi.org/10.1007/BF00394510 PMid:24248797

Hattori T., Shizuri Y. 1996. A screening method for antifouling substances using spores of the fouling macroalga Ulva conglobata Kjellman. Fish. Sci. 62: 955-958. https://doi.org/10.2331/fishsci.62.955

Horiguchi T., Shiraishi H., Shimizu S., et al. 1997. Effects of triphenyltin chloride and five other organotin compounds on the development of imposex in the rock shell, Thais clavigera. Environ. Pollut. 95: 85-91. https://doi.org/10.1016/S0269-7491(96)00093-0

Hellio C., Berge J.P., Beaupoil C., et al. 2002. Screening of marine algal extracts for anti-settlement activities against microalgae and macroalgae. Biofouling. 18: 205-215. https://doi.org/10.1080/08927010290010137

Karlsson J., Eklund B. 2004. New biocide-free anti-fouling paints are toxic. Mar. Pollut. Bull. 49: 456-464. https://doi.org/10.1016/j.marpolbul.2004.02.034 PMid:15325213

Kim K.Y., Choi T.S., Kim J.H., et al. 2004. Physiological ecology and seasonality of Ulva pertusa on a temperate rocky shore. Phycologia 43: 483-492. https://doi.org/10.2216/i0031-8884-43-4-483.1

Kim N.S., Hong S.H., An J.G., et al. 2015. Distribution of butyltins and alternative antifouling biocides in sediments from shipping and shipbuilding areas in South Korea. Mar. Pollut. Bull. 95: 484-490. https://doi.org/10.1016/j.marpolbul.2015.03.010 PMid:25843442

Lejars M., Margaillan A., Bressy C. 2012. Fouling release coatings: a nontoxic alternative to biocidal antifouling coatings. Chem. Rev. 112: 4347-4390. https://doi.org/10.1021/cr200350v PMid:22578131

Lin C.C., Yang C.H., Wu P.S., et al. 2011. Antimicrobial, anti-tyrosinase and antioxidant activities of aqueous aromatic extracts from forty-eight selected herbs. J. Med. Plants Res. 5: 6203-6209.

Meinkoth N.A. 1990. Field guide to North American seashore creatures. The Audubon Society, Alfred A. Knopf, Inc., New York 1-813.

Mieszkin S., Callow M.E., Callow J.A. 2013. Interactions between microbial biofilms and marine fouling algae: a mini review. Biofouling. 29: 1097-1113. https://doi.org/10.1080/08927014.2013.828712 PMid:24047430

Muthukrishnan T., Govender A., Dobretsov S., et al. 2017. Evaluation reliability of counting bacteria using epifluorescence microscopy. J. Mar. Sci. Eng. 5: 4. https://doi.org/10.3390/jmse5010004

Müller-Schwarze D., Houlihan P.W. 1991. Pheromonal activity of single castoreum constituents in beaver, Castor canadensis. J. Chem. Ecol. 17: 715-734. https://doi.org/10.1007/BF00994195 PMid:24258917

Owen R., Knap A., Toaspern M., et al. 2001. Inhibition of coral photosynthesis by the antifouling herbicide Irgarol 1051. Mar. Pollut. Bull. 44: 623-632. https://doi.org/10.1016/S0025-326X(01)00303-4

Pettitt M.E., Henry S.L., Callow M.E., et al. 2004. Activity of commercial enzymes on settlement and adhesion of cypris larvae of the barnacle Balanus amphitrite, spores of the green alga Ulva linza, and the diatom Navicula perminuta. Biofouling. 20: 299-311. https://doi.org/10.1080/08927010400027068 PMid:15804714

Rascio V.J.D., Giudice C., Amo del B. 1988. Research and development of soluble matrix antifouling paints for ships, offshore platforms and power stations, a review. Corros. Rev. 8: 87-154. https://doi.org/10.1515/CORRREV.1988.8.1-2.87

Rascio V.J.D., Giudice C., Amo del B. 1990. High-build soluble matrix antifouling paints tested on raft and ship's bottom. Prog. Org. Coat. 18: 389-398. https://doi.org/10.1016/0033-0655(90)85016-Q

Rogers R.S., Hackman J.R., Mercer V., et al. 1999. Acetophenone tolerance, chemical adaptation, and residual bioreductive capacity of non-fermenting baker's yeast (Saccharomyces cerevisiae) during sequential reactor cycles. J. Ind. Microbiol. Biotechnol. 22: 108-114. https://doi.org/10.1038/sj.jim.2900615

Schiff K., Brown J., Diehl D., et al. 2007. Extent and magnitude of copper contamination in marinas of the San Diego region, California, USA. Mar. Pollut. Bull. 54: 322-328. https://doi.org/10.1016/j.marpolbul.2006.10.013

Schultz M.P., Bendick J.A., Holm E.R., et al. 2011. Economic impact of biofouling on a naval surface ship. Biofouling 27: 87-98. https://doi.org/10.1080/08927014.2010.542809 PMid:21161774

Sidharthan M., Shin H.W., Joo J.H. 2004. Fouling coverage of a green tide alga, Ulva pertusa on some antifouling test surfaces exposed to Ayagin harbor waters, east coast of South Korea. J. Environ. Biol. 25: 39-43. PMid:15303702

Sidharthan M., Jung S.M., Rai H.B., et al. 2006. A new antifouling hybrid CDP formulation with ethyl heptanoate: Evaluation of AF performance at Ayajin harbor, east coast of Korea. WSEAS Trans Syst. 5: 2354-2362.

Soroldoni S., Abreu F., Castro Í.B., et al. 2017. Are antifouling paint particles a continuous source of toxic chemicals to the marine environment? J. Hazard Mater 330: 76-82. https://doi.org/10.1016/j.jhazmat.2017.02.001 PMid:28212512

Stupak M.E., Garcia M.T., Perez M.C. 2003. Non-toxic alternative compounds for marine antifouling paints. Int. Biodeter Biodeg. 51: 49-52. https://doi.org/10.1016/S0964-8305(03)00035-0

Thouvenin M., Peron J.J., Guerin P., et al. 2002. Formulation and antifouling activity of marine paints: a study by a statistically based experiments plan. Prog. Org. Coat. 44: 85-92. https://doi.org/10.1016/S0300-9440(01)00247-8

Yebra D.M., Kiil S., Dam-Johansen K. 2004. Antifouling technology: past, present, and future steps towards efficient and environmentally friendly antifouling coatings. Prog. Org. Coat. 50: 75-104. https://doi.org/10.1016/j.porgcoat.2003.06.001




Copyright (c) 2017 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Contact us scimar@icm.csic.es

Technical support soporte.tecnico.revistas@csic.es