Cyanobacterial community diversity in the sediments of the Pearl River Estuary in China

Authors

  • Fu-Lin Sun State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences - Daya Bay Marine Biology Research Station, South China Sea Institute of Oceanology https://orcid.org/0000-0003-3373-3000
  • You-Shao Wang State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences - Daya Bay Marine Biology Research Station, South China Sea Institute of Oceanology https://orcid.org/0000-0001-9565-2666
  • Mei-Lin Wu State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology https://orcid.org/0000-0002-3387-8122
  • Cui-Ci Sun State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences - Daya Bay Marine Biology Research Station, South China Sea Institute of Oceanology https://orcid.org/0000-0002-7332-5100

DOI:

https://doi.org/10.3989/scimar.04106.07A

Keywords:

estuary, sediment, cyanobacterial community diversity, DGGE

Abstract


Cyanobacterial community diversity in the sediment of the Pearl River Estuary in China was evaluated in this study by denaturing gradient gel electrophoresis (DGGE) during the wet and dry seasons. Nucleotide sequences obtained from DGGE bands were classified into five cyanobacterial clusters, including Synechococcus, Cyanobium, Chroococcus, Prochlorales and Tolypothrix. Synechococcus was identified as the dominant cyanobacterial group in the sediment samples; its distribution varied from the inner estuary to the outer estuary, with a wide range of salinity adaptation. Observed patterns of cyanobacterial communities changed markedly between sampling sites and seasons, suggesting that most cyanobacteria were not delivered via fresh water. Canonical correspondence analysis was conducted to determine the relationship between environmental variables and bacterial community structures during the dry season. The results suggested that the cyanobacterial community was significantly influenced by pH, salinity, PO4-P and NO3-N in sediments.

Downloads

Download data is not yet available.

References

Al-Thukair A.A., Abed R.M.M., Mohamed L. 2007. Microbial community of cyanobacteria mats in the intertidal zone of oil-polluted coast of Saudi Arabia. Mar. Pollut. Bull. 54: 173-179. https://doi.org/10.1016/j.marpolbul.2006.08.043 PMid:17045306

Boutte C., Grubisic S., Balthasart P., et al. 2006. Testing of primers for the study of cyanobacterial molecular diversity by DGGE. J. Microbiol. Meth. 65: 542-550. https://doi.org/10.1016/j.mimet.2005.09.017 PMid:16290299

Boutte C., Mankiewicz-Boczek J., Komarkova J., et al. 2008. Diversity of planktonic cyanobacteria and microcystin occurrence in Polish water bodies investigated using a polyphasic approach. Aquat. Microb. Ecol. 51: 223-236. https://doi.org/10.3354/ame01194

Burger-Wiersma T., Stal L.J., Mur L.R. 1989. Prochlorthrix hollandica gen. nov. sp. nov., a filamentous oxygenic photoautotrophic procaryote containing Chlorophylla a and b: Assignment to Prochlorotrichaceae fam. nov. and Order Prochlorales Florenzano, Balloni, and Materassi 1986, with emendation of the ordinal description. Int. J. Syst. Evol. Micr. 39: 250-257.

Campbell L., Nolla H., Vaulot D. 1994. The importance of Prochlorococcus to community structure in the central North Pacific Ocean. Limnol. Oceanogr. 39: 954-961. https://doi.org/10.4319/lo.1994.39.4.0954

Caroppo C., Turicchia S., Margheri M.C. 2006. Phytoplankton assemblages in coastal waters of the northern Ionian Sea (eastern Mediterranean), with special reference to cyanobacteria. J. Mar. Biol. Assoc. UK 86: 927-937. https://doi.org/10.1017/S0025315406013889

Chamberlain S.D., Kaplan K.A., Modanu M., et al. 2014. Biogeography of planktonic and benthic cyanobacteria in coastal waters of the Big Island, Hawaii. FEMS Microbiol. Ecol. 89: 80-88. https://doi.org/10.1111/1574-6941.12337

Cohen Y., Gurevitz M. 2006. The cyanobacteria-ecology, physiology and molecular genetics. Prokaryotes 4: 1074-1098. https://doi.org/10.1007/0-387-30744-3_39

Dadheech P., Krienitz L., Kotut K., et al. 2009. Molecular detection of uncultured cyanobacteria and aminotransferase domains for cyanotoxin production in sediments of different Kenyan lakes. FEMS Microbiol. Ecol. 68: 340-350. https://doi.org/10.1111/j.1574-6941.2009.00678.x PMid:19416349

Day J.W., Kemp W.M., Yá-ez-Arancibia A. 1989. Estuarine ecology. John Wiley & Sons, New York, 558 pp.

Dong L., Su J., Ah Wong L., et al. 2004. Seasonal variation and dynamics of the Pearl River plume. Cont. Shelf. Res. 24: 1761-1777. https://doi.org/10.1016/j.csr.2004.06.006

Fewer D.P., Koykka M., Halinen K., et al. 2009. Culture-independent evidence for the persistent presence and genetic diversity of microcystin-producing Anabaena (Cyanobacteria) in the Gulf of Finland. Environ. Microbiol. 11: 855-866. https://doi.org/10.1111/j.1462-2920.2008.01806.x PMid:19128321

Flombaum P., Gallegos J.L., Gordillo R.A., et al. 2013. Present and future global distributions of the marine Cyanobacteria Prochlorococcus and Synechococcus. Proc. Natl. Acad. Sci. 110: 9824-9829. https://doi.org/10.1073/pnas.1307701110 PMid:23703908 PMCid:PMC3683724

Jing H., Zhang R., Pointing S.B., et al. 2009. Genetic diversity and temporal variation of the marine Synechococcus community in the subtropical coastal waters of Hong Kong. Can. J. Microbiol. 55: 311-318. https://doi.org/10.1139/W08-138 PMid:19370074

Kana T., Glibert P. 1987. Effect of irradiances up to 2000 µE m–2 s–1 on marine Synechococcus WH7803 - II. Growth, pigmentation, and cell composition. Deep-Sea. Res. 34: 479-495. https://doi.org/10.1016/0198-0149(87)90001-X

Kormas K., Vardaka E., Moustaka-Gouni M., et al. 2010. Molecular detection of potentially toxic cyanobacteria and their associated bacteria in lake water column and sediment. World J. Microb. Biotechnol. 26: 1473-1482. https://doi.org/10.1007/s11274-010-0322-x

Lep? J., ?milauer P. 2003. Multivariate analysis of ecological data using CANOCO. Cambridge Univ. Press, Cambridge, 28 pp.

Liu H., Dagg M., Campbell L., et al. 2004. Picophytoplankton and bacterioplankton in the Mississippi River plume and its adjacent waters. Estuar. Coast. 27: 147-156. https://doi.org/10.1007/BF02803568

Nübel U., Garcia-Pichel F., Muyzer G. 1997. PCR primers to amplify 16S rRNA genes from cyanobacteria. Appl. Environ. Microbiol. 63: 3327-3332. PMid:9251225 PMCid:PMC168636

Nübel U., Garcia-Pichel F., Clavero E., et al. 2000. Matching molecular diversity and ecophysiology of benthic cyanobacteria and diatoms in communities along a salinity gradient. Environ. Microbiol. 2: 217-226. https://doi.org/10.1046/j.1462-2920.2000.00094.x PMid:11220307

Partensky F., Blanchot J., Vaulot D. 1999. Differential distribution and ecology of Prochlorococcus and Synechococcus in oceanic waters: A review. Bull. Inst. Oceanogr. 19: 457–475.

Quesada A., Fernández-Valiente E. 1996. Relationship between abundance of N2-fixing cyanobacteria and environmental features of Spanish rice fields. Microb. Ecol. 32: 59-71. https://doi.org/10.1007/BF00170107 PMid:8661537

Savage D.F., Afonso B., Chen AH., et al. 2010. Spatially ordered dynamics of the bacterial carbon fixation machinery. Science 327: 1258-1261. https://doi.org/10.1126/science.1186090 PMid:20203050

Sellner K., Lacouture R., Parrish C. 1988. Effects of increasing salinity on a cyanobacteria bloom in the Potomac River estuary. J. Plankton Res. 10: 49-61. https://doi.org/10.1093/plankt/10.1.49

Stepanauskas R., Moran M., Bergamaschi B., et al. 2003. Covariance of bacterioplankton composition and environmental variables in a temperate delta system. Aquat. Microb. Ecol. 31: 85-98. https://doi.org/10.3354/ame031085

Sun F.L., Wang Y.S., Wu M.L., et al. 2011. Spatial heterogeneity of bacterial community structure in the sediments of the Pearl River Estuary. Biologia 66: 574-584. https://doi.org/10.2478/s11756-011-0066-6

Sun F.L., Wang Y.S., Wang Y.T., et al. 2012. Spatial and vertical distribution of bacteria in the Pearl River Estuary sediment. Afr. J. Biotechnol. 11: 2256-2266.

Sun F.L., Wang Y.S., Wu M.L., et al. 2015. Spatial and vertical distribution of bacterial community in the northern South China Sea. Ecotoxicology 24: 1478-1485. https://doi.org/10.1007/s10646-015-1472-2 PMid:25956981

Tsujimura S., Okubo T. 2003. Development of Anabaena blooms in a small reservoir with dense sediment akinete population, with special reference to temperature and irradiance. J. Plankton Res. 25: 1059-1067. https://doi.org/10.1093/plankt/25.9.1059

Verspagen J.M.H., Snelder E.O.F.M., Visser P.M., et al. 2005. Benthic-pelagic coupling in the population dynamics of the harmful cyanobacterium Microcystis. Freshw. Biol. 50: 854-867. https://doi.org/10.1111/j.1365-2427.2005.01368.x

Whitton B., Potts M. 2000. The ecology of cyanobacteria: their diversity in time and space. Kluwer Academic Publishers, Dordrecht, The Netherlands, 104 pp.

Yannarell A., Triplett E. 2005. Geographic and environmental sources of variation in lake bacterial community composition. Appl. Environ. Microbiol. 71: 227-239. https://doi.org/10.1128/AEM.71.1.227-239.2005 PMid:15640192 PMCid:PMC544217

Published

2017-12-30

How to Cite

1.
Sun F-L, Wang Y-S, Wu M-L, Sun C-C. Cyanobacterial community diversity in the sediments of the Pearl River Estuary in China. Sci. mar. [Internet]. 2017Dec.30 [cited 2024Mar.29];81(4):477-85. Available from: https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1731

Issue

Section

Articles