Scientia Marina, Vol 81, No 4 (2017)

Cyanobacterial community diversity in the sediments of the Pearl River Estuary in China


https://doi.org/10.3989/scimar.04106.07A

Fu-Lin Sun
State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences - Daya Bay Marine Biology Research Station, South China Sea Institute of Oceanology , China
orcid http://orcid.org/0000-0003-3373-3000

You-Shao Wang
State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences - Daya Bay Marine Biology Research Station, South China Sea Institute of Oceanology , China
orcid http://orcid.org/0000-0001-9565-2666

Mei-Lin Wu
State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology , China
orcid http://orcid.org/0000-0002-3387-8122

Cui-Ci Sun
State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences - Daya Bay Marine Biology Research Station, South China Sea Institute of Oceanology , China
orcid http://orcid.org/0000-0002-7332-5100

Abstract


Cyanobacterial community diversity in the sediment of the Pearl River Estuary in China was evaluated in this study by denaturing gradient gel electrophoresis (DGGE) during the wet and dry seasons. Nucleotide sequences obtained from DGGE bands were classified into five cyanobacterial clusters, including Synechococcus, Cyanobium, Chroococcus, Prochlorales and Tolypothrix. Synechococcus was identified as the dominant cyanobacterial group in the sediment samples; its distribution varied from the inner estuary to the outer estuary, with a wide range of salinity adaptation. Observed patterns of cyanobacterial communities changed markedly between sampling sites and seasons, suggesting that most cyanobacteria were not delivered via fresh water. Canonical correspondence analysis was conducted to determine the relationship between environmental variables and bacterial community structures during the dry season. The results suggested that the cyanobacterial community was significantly influenced by pH, salinity, PO4-P and NO3-N in sediments.

Keywords


estuary; sediment; cyanobacterial community diversity; DGGE

Full Text:


PDF HTML XML

References


Al-Thukair A.A., Abed R.M.M., Mohamed L. 2007. Microbial community of cyanobacteria mats in the intertidal zone of oil-polluted coast of Saudi Arabia. Mar. Pollut. Bull. 54: 173-179.

Boutte C., Grubisic S., Balthasart P., et al. 2006. Testing of primers for the study of cyanobacterial molecular diversity by DGGE. J. Microbiol. Meth. 65: 542-550.

Boutte C., Mankiewicz-Boczek J., Komarkova J., et al. 2008. Diversity of planktonic cyanobacteria and microcystin occurrence in Polish water bodies investigated using a polyphasic approach. Aquat. Microb. Ecol. 51: 223-236.

Burger-Wiersma T., Stal L.J., Mur L.R. 1989. Prochlorthrix hollandica gen. nov. sp. nov., a filamentous oxygenic photoautotrophic procaryote containing Chlorophylla a and b: Assignment to Prochlorotrichaceae fam. nov. and Order Prochlorales Florenzano, Balloni, and Materassi 1986, with emendation of the ordinal description. Int. J. Syst. Evol. Micr. 39: 250-257.

Campbell L., Nolla H., Vaulot D. 1994. The importance of Prochlorococcus to community structure in the central North Pacific Ocean. Limnol. Oceanogr. 39: 954-961.

Caroppo C., Turicchia S., Margheri M.C. 2006. Phytoplankton assemblages in coastal waters of the northern Ionian Sea (eastern Mediterranean), with special reference to cyanobacteria. J. Mar. Biol. Assoc. UK 86: 927-937.

Chamberlain S.D., Kaplan K.A., Modanu M., et al. 2014. Biogeography of planktonic and benthic cyanobacteria in coastal waters of the Big Island, Hawaii. FEMS Microbiol. Ecol. 89: 80-88.

Cohen Y., Gurevitz M. 2006. The cyanobacteria-ecology, physiology and molecular genetics. Prokaryotes 4: 1074-1098.

Dadheech P., Krienitz L., Kotut K., et al. 2009. Molecular detection of uncultured cyanobacteria and aminotransferase domains for cyanotoxin production in sediments of different Kenyan lakes. FEMS Microbiol. Ecol. 68: 340-350.

Day J.W., Kemp W.M., Yáñez-Arancibia A. 1989. Estuarine ecology. John Wiley & Sons, New York, 558 pp.

Dong L., Su J., Ah Wong L., et al. 2004. Seasonal variation and dynamics of the Pearl River plume. Cont. Shelf. Res. 24: 1761-1777.

Fewer D.P., Koykka M., Halinen K., et al. 2009. Culture-independent evidence for the persistent presence and genetic diversity of microcystin-producing Anabaena (Cyanobacteria) in the Gulf of Finland. Environ. Microbiol. 11: 855-866.

Flombaum P., Gallegos J.L., Gordillo R.A., et al. 2013. Present and future global distributions of the marine Cyanobacteria Prochlorococcus and Synechococcus. Proc. Natl. Acad. Sci. 110: 9824-9829.

Jing H., Zhang R., Pointing S.B., et al. 2009. Genetic diversity and temporal variation of the marine Synechococcus community in the subtropical coastal waters of Hong Kong. Can. J. Microbiol. 55: 311-318.

Kana T., Glibert P. 1987. Effect of irradiances up to 2000 µE m–2 s–1 on marine Synechococcus WH7803 - II. Growth, pigmentation, and cell composition. Deep-Sea. Res. 34: 479-495.

Kormas K., Vardaka E., Moustaka-Gouni M., et al. 2010. Molecular detection of potentially toxic cyanobacteria and their associated bacteria in lake water column and sediment. World J. Microb. Biotechnol. 26: 1473-1482.

Lep? J., ?milauer P. 2003. Multivariate analysis of ecological data using CANOCO. Cambridge Univ. Press, Cambridge, 28 pp.

Liu H., Dagg M., Campbell L., et al. 2004. Picophytoplankton and bacterioplankton in the Mississippi River plume and its adjacent waters. Estuar. Coast. 27: 147-156.

Nübel U., Garcia-Pichel F., Muyzer G. 1997. PCR primers to amplify 16S rRNA genes from cyanobacteria. Appl. Environ. Microbiol. 63: 3327-3332.

Nübel U., Garcia-Pichel F., Clavero E., et al. 2000. Matching molecular diversity and ecophysiology of benthic cyanobacteria and diatoms in communities along a salinity gradient. Environ. Microbiol. 2: 217-226.

Partensky F., Blanchot J., Vaulot D. 1999. Differential distribution and ecology of Prochlorococcus and Synechococcus in oceanic waters: A review. Bull. Inst. Oceanogr. 19: 457–475.

Quesada A., Fernández-Valiente E. 1996. Relationship between abundance of N2-fixing cyanobacteria and environmental features of Spanish rice fields. Microb. Ecol. 32: 59-71.

Savage D.F., Afonso B., Chen AH., et al. 2010. Spatially ordered dynamics of the bacterial carbon fixation machinery. Science 327: 1258-1261.

Sellner K., Lacouture R., Parrish C. 1988. Effects of increasing salinity on a cyanobacteria bloom in the Potomac River estuary. J. Plankton Res. 10: 49-61.

Stepanauskas R., Moran M., Bergamaschi B., et al. 2003. Covariance of bacterioplankton composition and environmental variables in a temperate delta system. Aquat. Microb. Ecol. 31: 85-98.

Sun F.L., Wang Y.S., Wu M.L., et al. 2011. Spatial heterogeneity of bacterial community structure in the sediments of the Pearl River Estuary. Biologia 66: 574-584.

Sun F.L., Wang Y.S., Wang Y.T., et al. 2012. Spatial and vertical distribution of bacteria in the Pearl River Estuary sediment. Afr. J. Biotechnol. 11: 2256-2266.

Sun F.L., Wang Y.S., Wu M.L., et al. 2015. Spatial and vertical distribution of bacterial community in the northern South China Sea. Ecotoxicology 24: 1478-1485.

Tsujimura S., Okubo T. 2003. Development of Anabaena blooms in a small reservoir with dense sediment akinete population, with special reference to temperature and irradiance. J. Plankton Res. 25: 1059-1067.

Verspagen J.M.H., Snelder E.O.F.M., Visser P.M., et al. 2005. Benthic-pelagic coupling in the population dynamics of the harmful cyanobacterium Microcystis. Freshw. Biol. 50: 854-867.

Whitton B., Potts M. 2000. The ecology of cyanobacteria: their diversity in time and space. Kluwer Academic Publishers, Dordrecht, The Netherlands, 104 pp.

Yannarell A., Triplett E. 2005. Geographic and environmental sources of variation in lake bacterial community composition. Appl. Environ. Microbiol. 71: 227-239.




Copyright (c) 2017 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Contact us scimar@icm.csic.es

Technical support soporte.tecnico.revistas@csic.es