sm81n3-4594

A new Felimare (Mollusca: Heterobranchia: Nudibranchia) of the Atlantic blue chromodorid chromatic group from Cape Verde

Deneb Ortigosa 1,2, Marta Pola 3, Juan Lucas Cervera 1,4

1 Departamento de Biología, Facultad de Ciencias del Mar y Ambientales, Campus de Excelencia Internacional del Mar (CEI·MAR), Universidad de Cádiz, Av. República Saharahui, s/n, Apdo. 40, CP 11510 Puerto Real, Cádiz, Spain.
(DO) (Corresponding author) E-mail: deneb.ortigosa@uca.es. ORCID iD: http://orcid.org//0000-0002-1857-4630
(JLC) E-mail: lucas.cervera@uca.es. ORCID iD: http://orcid.org/0000-0002-8337-2867
2 Present Address: Unidad Multidisciplinaria de Docencia e Investigación Sisal (UMDI-SISAL), Facultad de Ciencias, Universidad Nacional Autónoma de México, Puerto de abrigo s/n, Sisal, CP 97356 Yucatán, Mexico.
3 Departamento de Biología, Edificio de Biología, Campus de Excelencia Internacional UAM+CSIC, Universidad Autónoma de Madrid, Madrid, Spain.
(MP) E-mail: marta.pola@uam.es. ORCID iD: http://orcid.org/0000-0003-0518-346X
4 Instituto Universitario de Investigación Marina (INMAR), Campus de Excelencia Internacional del Mar (CEI·MAR), Universidad de Cádiz, Avenida República Saharaui, s/n, Ap. 40, 11510 Puerto Real, Cádiz, Spain.

Summary: A new species of the chromodorid genus Felimare (Gastropoda: Heterobranchia) of the Atlantic blue chromatic group is described using material from Cape Verde (eastern Atlantic). Felimare aurantimaculata n. sp. was described based on morphological characters, as well as a molecular phylogeny using two mitochondrial (cytochrome c oxidase subunit I and 16S rRNA) and one nuclear (histone-3) markers. Felimare aurantimaculata n. sp. is characterized by having a ground of dark blue colour with many orange polka dots over the body, dark blue rhinophores and branchial leaves, and very large and not clustered mantle dermal formations (MDFs) at the edge of the mantle, totally absent in the anterior area facing the rhinophores.

Keywords: Chromodorididae; eastern Atlantic; Gastropoda; morphology; new species.

Un nuevo Felimare (Mollusca: Heterobranchia: Nudibranchia) del grupo cromático de cromodorídidos atlánticos azules de Cabo Verde

Resumen: Se describe una nueva especie de cromodorídido del género Felimare (Gastropoda: Heterobranchia) del grupo cromático azul atlántico usando material de Cabo Verde (Atlántico oriental). Felimare aurantimaculata n. sp. se describió a partir de caracteres morfológicos, así como de una filogenia molecular utilizando dos marcadores mitocondriales (citocromo c oxidasa subunidad I y 16S rRNA) y uno nuclear (histona-3). Felimare aurantimaculata n. sp. se caracteriza por tener una coloración general azul oscura con muchos lunares anaranjados sobre el cuerpo, rinóforos y hojas branquiales azul oscuro, y formaciones dérmicas del manto (MDFs) muy grandes y no agrupadas en el borde del manto, aunque totalmente ausentes en la región anterior delante de los rinóforos.

Palabras clave: Chromodorididae; Atlántico oriental; Gastropoda; morfología; nueva especie.

Citation/Como citar este artículo: Ortigosa D., Pola M., Cervera J.L. 2017. A new Felimare (Mollusca: Heterobranchia: Nudibranchia) of the Atlantic blue chromodorid chromatic group from Cape Verde. Sci. Mar. 81(3): 387-394. doi: http://dx.doi.org/10.3989/scimar.04594.16A

LSID: urn:lsid:zoobank.org:pub:405B82C1-8718-4B4C-90C2-CCC9F1CE5FDA

Editor: C. Froglia.

Received: December 13, 2016. Accepted: April 10, 2017. Published: July 3, 2017.

Copyright: © 2017 CSIC. This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-by) Spain 3.0 License.

Contents

Summary
Resumen
Introduction
Materials and methods
Results and discussion
Acknowledgements
References

INTRODUCTIONTop

Ortea et al. (1996)Ortea J., Valdés Á., García-Gómez J.C. 1996. Revisión de las especies atlánticas de la familia Chromodorididae (Mollusca: Nudibranchia) del grupo cromático azul. Avicenia Suppl. 1: 1-165. defined the Atlantic blue chromodorid chromatic group as species of blue colour (from pale blue to navy) with white, blue or orange spots, blotches, or lines, and with a distribution range in the Atlantic Ocean (Mediterranean and Caribbean included). This group comprised species of five formerly different genera: Hypselodoris Stimpson, 1855 and Mexichromis Bertsch, 1977, nowadays transferred to Felimare Ev. Marcus and Er. Marcus, 1967; Glossodoris Ehrenberg, 1831 and Chromodoris Alder and Hancock, 1855, both as part of the provisional genus ‘Felimida’ Ev. Marcus, 1971; and Risbecia Odhner, 1934, synonymized by Johnson and Gosliner (2012)Johnson R., Gosliner T.M. 2012. Traditional taxonomic groupings mask evolutionary history: A molecular phylogeny and new classification of the chromodorid nudibranchs. PloS One 7: e33479. with Hypselodoris. Ortea’s et al. (1996)Ortea J., Valdés Á., García-Gómez J.C. 1996. Revisión de las especies atlánticas de la familia Chromodorididae (Mollusca: Nudibranchia) del grupo cromático azul. Avicenia Suppl. 1: 1-165. review, however, did not include in this group other Atlantic species clearly belonging to the blue chromatic group, such as Felimare zebra (Heilprin, 1889) from Bermuda.

The Felimare genus was re-erected by Johnson and Gosliner (2012)Johnson R., Gosliner T.M. 2012. Traditional taxonomic groupings mask evolutionary history: A molecular phylogeny and new classification of the chromodorid nudibranchs. PloS One 7: e33479.. According to these authors, Felimare should include all the eastern Pacific, Atlantic and Mediterranean species previously attributed to Hypselodoris as well as two species of Mexichromis (one from the eastern Pacific and one from the Caribbean). To date, there are 39 described species within the genus: 36 valid species of the genus Felimare sensu WORMS (Bouchet and Caballer 2015Bouchet P., Caballer M. 2015. Felimare Ev. Marcus and Er. Marcus, 1967. In: World Register of Marine Species, accessed on 01 March 2016 at http://www.marinespecies.org/aphia.php?p=taxdetails&id=558624), and three species described as Hypselodoris sensu WORMS, but that according to the Johnson and Gosliner’s (2012)Johnson R., Gosliner T.M. 2012. Traditional taxonomic groupings mask evolutionary history: A molecular phylogeny and new classification of the chromodorid nudibranchs. PloS One 7: e33479. hypothesis should be included in Felimare: Hypselodoris samueli Caballer and Ortea, 2012, Hypselodoris alaini Ortea, Espinosa and Buske, 2013, and Hypselodoris fregona Ortea and Caballer, 2013 (Caballer and Ortea 2012Caballer M., Ortea J. 2012. Description of a new species of Hypselodoris (Gastropoda: Nudibranchia: Chromodorididae) from Venezuela. Rev. Acad. Can. Cienc. 23: 93-106., Ortea et al. 2013Ortea J., Espinosa J., Buske Y., et al. 2013. Additions to the inventory of the sea slugs (Opisthobranchia and Sacoglossa) from Guadeloupe (Lesser Antilles, Caribbean Sea). Rev. Acad. Can. Cienc. 25: 163-194.). Recently, Furfaro et al. (2016)Furfaro G., Modica M.V., Oliverio M. et al. 2016. A DNA-barcoding approach to the phenotypic diversity of Mediterranean species of Felimare Ev. Marcus and Er. Marcus, 1967 (Mollusca: Gastropoda), with a preliminary phylogenetic analysis. Ital. J. Zool. 83: 195-207. raised a subspecies from the Atlantic blue chromodorid chromatic group, Felimare picta verdensis (Ortea, Valdés and García-Gómez, 1996), to species rank. However, a contemporary study (Almada et al. 2016Almada F., Levy A., Robalo J.I. 2016. Not so sluggish: the success of Felimare picta complex (Gastropoda, Nudibranchia) crossing Atlantic biogeographic barriers. PeerJ 4: e1561.) stated that both subspecies Felimare picta verdensis and Felimare picta tema (Ortea, Valdés and García-Gómez, 1996) are synonyms of Felimare tema (Edmunds, 1981).

To date, in the Atlantic coast of Africa, there is evidence of nine species of Felimare that fit into the blue chromodorid chromatic group (Table 1). In this paper, we describe a new species of Felimare from specimens collected from Cape Verde using morphological characters as well as molecular analyses based on two mitochondrial genes, cytochrome c oxidase subunit I (COI) and 16S rRNA (16S), and one nuclear gene, histone-3 (H3). Thus, the number of the blue chromatic chromodorids from the western coast of Africa has risen to ten.

Table 1. – Species of Felimare of the blue Atlantic chromatic group distributed along the western African coast.

Species Status Type locality Distribution
Felimare bilineata (Pruvot-Fol, 1953) Valid (Johnson and Gosliner 2012Johnson R., Gosliner T.M. 2012. Traditional taxonomic groupings mask evolutionary history: A molecular phylogeny and new classification of the chromodorid nudibranchs. PloS One 7: e33479.) Temara, Morocco From the Gulf of Biscay to Ghana, including the Iberian Peninsula; Madeira and Selvagens Islands (Portugal), Canary Islands (Spain), Morocco, Senegal (Bouchet 1975Bouchet P. 1975. Nudibranches nouveaux des côtes du Senegal. Vie Milieu 25: 119-132., Edmunds 1981Edmunds M. 1981. Opisthobranchiate Mollusca from Ghana: Chromodorididae. Zool. J. Linn. Soc. 72: 175-201., Ortea et al. 1996Ortea J., Valdés Á., García-Gómez J.C. 1996. Revisión de las especies atlánticas de la familia Chromodorididae (Mollusca: Nudibranchia) del grupo cromático azul. Avicenia Suppl. 1: 1-165., Cervera et al. 2004Cervera J.L., Calado G., Gavaia C., et al. 2004. An annotated and updated checklist of the opisthobranchs (Mollusca: Gastropoda) from Spain and Portugal (including islands and archipelagos). Bol. Inst. Esp. Oceanogr. 20: 1-122.)
Felimare ciminoi (Ortea and Valdés, 1996) Hypothesized by Johnson and Gosliner (2012)Johnson R., Gosliner T.M. 2012. Traditional taxonomic groupings mask evolutionary history: A molecular phylogeny and new classification of the chromodorid nudibranchs. PloS One 7: e33479. Bonfin, Angola Angola (Ortea et al. 1996Ortea J., Valdés Á., García-Gómez J.C. 1996. Revisión de las especies atlánticas de la familia Chromodorididae (Mollusca: Nudibranchia) del grupo cromático azul. Avicenia Suppl. 1: 1-165.)
Felimare francoisae (Bouchet, 1980) Hypothesized by Johnson and Gosliner (2012)Johnson R., Gosliner T.M. 2012. Traditional taxonomic groupings mask evolutionary history: A molecular phylogeny and new classification of the chromodorid nudibranchs. PloS One 7: e33479.;
as Felimare by Ortigosa and Valdés (2012)Ortigosa D., Valdés Á. 2012. A new species of Felimare (formerly Mexichromis) (Gastropoda: Opisthobranchia: Chromodorididae) from the Yucatan Peninsula, Mexico. Nautilus 126: 98-104.
Cape Verde, Senegal Senegal, Cape Verde (Ortea et al. 1996Ortea J., Valdés Á., García-Gómez J.C. 1996. Revisión de las especies atlánticas de la familia Chromodorididae (Mollusca: Nudibranchia) del grupo cromático azul. Avicenia Suppl. 1: 1-165.)
Felimare garciagomezi (Ortea and Valdés, 1996) As Felimare by Ortigosa and Valdés (2012)Ortigosa D., Valdés Á. 2012. A new species of Felimare (formerly Mexichromis) (Gastropoda: Opisthobranchia: Chromodorididae) from the Yucatan Peninsula, Mexico. Nautilus 126: 98-104. Ghana Ghana (Ortea et al. 1996Ortea J., Valdés Á., García-Gómez J.C. 1996. Revisión de las especies atlánticas de la familia Chromodorididae (Mollusca: Nudibranchia) del grupo cromático azul. Avicenia Suppl. 1: 1-165.)
Felimare gofasi (Ortea and Valdés, 1996) Hypothesized by Johnson and Gosliner (2012)Johnson R., Gosliner T.M. 2012. Traditional taxonomic groupings mask evolutionary history: A molecular phylogeny and new classification of the chromodorid nudibranchs. PloS One 7: e33479. Santa Maria, Angola Luanda and Lobito, Angola (Ortea et al. 1996Ortea J., Valdés Á., García-Gómez J.C. 1996. Revisión de las especies atlánticas de la familia Chromodorididae (Mollusca: Nudibranchia) del grupo cromático azul. Avicenia Suppl. 1: 1-165.)
Felimare muniani (Ortea and Valdés, 1996) Hypothesized by Johnson and Gosliner (2012)Johnson R., Gosliner T.M. 2012. Traditional taxonomic groupings mask evolutionary history: A molecular phylogeny and new classification of the chromodorid nudibranchs. PloS One 7: e33479. Santo Antonio, Principe Island Santo Antonio, Principe Island (Ortea et al. 1996Ortea J., Valdés Á., García-Gómez J.C. 1996. Revisión de las especies atlánticas de la familia Chromodorididae (Mollusca: Nudibranchia) del grupo cromático azul. Avicenia Suppl. 1: 1-165.)
Felimare pinna (Ortea, 1988) Hypothesized by Johnson and Gosliner (2012)Johnson R., Gosliner T.M. 2012. Traditional taxonomic groupings mask evolutionary history: A molecular phylogeny and new classification of the chromodorid nudibranchs. PloS One 7: e33479. Caleoa, Cape Verde Maio, São Vicente, Boavista, Sal Islands (Cape Verde) (Ortea et al. 1996Ortea J., Valdés Á., García-Gómez J.C. 1996. Revisión de las especies atlánticas de la familia Chromodorididae (Mollusca: Nudibranchia) del grupo cromático azul. Avicenia Suppl. 1: 1-165., Rolán 2005Rolán E. 2005. Malacological Fauna from the Cape Verde Archipelago: Part 1 (Vol. 1). ConchBooks. 455 pp.)
Felimare tema (Edmunds, 1981) Hypothesized by Johnson and Gosliner (2012)Johnson R., Gosliner T.M. 2012. Traditional taxonomic groupings mask evolutionary history: A molecular phylogeny and new classification of the chromodorid nudibranchs. PloS One 7: e33479.; valid by Almada et al. (2016)Almada F., Levy A., Robalo J.I. 2016. Not so sluggish: the success of Felimare picta complex (Gastropoda, Nudibranchia) crossing Atlantic biogeographic barriers. PeerJ 4: e1561. Tema, Ghana Cape Verde, Ghana, São Tomé, southern Angola (Ortea et al. 1996Ortea J., Valdés Á., García-Gómez J.C. 1996. Revisión de las especies atlánticas de la familia Chromodorididae (Mollusca: Nudibranchia) del grupo cromático azul. Avicenia Suppl. 1: 1-165.)
Felimare tricolor (Cantraine, 1835) Hypothesized by Johnson and Gosliner (2012)Johnson R., Gosliner T.M. 2012. Traditional taxonomic groupings mask evolutionary history: A molecular phylogeny and new classification of the chromodorid nudibranchs. PloS One 7: e33479. Bonifacio Strait, Tyrrenian Sea Arcachon (France), Cantabric Sea, Iberian Peninsula, Azores Islands, Madeira, and Selvagens Islands (Portugal), Canary Island (Spain), Mediterranean Sea (Ortea et al. 1996Ortea J., Valdés Á., García-Gómez J.C. 1996. Revisión de las especies atlánticas de la familia Chromodorididae (Mollusca: Nudibranchia) del grupo cromático azul. Avicenia Suppl. 1: 1-165., Furfaro et al. 2016Furfaro G., Modica M.V., Oliverio M. et al. 2016. A DNA-barcoding approach to the phenotypic diversity of Mediterranean species of Felimare Ev. Marcus and Er. Marcus, 1967 (Mollusca: Gastropoda), with a preliminary phylogenetic analysis. Ital. J. Zool. 83: 195-207.)
Felimare xicoi (Ortea and Valdés, 1996) Hypothesized by Johnson and Gosliner (2012)Johnson R., Gosliner T.M. 2012. Traditional taxonomic groupings mask evolutionary history: A molecular phylogeny and new classification of the chromodorid nudibranchs. PloS One 7: e33479. Praia das Conchas, São Tomé São Tomé (Ortea et al. 1996Ortea J., Valdés Á., García-Gómez J.C. 1996. Revisión de las especies atlánticas de la familia Chromodorididae (Mollusca: Nudibranchia) del grupo cromático azul. Avicenia Suppl. 1: 1-165.)

MATERIALS AND METHODSTop

Samples for molecular studies

Samples were obtained from targeted collecting trips and specimens deposited at different museums or collections: the Museum of the “Charles Darwin” Department of Biology and Biotechnologies, La Sapienza University, Rome, Italy (BAU); the British Museum of Natural History, London, United Kingdom (BMNH); the Invertebrate Zoology collection at the California Academy of Sciences, San Francisco, United States (CASIZ); the Colección Nacional de Moluscos, Universidad Nacional Autónoma de México, Mexico City, México (CNMO); the California State Polytechnic University Invertebrate Collection, Pomona, United States (CPIC); the Museo Nacional de Ciencias Naturales, Madrid, Spain (MNCN); and the Museu Nacional de História Natural e da Ciência, Lisbon, Portugal (MUHNAC, formerly Museu Bocage MB).

DNA extraction, amplification and sequencing

DNA extractions were performed using the Qiagen DNeasy Blood and Tissue Kit following the manufacturer’s instructions, with some minor changes (100 μL final extraction instead of 200 μL). Partial sequences of COI, 16S and H3 were amplified by PCR using LCO1490 and HCO2198 universal primers for COI (Folmer et al. 1994Folmer O., Black M., Hoeh W., et al. 1994. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. J. Mol. Biol. Biotechnol. 3: 294-299.), 16S ar-L and 16S br-H for 16S (Palumbi et al. 1991Palumbi S.R., Martin A., Romano S., et al. 1991. The Simple Fool’s Guide to PCR.: Department of Zoology, University of Hawaii. Honolulu, 45 pp.), and H3AD5’3’ and H3BD5’3’ for H3 (Colgan et al. 1998Colgan D.J, Mclauchlan A., Wilson G.D.F, et al. 1998. Molecular phylogenetics of the Arthropoda: relationships based on histone H3 and U2 snRNA DNA sequences. Aust. J. Zool. 46: 419-437.). The master mix for the PCR was carried out in 25 μL volume reactions. PCR contained 2.5 μL of Qiagen buffer, 2 μL of DNA, 2.5 μL of dNTP (2 mM), 5 μL of Q-solution (Qiagen), 1.5-3.5 μM magnesium chloride, 1 μL of each forward and reverse primer (10 µM), 0.25 μL of DNA polymerase (250 units µ–1), 2-3 μL of DNA template, and nuclease-free water. Successful PCR products were purified and sequenced by Macrogen, Inc. All new sequences obtained were deposited in GenBank. COI amplification was performed with an initial denaturation for 3 min at 94-95°C, followed by 39-40 cycles of 30-45 s at 94°C, 30-45 s at 46°C (annealing temperature) and 1-2 min at 72°C, with a final extension of 5 min at 72°C. 16S amplification was performed with an initial denaturation for 3 min at 94-95°C, followed by 39 cycles of 39-45 s at 94°C, 30-50 s at 45-51.5°C (annealing temperature) and 2 min at 72°C, with a final extension of 5-10 min at 72°C. H3 amplification was performed with an initial denaturation for 3 min at 95°C, followed by 40 cycles of 45-60 s at 94-95°C, 45 s at 50°C (annealing temperature) and 2 min at 72°C, with a final extension of 10 min at 72°C.

Phylogenetic analyses

Molecular analysis included a total of 21 specimens including eight species of Felimare, four specimens of three other genera of Chromodorididae Bergh, 1891 and one specimen of Prodoris clavigera (Thiele, 1912), originally ascribed to Bathydoris Bergh, 1884, as an outgroup (Table 2).

Table 2. – Specimens used for molecular analyses, sample codes, vouchers, collection sites, GenBank accession numbers and references.

Species Voucher Locality 16s COI H3 References
Chromodoris magnifica MNCN 15.05/76513 Pandaican, Philippines * * * This study
Felimare bilineata MNCN 15.05/76507 Taghazut, Morocco * * * This study
Felimare bilineata MNCN 15.05/76508 Congreso Island, Chafarinas, Spain * * * This study
Felimare bilineata MNCN 15.05/76517 La Caleta, Cadiz, Spain * * * This study
Felimare bilineata CASIZ 179406 Pedra da Gale, Principe Island * * * This study
Felimare bilineata CASIZ 179408 Pedra da Gale, Principe Island * * * This study
Felimare francoisae MNCN 15.05/76511 Ponta de Nho Jom, São Vicente, Cape Verde * - * This study
Felimare francoisae MNCN 15.05/76512 The Anchor, Boavista, Cape Verde * - * This study
Felimare aurantimaculata n. sp. MB28-004391 Tarrafal, Cape Verde * - * This study
Felimare aurantimaculata n. sp. MB28-004390 Tarrafal, Cape Verde * * * This study
Felimare picta MNCN 15.05/76510 Del Rey Island, Chafarinas, Spain * * * This study
Felimare picta MNCN 15.05/76514 Pico Island, Azores, Portugal * * * This study
Felimare picta MNCN 15.05/76567 Naples, Italy * * * This study
Felimare pinna MNCN 15.05/76509 Calhau, Saragasa, Cape Verde * * * This study
Felimare porterae CPIC 1326 San Pedro, California, United States * * * This study
Felimare porterae CPIC 1612 California, United States * * * This study
Felimare tema BMNH 20030798 Dakar, Senegal * * * This study
Felimare tema MNCN 15.05/76515 Porto de Porto Novo, Santo Anton, Cabo Verde * * * This study
Felimare tema MNCN 15.05/76516 Canolo, Angola * * * This study
Felimare tema CASIZ 179384 Pedra da Gale, Principe Island HM162594.1 HM162685.1 HM162500.1 Pola and Gosliner (2010)Pola M., Gosliner T.M. 2010. The first molecular phylogeny of cladobranchian opisthobranchs (Mollusca, Gastropoda, Nudibranchia). Mol. Phylogenet. Evol. 56: 931-941.
Felimare tricolor BAU 2054 Secche di Tor Paterno, Italy LN715193.1 LN715211.1 * Furfaro et al. (2016)Furfaro G., Modica M.V., Oliverio M. et al. 2016. A DNA-barcoding approach to the phenotypic diversity of Mediterranean species of Felimare Ev. Marcus and Er. Marcus, 1967 (Mollusca: Gastropoda), with a preliminary phylogenetic analysis. Ital. J. Zool. 83: 195-207.
Felimare tricolor CASIZ 179386 Pedra da Gale, Principe Island * * * This study
Felimida sphoni CNMO 4965 Acapulco, Guerrero, Mexico KJ911266.1 * KJ911246.1 Ortigosa et al. (2014) Ortigosa D., Pola M., Carmona L., et al. 2014. Redescription of Felimida elegantula (Philippi, 1844) and a preliminary phylogeny of the European species of Felimida (Chromodorididae). J. Mollusc. Stud. 80: 541-550.
Felimida sphoni CASIZ 175431 Punta Carbon, Guanacaste, Costa Rica JQ727736.1 * * Johnson and Gosliner (2012)Johnson R., Gosliner T.M. 2012. Traditional taxonomic groupings mask evolutionary history: A molecular phylogeny and new classification of the chromodorid nudibranchs. PloS One 7: e33479.
Hypselodoris obscura CASIZ 144029 Mooloolaba, Queensland, Australia EU982797.1 EU982745.1 * Johnson (2011)Johnson R.F. 2011. Breaking family ties: taxon sampling and molecular phylogeny of chromodorid nudibranchs (Mollusca, Gastropoda). Zool. Scripta 40: 137-157.
Prodoris clavigera CASIZ 167553 South Shetland Islands, Elephant Island, Antartica JX274067.1 JX274106.1 * Palomar et al. (2014)Palomar G., Pola M., García-Vázquez E. 2014. First molecular phylogeny of the subfamily Polycerinae (Mollusca, Nudibranchia, Polyceridae). Helgol. Mar. Res. 68: 143-153.

DNA sequences were assembled, edited and aligned using Geneious 8.1.2 (Kearse et al. 2012Kearse M., Moir R., Wilson A., et al. 2012. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28: 1647-1649.). The alignments were checked by eye. All the sequences were checked for contamination with BLAST (Altschul et al. 1990Altschul S.F, Gish W., Miller W., et al. 1990. Basic local alignment search tool. J. Mol. Biol. 215: 403-410.) implemented in the GenBank database. Protein-coding sequences were translated into amino acids for confirmation of alignment. Pairwise uncorrected p-distance values between each taxon, uncorrected p-distances between all taxa, and level of saturation for first, second, and third codon positions (p-distances against transitions plus transversions) were calculated in MEGA 5.0 (Tamura et al. 2011Tamura K., Peterson D., Peterson N., et al. 2011. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Phyl. Evol. 28: 2731-2739.) for the COI and H3 genes. The most variable regions from the 16S rRNA alignment were removed in the first analyses, using both the default settings and the standard options for stringent and less stringent selection in Gblocks (Talavera and Castresana 2007Talavera G., Castresana J. 2007. Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst. Biol. 56: 564-577.). When these regions were excluded from the analyses, the combined phylogenetic tree was poorly resolved and with low node support. Therefore, final analyses were performed including all bases. The best-fit models of evolution for each gene were determined using the Akaike information criterion (Akaike 1974Akaike H. 1974. A new look at the statistical model identification. IEEE Trans Automatic Control. 19: 716-723.) implemented in MrModeltest v. 2.3 (Nylander 2004Nylander J.A.A. 2004. MrModeltest v2.3. Program distributed by the author. Evolutionary Biology Centre, Uppsala University.), resulting in the GTR+I+G model for COI, 16S and H3. Maximum likelihood (ML) analyses were performed using the RA×ML software v7.0.4 (Stamatakis 2006Stamatakis A. 2006. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22: 2688-2690.) and node support was assessed with non-parametric bootstrap (BS) with 5000 replicates, random starting trees, and parameters estimated from each dataset under the model selected for the original dataset. Bayesian Inference (BI) analyses were conducted using MrBayes version 3.1.2b (Ronquist and Huelsenbeck 2003Ronquist F., Huelsenbeck J.P. 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1572-1574.) for five million generations with two independent runs and a sampling frequency of 1000. The models implemented were those estimated with MrModeltest v. 2.3. Convergence was diagnosed graphically by plotting for each run the likelihood against the number of generations using the software Tracer version 1.4.1 (Drummond and Rambaut 2007Drummond A.J., Rambaut A. 2007. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol. Biol. 7: 214.). For each analysis, the first 1250 trees were discarded (‘burn-in’ period). Node support was assessed with posterior probability (PP). BI and RA×ML phylogenetic analyses were performed on the 280-core “PhyloCluster” hosted at the Center for Comparative Genomics, California Academy of Sciences. Only nodes supported by PP≥0.95 and BS≥75 were considered as resolved. The combined tree provided better resolution than COI (658 pb), H3 (328 pb) or 16S (up to 476 pb) separately. The combined dataset yielded a sequence alignment of 1462 positions. The ABGD method (Puillandre et al. 2012) was performed for the COI alignment using the online version of the software (available at http://wwwabi.snv.jussieu.fr/public/abgd/) (18 Nov 2016). ABGD was run by selecting Jukes-Cantor and Kimura parameters distance, Pmin=0.001, Pmax=0.1, Steps=10, and relative gap width=1.

Samples for morphological studies

Two specimens of Felimare were obtained in two different surveys in May 2009 and July 2011 through scuba diving at Tarrafal, Cape Verde, and preserved in 96% ethanol. One specimen was dissected by dorsal incision. The internal features were examined using a dissecting microscope and drawn with a camera lucida. The buccal mass was removed and dissolved in 10% sodium hydroxide until the radula and the labial cuticle were isolated from the surrounding tissue. Both were then rinsed in water, dried and mounted for examination under a Quanta 200 scanning electron microscope.

Morphological and anatomical comparison between the new species and congeners from the eastern Atlantic blue chromodorid chromatic group was based on published information and personal observations.

RESULTS AND DISCUSSIONTop

Molecular analyses

We successfully obtained 64 new sequences; 12 additional sequences were obtained from GenBank (Table 2). The combined tree of COI, 16S and H3 provided better resolution than individual genes trees (Fig. 1). The individual genes trees can be seen in the supplementary material Figure S1. Figure 1 shows the phylogenetic hypothesis based on the combined dataset constructed by BI. The topology of the ML tree was almost identical (not shown).

sm4594fig1.jpg

Full size image

Fig. 1. – Phylogenetic hypothesis based on BI of the combined dataset (H3+COI+16S). Numbers above branches represent PP. Numbers below branches represent BS. Unsupported branches not labelled. Dashed rectangles are ABGD groups (Jukes-Cantor parameter). p-uncorrected distances for COI data set for each species. The new species is within the grey rectangle.

The genus Felimare sensu Johnson and Gosliner (2012)Johnson R., Gosliner T.M. 2012. Traditional taxonomic groupings mask evolutionary history: A molecular phylogeny and new classification of the chromodorid nudibranchs. PloS One 7: e33479. was recovered by the BI (ML=not recovered), and their species were arranged into two major clades: one clade including Felimare porterae (Cockerell, 1901) (PP=1, BS=100) and one containing the remaining species of Felimare included in this study (PP=0.99). This last clade is subdivided into two subclades: one (PP=1, BS=79) comprised by Felimare bilineata (Pruvot-Fol, 1953), Felimare n. sp., Felimare pinna (Ortea, 1988), and Felimare tricolor (Cantraine, 1835); and one (PP=1, BS=99) comprised by Felimare picta (Schuitz in Philippi, 1836) and Felimare tema.

The maximum intraspecific pairwise uncorrected p-distance for COI between specimens of F. bilineata was 4.23%. The minimum interspecific p-distance within Felimare was between Felimare n. sp. and F. bilineata and was 8.63% (Table 3). Both ABGD species delimitation method analyses recovered eight partitions with prior maximal distance P=0.001 for 1 group and P=0.035 for 8 groups. (Fig. 1).

Table 3. – Minimum and maximum and COI gene pairwise uncorrected p-distances between F. aurantimaculatata n. sp. and the remaining species of the genus Felimare.

Species %
F. bilineata 8.63-9.68
F. pinna 15.67
F. tema 15.14-15.67
F. tricolor 14.26-14.44
F. porterae 15.49
F. picta 16.02-16.37

Taxonomy

sm4594fig2.jpg

Full size image

Fig. 2. – Living specimens of Felimare aurantimaculata n. sp. A, B, paratype (MB28-004391); C, holotype (MB28-004390) (photos: A, B, P. Wirtz; C, J. Fernandes).

Family CHROMODORIDIDAE
Genus Felimare Ev. Marcus and Er. Marcus, 1967

Felimare aurantimaculata n. sp.
(Figs 2, 3 and 4)

Hypselodoris sp., Wirtz, 2009: 54, Fig. 2.

Holotype: MB28-004390, 30 mm in length alive, Peter Wirtz, Tarrafal, Santiago Island, Cape Verde, 2009. Paratype: MB28-004391, dissected, 50 mm in length alive, Emanuel de Oliveira, Tarrafal, Santiago Island, Cape Verde, 23 m deep, 08 June 2011.

External morphology. Body high and elongate, with dark blue colour and smooth surface. Small round orange spots all over the body, including the foot (Fig. 2). Mantle edge narrow. Dorsum with a series of large and unclustered MDFs on the edge of the mantle, totally absent in the anterior area facing the rhinophores, 15 on the 50 mm specimen (MB28-004391), and 9 on the 30 mm specimen (MB28-004390). MDFs easily seen through the mantle. Posterior end of the foot not covered by the notum (Fig. 2). Rhinophores and branchial leaves dark blue, slightly lighter in colour. Rhinophores of two specimens with 22 lamellae, arranged nearly horizontal. Ten unipinnate branchial leaves in the 50 mm specimen (MB28-004391).

Anatomy (Figs 3, 4). Jaw composed of two pieces covered by unicuspid rodlets (Fig. 3A, B). The radular formula of the 50-mm specimen (MB28-004391) is 69×114.0.114. (Fig. 3C). Without rachidian radular tooth. Innermost lateral teeth sharp bifid, inner lateral teeth with two small denticles on their outer edge (Fig. 3D). Middle lateral teeth curved and bicuspid (Fig. 3E). Outermost teeth slightly bifid, broad tips, with up to four denticles on outer edge (Fig. 3F).

sm4594fig3.jpg

Full size image

Fig. 3. – Scanning electron micrographs of the radula of Felimare aurantimaculata n. sp. (MB28-004391). A, labial cuticle, scale bar=1 mm; B, detail of the labial cuticular rodlets, scale bar=100 μm; C, radula, scale bar=1 mm; D, innermost lateral teeth, scale bar=100 μm; E, middle lateral teeth (right), scale bar=200 μm; F, outermost teeth [right], scale bar=200 μm).

Reproductive system (Fig. 4A, B) with vestibular gland elongated. Vagina very wide and muscular. Pyriform seminal receptacle with a short and thin conduct that joins along the middle length of the vagina. Bursa copulatrix spherical. Uterine duct short and narrow, entering the female gland near the entrance of the oviduct. Ampulla elongated and wide. Penis unarmed. Prostate elongated, located anteriorly to female gland, narrowing slightly to a convoluted deferent duct, all over the reproductive system. Female gland half the size of the entire reproductive system.

sm4594fig4.jpg

Full size image

Fig. 4. – Complete reproductive system of Felimare aurantimaculata n. sp. (MB28-004391). A, original view. B, view with all the organs separated. Abbreviations: a, ampulla; bc, bursa copulatrix; dd, deferent duct; fg, female gland; p, penis; pr, prostate; sr, seminal receptacle; v, vagina; vg, vestibular gland. Scale bar=0.5 mm.

Distribution. To date only known from Tarrafal, Santiago Island, Cape Verde.

Etymology. The name refers to the Latin words aurantiacus, meaning orange, and maculatus, meaning spot, which refers to the chromatic pattern of the body, scattered with orange polka dots.

Comparative diagnosis. Though all the Felimare species distributed along the Atlantic coast of Africa and belonging to the blue Atlantic chromatic group have some chromatic yellow pattern over light to dark blue, Felimare aurantimaculata n. sp. is the only one having small orange dots instead of a white middle line with a distinct and unique pattern as in Felimare pinna; parallel white line or yellow stripes as in Felimare bilineata, Felimare ciminoi (Ortea, Valdés and García-Gómez, 1996), Felimare francoisae (Bouchet in Bouchet and Ortea, 1980), Felimare garciagomezi (Ortea and Valdés, 1996), Felimare tema, Felimare tricolor and Felimare xicoi (Ortea and Valdés, 1996); or irregular patterns as in Felimare gofasi (Ortea, Valdés and García-Gómez, 1996). The morphotype of Felimare picta from the Azores Islands has small yellow spots in a lower density all over the body that make it resemble Felimare aurantimaculata n. sp., but our results show that they are different species nested in different subclades (Fig. 1). The size of the MDFs of Felimare aurantimaculata sp. nov. is larger than that of the remaining known species of the genus. Moreover, the arrangement of the MDFs in Felimare aurantimaculata n. sp. is also unique among the above blue chromatic group, since the remaining species lack MDFs in the middle region of their mantle edge or they are limited to the posterior end (Table 4). The species F. francoisae and F. garciagomezi (previously named as Mexichromis) differ from Felimare aurantimaculata n. sp., besides the chromatic pattern, in having jaw rodlets with 3-4 cuspids, instead of unicuspid rodlets as in F. ciminoi and F. gofasi (Table 4). The reproductive system is like that of other species of Felimare, formerly ascribed to Hypselodoris, such as the size and shape of the vestibular gland; the muscularized wide vagina; the spherical shape of the bursa copulatrix; and the pyriform seminal receptacle, generally attached in some part of the vagina, with the exception of Felimare molloi, that joins just at the entrance of the bursa copulatrix (Ortea et al. 1996Ortea J., Valdés Á., García-Gómez J.C. 1996. Revisión de las especies atlánticas de la familia Chromodorididae (Mollusca: Nudibranchia) del grupo cromático azul. Avicenia Suppl. 1: 1-165., Gosliner and Johnson 1999Gosliner T.M., Johnson R.F. 1999. Phylogeny of Hypselodoris (Nudibranchia: Chromodorididae) with a review of the monophyletic clade of Indo-Pacific species, including descriptions of twelve new species. Zool. J. Linn. Soc. 125: 1-114.).

Table 4. – Comparative table of the main features for Felimare species belonging to the blue Atlantic chromatic group distributed along the western African coast.

Species MDFs arrangement Jaw rodlets
(number of cuspids)
Radular formula
(size of the specimen in mm)
Branchial leaves References
F. bilineata On the posterior end 1-2 66×152.0.152 (40) Up to 10 Ortea et al. (1996)Ortea J., Valdés Á., García-Gómez J.C. 1996. Revisión de las especies atlánticas de la familia Chromodorididae (Mollusca: Nudibranchia) del grupo cromático azul. Avicenia Suppl. 1: 1-165., García-Gómez (2002)García-Gómez J.C. 2002. Paradigmas de una fauna insólita. Los moluscos opistobranquios del estrecho de Gibraltar. Serie Ciencias, 20. Inst. Est. Gibraltareños, Algeciras, Spain.
F. ciminoi Not present 1 34×31.0.31 (?) 7 Ortea et al. (1996)Ortea J., Valdés Á., García-Gómez J.C. 1996. Revisión de las especies atlánticas de la familia Chromodorididae (Mollusca: Nudibranchia) del grupo cromático azul. Avicenia Suppl. 1: 1-165.
F. francoisae On anterior and posterior ends 3-4 45×30.0.30 (?) 12 Bouchet and Ortea (1980)Bouchet P., Ortea J. 1980. Quelques Chromodorididae bleus (Mollusca, Gastropoda, Nudibranchiata) de l'Atlantique oriental. Ann. Inst. Oceanogr. 56: 117-125., Ortea (1988)Ortea J. 1988. Moluscos opistobranquios del Archipiélago de Cabo Verde: Chromodorididae. Pub. Ocas. Soc. Port. Malacol. 11: 1-16., Ortea et al. (1996)Ortea J., Valdés Á., García-Gómez J.C. 1996. Revisión de las especies atlánticas de la familia Chromodorididae (Mollusca: Nudibranchia) del grupo cromático azul. Avicenia Suppl. 1: 1-165.
F. garciagomezi On each side of rhinophores and on the posterior end 3-4 23×12.0.12 (4) Up to 6 Edmunds 1981Edmunds M. (1981). Opisthobranchiate Mollusca from Ghana: Chromodorididae. Zool. J. Linn. Soc. 72: 175-201.
F. gofasi Not present 1 59×65.0.65 (12) Up to 8 Ortea et al. (1996)Ortea J., Valdés Á., García-Gómez J.C. 1996. Revisión de las especies atlánticas de la familia Chromodorididae (Mollusca: Nudibranchia) del grupo cromático azul. Avicenia Suppl. 1: 1-165.
F. muniani Three on the posterior end 1 42×51.0.51 (15) 5 Ortea et al. (1996)Ortea J., Valdés Á., García-Gómez J.C. 1996. Revisión de las especies atlánticas de la familia Chromodorididae (Mollusca: Nudibranchia) del grupo cromático azul. Avicenia Suppl. 1: 1-165.
F. pinna At the posterior end 2-3 47×54.0.54 (12) Up to 9 Ortea et al. (1996)Ortea J., Valdés Á., García-Gómez J.C. 1996. Revisión de las especies atlánticas de la familia Chromodorididae (Mollusca: Nudibranchia) del grupo cromático azul. Avicenia Suppl. 1: 1-165., Rolán (2005)Rolán E. 2005. Malacological Fauna from the Cape Verde Archipelago: Part 1 (Vol. 1). ConchBooks. 455 pp.
F. tema Around the mantle margin, absent only in the middle region (as H. verdensis) 1 82×190.0.190 (76) 76×139.0.139 (?)
70×154.0.154 (?)
9 Edmunds 1981Edmunds M. (1981). Opisthobranchiate Mollusca from Ghana: Chromodorididae. Zool. J. Linn. Soc. 72: 175-201., Ortea et al. (1996)Ortea J., Valdés Á., García-Gómez J.C. 1996. Revisión de las especies atlánticas de la familia Chromodorididae (Mollusca: Nudibranchia) del grupo cromático azul. Avicenia Suppl. 1: 1-165.
F. tricolor On the posterior end 1-2 53×49.0.49 (10)
62×56.0.56 (20)
8-10 Ortea et al. (1996)Ortea J., Valdés Á., García-Gómez J.C. 1996. Revisión de las especies atlánticas de la familia Chromodorididae (Mollusca: Nudibranchia) del grupo cromático azul. Avicenia Suppl. 1: 1-165.
F. xicoi 7, behind the branchial leaves 1-3 63×61.0.61 (18) 6 Ortea et al. (1996)Ortea J., Valdés Á., García-Gómez J.C. 1996. Revisión de las especies atlánticas de la familia Chromodorididae (Mollusca: Nudibranchia) del grupo cromático azul. Avicenia Suppl. 1: 1-165.
F. aurantimaculata n. sp. Around the mantle margin, absent only in the anterior region before the rhinophores 1 69×114.0.114 (50) 10 Present study

Recently, using molecular techniques, Almada et al. (2016)Almada F., Levy A., Robalo J.I. 2016. Not so sluggish: the success of Felimare picta complex (Gastropoda, Nudibranchia) crossing Atlantic biogeographic barriers. PeerJ 4: e1561. and Furfaro et al. (2016)Furfaro G., Modica M.V., Oliverio M. et al. 2016. A DNA-barcoding approach to the phenotypic diversity of Mediterranean species of Felimare Ev. Marcus and Er. Marcus, 1967 (Mollusca: Gastropoda), with a preliminary phylogenetic analysis. Ital. J. Zool. 83: 195-207. ended the controversy related to the Felimare picta complex. They both stated that Felimare tema (Edmunds, 1981) is a valid species distributed from Cape Verde and Senegal to Angola, in the southern hemisphere, while Felimare picta is restricted to the northern hemisphere, but with a broader distribution, from the type locality in the Mediterranean sea up to the Gulf of Mexico. Although there is now no doubt that F. picta is not distributed in the southeastern Atlantic, we decided to include F. picta in our phylogenetic analyses to discard the possibility that Felimare aurantimaculata n. sp. could be a chromatic morphotype of this species. IB, ML, p-distance and ABGD strongly support the hypothesis that Felimare aurantimaculata n. sp. is a new valid species.

ACKNOWLEDGEMENTSTop

We are indebted to all the people who provided us with the material and photographs of the study material: Emannuel d´Oliveira, Jose Fernandez, Justin Hart, David Piras, Gonçalo Rosa, Naoufel Tamsouri, Manuel Jiménez Tenorio and Peter Wirtz. We also thank the staff at the Center for Comparative Genomics at the California Academy of Sciences, especially Anna Sellas and Brian Simison. Joaquim Reis provided valuable comments that improved the quality of this paper. This contribution was supported by the research project CGL2010-17187/BOS, funded by the Spanish Ministry of Economy and Competitiveness.

REFERENCESTop

Akaike H. 1974. A new look at the statistical model identification. IEEE Trans Automatic Control. 19: 716-723.
https://doi.org/10.1109/TAC.1974.1100705

Almada F., Levy A., Robalo J.I. 2016. Not so sluggish: the success of Felimare picta complex (Gastropoda, Nudibranchia) crossing Atlantic biogeographic barriers. PeerJ 4: e1561.
https://doi.org/10.7717/peerj.1561

Altschul S.F, Gish W., Miller W., et al. 1990. Basic local alignment search tool. J. Mol. Biol. 215: 403-410.
https://doi.org/10.1016/S0022-2836(05)80360-2

Bouchet P. 1975. Nudibranches nouveaux des côtes du Senegal. Vie Milieu 25: 119-132.

Bouchet P., Caballer M. 2015. Felimare Ev. Marcus and Er. Marcus, 1967. In: World Register of Marine Species, accessed on 01 March 2016 at
http://www.marinespecies.org/aphia.php?p=taxdetails&id=558624

Bouchet P., Ortea J. 1980. Quelques Chromodorididae bleus (Mollusca, Gastropoda, Nudibranchiata) de l'Atlantique oriental. Ann. Inst. Oceanogr. 56: 117-125.

Caballer M., Ortea J. 2012. Description of a new species of Hypselodoris (Gastropoda: Nudibranchia: Chromodorididae) from Venezuela. Rev. Acad. Can. Cienc. 23: 93-106.

Cervera J.L., Calado G., Gavaia C., et al. 2004. An annotated and updated checklist of the opisthobranchs (Mollusca: Gastropoda) from Spain and Portugal (including islands and archipelagos). Bol. Inst. Esp. Oceanogr. 20: 1-122.

Colgan D.J, Mclauchlan A., Wilson G.D.F, et al. 1998. Molecular phylogenetics of the Arthropoda: relationships based on histone H3 and U2 snRNA DNA sequences. Aust. J. Zool. 46: 419-437.
https://doi.org/10.1071/ZO98048

Drummond A.J., Rambaut A. 2007. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol. Biol. 7: 214.
https://doi.org/10.1186/1471-2148-7-214

Edmunds M. 1981. Opisthobranchiate Mollusca from Ghana: Chromodorididae. Zool. J. Linn. Soc. 72: 175-201.
https://doi.org/10.1111/j.1096-3642.1981.tb01657.x

Folmer O., Black M., Hoeh W., et al. 1994. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. J. Mol. Biol. Biotechnol. 3: 294-299.

Furfaro G., Modica M.V., Oliverio M. et al. 2016. A DNA-barcoding approach to the phenotypic diversity of Mediterranean species of Felimare Ev. Marcus and Er. Marcus, 1967 (Mollusca: Gastropoda), with a preliminary phylogenetic analysis. Ital. J. Zool. 83: 195-207.
https://doi.org/10.1080/11250003.2016.1150525

García-Gómez J.C. 2002. Paradigmas de una fauna insólita. Los moluscos opistobranquios del estrecho de Gibraltar. Serie Ciencias, 20. Inst. Est. Gibraltareños, Algeciras, Spain.

Gosliner T.M., Johnson R.F. 1999. Phylogeny of Hypselodoris (Nudibranchia: Chromodorididae) with a review of the monophyletic clade of Indo-Pacific species, including descriptions of twelve new species. Zool. J. Linn. Soc. 125: 1-114.
https://doi.org/10.1111/j.1096-3642.1999.tb00586.x

Johnson R.F. 2011. Breaking family ties: taxon sampling and molecular phylogeny of chromodorid nudibranchs (Mollusca, Gastropoda). Zool. Scripta 40: 137-157.

Johnson R., Gosliner T.M. 2012. Traditional taxonomic groupings mask evolutionary history: A molecular phylogeny and new classification of the chromodorid nudibranchs. PloS One 7: e33479.
https://doi.org/10.1371/journal.pone.0033479

Kearse M., Moir R., Wilson A., et al. 2012. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28: 1647-1649.
https://doi.org/10.1093/bioinformatics/bts199

Nylander J.A.A. 2004. MrModeltest v2.3. Program distributed by the author. Evolutionary Biology Centre, Uppsala University.

Ortea J. 1988. Moluscos opistobranquios del Archipiélago de Cabo Verde: Chromodorididae. Pub. Ocas. Soc. Port. Malacol. 11: 1-16.

Ortea J., Valdés Á., García-Gómez J.C. 1996. Revisión de las especies atlánticas de la familia Chromodorididae (Mollusca: Nudibranchia) del grupo cromático azul. Avicenia Suppl. 1: 1-165.

Ortea J., Espinosa J., Buske Y., et al. 2013. Additions to the inventory of the sea slugs (Opisthobranchia and Sacoglossa) from Guadeloupe (Lesser Antilles, Caribbean Sea). Rev. Acad. Can. Cienc. 25: 163-194.

Ortigosa D., Valdés Á. 2012. A new species of Felimare (formerly Mexichromis) (Gastropoda: Opisthobranchia: Chromodorididae) from the Yucatan Peninsula, Mexico. Nautilus 126: 98-104.

Ortigosa D., Pola M., Carmona L., et al. 2014. Redescription of Felimida elegantula (Philippi, 1844) and a preliminary phylogeny of the European species of Felimida (Chromodorididae). J. Mollusc. Stud. 80: 541-550.
https://doi.org/10.1093/mollus/eyu041

Palomar G., Pola M., García-Vázquez E. 2014. First molecular phylogeny of the subfamily Polycerinae (Mollusca, Nudibranchia, Polyceridae). Helgol. Mar. Res. 68: 143-153.
https://doi.org/10.1007/s10152-013-0374-z

Palumbi S.R., Martin A., Romano S., et al. 1991. The Simple Fool’s Guide to PCR.: Department of Zoology, University of Hawaii. Honolulu, 45 pp.

Pola M., Gosliner T.M. 2010. The first molecular phylogeny of cladobranchian opisthobranchs (Mollusca, Gastropoda, Nudibranchia). Mol. Phylogenet. Evol. 56: 931-941.
https://doi.org/10.1016/j.ympev.2010.05.003

Puillandre N., Lambert A., Brouillet S., et al. 2012. ABGD, Automatic Barcode Gap Discovery for primary species delimitation. Mol. Ecol. 21: 1864-1877.
https://doi.org/10.1111/j.1365-294X.2011.05239.x

Rolán E. 2005. Malacological Fauna from the Cape Verde Archipelago: Part 1 (Vol. 1). ConchBooks. 455 pp.

Ronquist F., Huelsenbeck J.P. 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1572-1574.
https://doi.org/10.1093/bioinformatics/btg180

Stamatakis A. 2006. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22: 2688-2690.
https://doi.org/10.1093/bioinformatics/btl446

Talavera G., Castresana J. 2007. Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst. Biol. 56: 564-577.
https://doi.org/10.1080/10635150701472164

Tamura K., Peterson D., Peterson N., et al. 2011. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Phyl. Evol. 28: 2731-2739.
https://doi.org/10.1093/molbev/msr121

Wirtz P. 2009. Thirteen new records of marine invertebrates and two of fishes from Cape Verde Islands. Arquipélago Life Mar. Sci. 26: 51-56.

Supplementary Material

The following supplementary material is available through the online version of this article and at the following link:
http://scimar.icm.csic.es/scimar/supplm/sm04594esm.pdf

Fig. S1. – Phylogenetic hypothesis based on BI for each gene (16S, COI, H3). Numbers above branches represent PP. Numbers below branches represent BS. Unsupported branches not labelled. The new species is within the grey rectangle.



Copyright (c) 2017 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Contact us scimar@icm.csic.es

Technical support soporte.tecnico.revistas@csic.es